1
|
Tsikas D, Tsikas SA, Mikuteit M, Ückert S. Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion. Biomedicines 2023; 11:2744. [PMID: 37893117 PMCID: PMC10604150 DOI: 10.3390/biomedicines11102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Malondialdehyde (MDA) is a major and stable product of oxidative stress. MDA circulates in the blood and is excreted in the urine in its free and conjugated forms, notably with L-lysine and L-serine. MDA is the most frequently measured biomarker of oxidative stress, namely lipid peroxidation. Oxidative stress is generally assumed to be associated with disease and to increase with age. Here, we review and discuss the literature concerning circulating and excretory MDA as a biomarker of lipid peroxidation in aging subjects with regard to health and disease, such as kidney disease, erectile dysfunction, and COVID-19. (2) Methods: Scientific articles, notably those reporting on circulating (plasma, serum) and urinary MDA, which concern health and disease, and which appeared in PubMed were considered; they formed the basis for evaluating the potential increase in oxidative stress, particularly lipid peroxidation, as humans age. (3) Results and Conclusions: The results reported in the literature thus far are contradictory. The articles considered in the present study are not supportive of the general view that oxidative stress increases with aging. Many functions of several organs, including the filtration efficiency of the kidneys, are physiologically reduced in men and women as they age. This effect is likely to result in the apparent "accumulation" of biomarkers of oxidative stress, concomitantly with the "accumulation" of biomarkers of an organ's function, such as creatinine. How free and conjugated MDA forms are transported in various organs (including the brain) and how they are excreted in the urine via the kidney is not known, and investigating these questions should be the objective of forthcoming studies. The age- and gender-related increase in circulating creatinine might be a useful factor to be taken into consideration when investigating oxidative stress and aging.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30623 Hannover, Germany
| | - Stefanos A. Tsikas
- Dean’s of Office of Studies, Academic Controlling, Hannover Medical School, 30623 Hannover, Germany
| | - Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, 30623 Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, 30623 Hannover, Germany
| | - Stefan Ückert
- Department of Urology and Urological Oncology, Division of Surgery, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
2
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskelet Disord 2022; 23:563. [PMID: 35689230 PMCID: PMC9188208 DOI: 10.1186/s12891-022-05513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Quercetin, a flavonoid abundantly in vegetables and fruits, exerts antioxidant and anti-inflammatory effects. We investigated the protective effects of quercetin against oxidative stress in the Achilles tendons of diabetic rats. Methods Cells were collected from the Achilles tendons of Sprague–Dawley rats and cultured under four conditions: regular glucose (RG) without quercetin (Quer-), RG with quercetin (Quer +), high-glucose (HG) Quer-, and HG Quer + . The expression of genes related to NADPH oxidase (NOX) and inflammation, reactive oxygen species accumulation, and apoptosis rates was analyzed. Additionally, diabetic rats were divided into two groups and subjected to quercetin (group Q) or no quercetin (group C) treatment. Histological evaluation and expression analysis of relevant genes in the Achilles tendon were performed. Results In rat tendon-derived cells, the expression of Nox1, Nox4, and Il6; reactive oxygen species accumulation; and apoptosis rates were significantly decreased by quercetin treatment in the HG group. The collagen fiber arrangement was significantly disorganized in the diabetic rat Achilles tendons in group C compared with that in group Q. The mRNA and protein expression levels of NOX1 and NOX4 were significantly decreased upon quercetin treatment. Furthermore, the expression of Il6, type III collagen, Mmp2, and Timp2 was significantly decreased, whereas that of type I collagen was significantly increased in group Q compared with that in group C. Conclusions Quercetin treatment decreases NOX expression and thus exerts antioxidant and anti-inflammatory effects in the Achilles tendons of diabetic rats. Quercetin treatment may be effective against diabetic tendinopathy.
Collapse
Affiliation(s)
- Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
3
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Influence of Diabetes-Induced Glycation and Oxidative Stress on the Human Rotator Cuff. Antioxidants (Basel) 2022; 11:antiox11040743. [PMID: 35453426 PMCID: PMC9032678 DOI: 10.3390/antiox11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Most shoulder rotator cuff tears (RCTs) are caused by non-traumatic age-related rotator cuff degeneration, of which hyperglycemia is a risk factor due to its glycation reaction and oxidative stress. We aimed to identify the influence of diabetes-induced glycation and oxidative stress in patients with non-traumatic shoulder RCTs. Twenty patients, aged over 50 years, with non-traumatic shoulder RCTs participated in this study. Patients with a history of diabetes mellitus or preoperative HbA1c ≥ 6.5% were assigned to the diabetic group (n = 10), and the rest to the non-diabetic group (n = 10). Cell proliferation; expression of genes related to oxidative stress, glycation reaction, inflammation, and collagen; intracellular reactive oxygen species (ROS) levels; and apoptosis rates were analyzed. The diabetic group had significantly lower cell proliferation than the non-diabetic group. In the diabetic group, the mRNA expression levels of NOX1, NOX4, IL6, RAGE, type III collagen, MMP2, TIMP1, and TIMP2 were significantly higher; type I collagen expression was significantly lower; and the rate of ROS-positive cells and apoptotic cells, as well as the expression of advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE), was significantly higher. In conclusion, hyperglycemia caused by diabetes mellitus increased AGE and RAGE expression, and led to increased NOX expression, ROS production, and apoptosis in the human rotator cuff. This provides scope to find a preventive treatment for non-traumatic RCTs by inhibiting glycation and oxidative stress.
Collapse
Affiliation(s)
| | - Yutaka Mifune
- Correspondence: ; Tel.: +81-78-382-5985; Fax: +81-78-351-6944
| | | | | | | | | | | | | |
Collapse
|
4
|
Effect of Antioxidants Supplementation on Erectile Dysfunction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sex Med Rev 2022; 10:754-763. [PMID: 37051969 DOI: 10.1016/j.sxmr.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION In Erectile dysfunction (ED) patients, phosphodiesterase type 5 (PDE5) inhibitors are considered as the first-line therapy. However, 30-50% of ED patients fail to follow this therapeutic option because of adverse events, lack of efficacy, or drug costs. Antioxidant supplementation is widely applied in clinical practice and viewed as a potential therapeutic option for ED. Therefore, it is attractive to assess the effect of antioxidants supplementation on ED patients. OBJECTIVES To evaluate the effects of antioxidants supplementation on ED. METHODS Published randomized controlled trials of antioxidants in ED were searched in the PubMed, Embase, and Cochrane Library databases from inception to October 3, 2021. Meta-analyses were carried out using a random-effects model. The results were presented as standard mean differences (SMDs) with their 95% confidence intervals (CIs). RESULTS Eighteen studies with 1,331 ED patients were included in the study. Compared with placebo, antioxidants alone treatment showed a statistical increase in International Index of Erectile Function (IIEF) score (SMD = 1.93; 95% CI: 0.15, 3.72; P = .034). Compared with placebo, antioxidants compound treatment elicited a significant increase in IIEF score (SMD = 2.74; 95% CI: 1.67, 3.81; P < .001) as well as sexual satisfaction score (SMD = 1.61; 95% CI: 0.63, 2.59; P = .001). Compared with the PDE5 inhibitors alone, combination of PDE5 inhibitors and antioxidants showed a significant increase in IIEF score (SMD = 1.1; 95% CI: 0.51, 1.68; P < .001) and sexual satisfaction score (SMD = 1.28; 95% CI: 0.06, 2.51; P = .04). CONCLUSION This study found that the effect of antioxidant alone treatment on ED may be limited. However, antioxidant compound treatment, as well as combination of PDE5 inhibitors and antioxidants, were associated with improved ED, and can be considered as an accessary therapeutic option for ED. Su L, Yang Z, Qu H, et al. Effect of Antioxidants Supplementation on Erectile Dysfunction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
|
5
|
Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, Yamaura K, Mukohara S, Kuroda R. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res 2020; 9:23-28. [PMID: 32435452 PMCID: PMC7229300 DOI: 10.1302/2046-3758.991.bjr-2019-0074.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aims The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Methods Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro. Results Expression of NOX1, NOX4, and IL-6 mRNA in the HG groups was significantly higher compared with that in the RG groups, and NOX1, NOX4, and IL-6 mRNA expression in the HG apo+ group was significantly lower compared with that in the HG apo– group. Cell proliferation in the RG apo+ group was significantly higher than in the control group and was also significantly higher in the HG apo+ group than in the HG apo– group. Both the ROS accumulation and the amounts of apoptotic cells in the HG groups were greater than those in the RG groups and were significantly less in the HG apo+ group than in the HG apo– group. Conclusion Apocynin reduced ROS production and cell death via NOX inhibition in high-glucose conditions. Apocynin is therefore a potential prodrug in the treatment of diabetic tendinopathy. Cite this article:Bone Joint Res 2020;9(1):23–28.
Collapse
Affiliation(s)
- T Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - A Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - H Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - S Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, Hernández AF. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol 2020; 141:111418. [PMID: 32437891 PMCID: PMC7211730 DOI: 10.1016/j.fct.2020.111418] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics. Developmental exposure to environmental factors can disrupt the immune system. Long-term low-dose exposure to chemical mixtures is linked to imunodeficiency Immunodeficiency contributes to chronic diseases and the current Covid-19 pandemics. Environmental chemicals and microorganisms share similar molecular pathomechanisms (AhR pathway). Understanding the underlying pathomechanisms helps to improve public health.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Demetrious Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy.
| | - Marina Goumenou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Michael Aschner
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 180016 Granada, Spain.
| |
Collapse
|
7
|
Gonzaga NA, do Vale GT, da Silva CB, Pinheiro LC, Leite LN, Carneiro FS, Tanus-Santos JE, Tirapelli CR. Treatment with nitrite prevents reactive oxygen species generation in the corpora cavernosa and restores intracavernosal pressure in hypertensive rats. Nitric Oxide 2020; 94:19-26. [DOI: 10.1016/j.niox.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
|
8
|
Song J, Tang Z, Li H, Jiang H, Sun T, Lan R, Wang T, Wang S, Ye Z, Liu J. Role of JAK2 in the Pathogenesis of Diabetic Erectile Dysfunction and an Intervention With Berberine. J Sex Med 2019; 16:1708-1720. [DOI: 10.1016/j.jsxm.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/25/2022]
|
9
|
Wan ZH, Zhang YJ, Chen L, Guo YL, Li GH, Wu D, Wang Y. G protein-coupled receptor kinase 2 inhibition improves erectile function through amelioration of endothelial dysfunction and oxidative stress in a rat model of type 2 diabetes. Asian J Androl 2019; 21:74-79. [PMID: 30226217 PMCID: PMC6337949 DOI: 10.4103/aja.aja_69_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common cause of erectile dysfunction (ED). It has been demonstrated that G protein-coupled receptor kinase 2 (GRK2) overexpression contributes to diabetic endothelial dysfunction and oxidative stress, which also underlies ED in T2DM. We hypothesized that GRK2 overexpressed and attenuated endothelial function of the cavernosal tissue in a rat model of T2DM. T2DM rats were established by feeding with a high-fat diet (HFD) for 2 weeks and then administering two intraperitoneal (IP) injections of a low dose of streptozotocin (STZ), followed by continuous feeding with a HFD for 6 weeks. GRK2 was inhibited by IP injection of paroxetine, a selective GRK2 inhibitor, after STZ injection. Insulin challenge tests, intracavernous pressure (ICP), GRK2 expression, the protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS) pathway, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit gp91 phox , nitric oxide (NO), reactive oxygen species (ROS) production, and apoptosis in cavernosal tissue were examined. Less response to insulin injection was observed in T2DM rats 2 weeks after HFD. Markedly increased GRK2 expression, along with impaired Akt/eNOS pathway, reduced NO production, increased gp91 phox expression and ROS generation, increased apoptosis and impaired erectile function were found in T2DM rats. Inhibition of GRK2 with paroxetine ameliorated Akt/eNOS signaling, restored NO production, downregulated NADPH oxidase, subsequently inhibited ROS generation and apoptosis, and ultimately preserved erectile function. These results indicated that GRK2 upregulation may be an important mechanism underlying T2DM ED, and GRK2 inhibition may be a potential therapeutic strategy for T2DM ED.
Collapse
Affiliation(s)
- Zhi-Hua Wan
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yuan-Jie Zhang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yong-Lian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Guo-Hao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ding Wu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
10
|
Alkan I, Yüksel M, Özveri H, Atalay A, Canat HL, Culha MG, Arabacı Ç, Bozkurt M, Başar M. Semen reactive oxygen species levels are correlated with erectile function among chronic prostatitis/chronic pelvic pain syndrome patients. Int J Impot Res 2018; 30:335-341. [PMID: 30068978 DOI: 10.1038/s41443-018-0047-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is often associated with erectile dysfunction (ED). However, the underlying pathophysiological mechanisms of ED occurrence are still unclear in patients with CP/CPPS. The aim of the study was to investigate superoxide anion (O2•-) and total reactive oxygen species (ROS) production in semen of men with category IIIA CP/CPPS and their association with ED. This prospective study included 33 men with category IIIA CP/CPPS. Control group consisted of 13 healthy men. Total ROS and O2•- production were assayed by luminol and lucigenin-dependent chemiluminescence (CL) methods, respectively. ED was evaluated using the IIEF-5 questionnaire. Patients with CP/CPPS had significantly higher seminal total ROS and O2•- levels than healthy control subjects (2.9 ± 0.5 relative light unit (RLU) vs. 2.4 ± 0.2 RLU, p < 0.001; luminol-dependent CL and 2.5 ± 0.4 RLU vs. 2.3 ± 0.2 RLU, p = 0.02; lucigenin-dependent CL, respectively). Seminal O2•- and ROS levels were negatively correlated with IIEF-5 scores (r = -0.556, r = -0.536; p < 0.001, respectively). These results may suggest O2•-/ROS overproduction could be one of the important mechanisms in the etiology of ED development in CP/CPPS patients.
Collapse
Affiliation(s)
- Ilter Alkan
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey.
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Services, Marmara University, Istanbul, Turkey
| | - Hakan Özveri
- Department of Urology and Andrology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Anıl Atalay
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Halil Lütfi Canat
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Gokhan Culha
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Çiğdem Arabacı
- Department of Microbiology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, University of Health Sciences, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Murad Başar
- Department of Urology and Andrology, Memorial Şişli Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Şener TE, Yüksel M, Özyılmaz-Yay N, Ercan F, Akbal C, Şimşek F, Şener G. Apocynin attenuates testicular ischemia-reperfusion injury in rats. J Pediatr Surg 2015; 50:1382-7. [PMID: 25783298 DOI: 10.1016/j.jpedsurg.2014.11.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study was designed to examine the possible protective effect of apocynin, a NADPH oxidase inhibitor, against torsion/detorsion (T/D) induced ischemia/reperfusion (I/R) injury in testis. METHODS Male Wistar albino rats were divided into sham-operated control, and either vehicle, apocynin 20mg/kg- or apocynin 50mg/kg-treated T/D groups. In order to induce I/R injury, left testis was rotated 720° clockwise for 4 hours (torsion) and then allowed reperfusion (detorsion) for 4 hours. Left orchiectomy was done for the measurement of tissue malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) activity, and luminol, lucigenin, nitric oxide (NO) and peroxynitrite chemiluminescences (CL). Testicular morphology was examined by light microscopy. RESULTS I/R caused significant increases in tissue luminol, lucigenin, nitric oxide and peroxynitrite CL demonstrating increased reactive oxygen and nitrogen metabolites. As a result of increased oxidative stress tissue MPO activity, MDA levels were increased and antioxidant GSH was decreased. On the other hand, apocynin treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by I/R. According to data, although lower dose of apocynin tended to reverse the biochemical parameters, high dose of apocynin provides better protection since values were closer to the control levels. CONCLUSION Findings of the present study suggest that NADPH oxidase inhibitor apocynin by inhibiting free radical generation and increasing antioxidant defense exerts protective effects on testicular tissues against I/R. The protection with apocynin was more pronounced with high dose.
Collapse
Affiliation(s)
- T Emre Şener
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey.
| | - Meral Yüksel
- Vocational School of Health Related Professions, Marmara University, İstanbul, Turkey
| | - Nagehan Özyılmaz-Yay
- Department of Histology & Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Cem Akbal
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Ferruh Şimşek
- Department of Urology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Göksel Şener
- Department of Pharmacology, School of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
12
|
Nunes KP, Teixeira CE, Priviero FBM, Toque HA, Webb RC. Beneficial effect of the soluble guanylyl cyclase stimulator BAY 41-2272 on impaired penile erection in db/db-/- type II diabetic and obese mice. J Pharmacol Exp Ther 2015; 353:330-9. [PMID: 25740897 DOI: 10.1124/jpet.114.220970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus (DM2) and obesity are major risk factors for erectile dysfunction (ED). In diabetes, increased oxidative stress leads to decreased nitric oxide (NO) bioavailability, and diabetic patients appear to be less responsive to conventional therapy with phosphodiesterase type 5 inhibitors. We investigated whether the soluble guanylyl cyclase stimulator BAY 41-2272 (5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4ylamine) is effective in improving impaired corpus cavernosum (CC) relaxation in obese DM2 mice by reducing oxidative stress. Adult db/db(-/-) mice or their lean db(/+) littermates were used to assess vascular function, cGMP levels, antioxidant status, NADPH oxidase expression, and superoxide formation in the absence or presence of BAY 41-2272. Results showed that BAY 41-2272 (10(-8) to 10(-5) M) potently relaxed CC from db(/+) or db/db(-/-) mice in a similar manner. BAY 41-2272 significantly enhanced both endothelium-dependent and nitrergic relaxation induced by electrical field stimulation (EFS), and improved the impaired relaxation to acetylcholine and EFS in the diabetic animals in a concentration-dependent manner (10(-8) to 10(-7) M). BAY 41-2272 increased cGMP levels and potentiated relaxation responses to exogenous NO in CC. Total antioxidant status was reduced in plasma and urine whereas expression of vascular NADPH oxidase subunits (gp91phox, p22phox, and p47phox) was increased in the CC of db/db(-/-) mice, suggesting a state of oxidative stress. These effects were prevented by BAY 41-2272 in a concentration-dependent manner. These results suggest that BAY 41-2272 improves CC relaxation in db/db(-/-) mice by increasing cGMP and augmenting antioxidant status, making this drug is a potential novel candidate to treat ED.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin (K.P.N.); Laboratory of Multidisciplinary Research, Universidade São Francisco, Bragança Paulista, Brazil (F.B.M.P.); and Departments of Physiology (C.E.T., R.C.W.) and Pharmacology and Toxicology (H.A.T.), Georgia Regents University, Augusta, Georgia
| | - Cleber E Teixeira
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin (K.P.N.); Laboratory of Multidisciplinary Research, Universidade São Francisco, Bragança Paulista, Brazil (F.B.M.P.); and Departments of Physiology (C.E.T., R.C.W.) and Pharmacology and Toxicology (H.A.T.), Georgia Regents University, Augusta, Georgia
| | - Fernanda B M Priviero
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin (K.P.N.); Laboratory of Multidisciplinary Research, Universidade São Francisco, Bragança Paulista, Brazil (F.B.M.P.); and Departments of Physiology (C.E.T., R.C.W.) and Pharmacology and Toxicology (H.A.T.), Georgia Regents University, Augusta, Georgia
| | - Haroldo A Toque
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin (K.P.N.); Laboratory of Multidisciplinary Research, Universidade São Francisco, Bragança Paulista, Brazil (F.B.M.P.); and Departments of Physiology (C.E.T., R.C.W.) and Pharmacology and Toxicology (H.A.T.), Georgia Regents University, Augusta, Georgia
| | - R Clinton Webb
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin (K.P.N.); Laboratory of Multidisciplinary Research, Universidade São Francisco, Bragança Paulista, Brazil (F.B.M.P.); and Departments of Physiology (C.E.T., R.C.W.) and Pharmacology and Toxicology (H.A.T.), Georgia Regents University, Augusta, Georgia
| |
Collapse
|
13
|
Abstract
Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.”
Collapse
Affiliation(s)
- Snehlata V Gajbhiye
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Kshitij S Jadhav
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Padmaja A Marathe
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Dattatray B Pawar
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
15
|
Labazi H, Wynne BM, Tostes R, Webb RC. Metformin treatment improves erectile function in an angiotensin II model of erectile dysfunction. J Sex Med 2013; 10:2154-64. [PMID: 23889981 DOI: 10.1111/jsm.12245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Increased angiotensin II (AngII) levels cause hypertension, which is a major risk factor for erectile dysfunction (ED). Studies have demonstrated that increased AngII levels in penile tissue are associated with ED. A recent study showed that metformin treatment restored nitric oxide synthase (NOS) protein expression in penile tissue in obese rats; however, whether metformin treatment can be beneficial and restore erectile function in a model of ED has not yet been established. AIM The goal of this study was to test the hypothesis that AngII induces ED by means of increased corpus cavernosum contraction, and that metformin treatment will reverse ED in AngII-treated rats. METHODS Male Sprague-Dawley rats were implanted with mini-osmotic pumps containing saline or AngII (70 ng/minute, 28 days). Animals were then treated with metformin or vehicle during the last week of AngII infusion. MAIN OUTCOME MEASURES Intracavernosal pressure; corpus cavernosum contraction and relaxation; nNOS protein expression; extracellular signal-regulated kinase (ERK1/2), AMP-activated protein kinase (AMPK), and eNOS protein expression and phosphorylation. RESULTS AngII-induced ED was accompanied with an increase in corpus cavernosum contractility, decreased nitrergic relaxation, and increased ERK1/2 phosphorylation. Metformin treatment improved erectile function in the AngII-treated rats by reversing the increased contraction and decreased relaxation. Metformin treatment also resulted in an increase in eNOS phosphorylation at ser1177. CONCLUSIONS Metformin treatment increased eNOS phosphorylation and improved erectile function in AngII hypertensive rats by reestablishing normal cavernosal smooth muscle tone.
Collapse
Affiliation(s)
- Hicham Labazi
- Georgia Health Sciences University, Physiology Department, Augusta, GA, USA
| | | | | | | |
Collapse
|
16
|
Li M, Liu Z, Zhuan L, Wang T, Guo S, Wang S, Liu J, Ye Z. Effects of apocynin on oxidative stress and expression of apoptosis-related genes in testes of diabetic rats. Mol Med Rep 2013; 7:47-52. [PMID: 23076300 DOI: 10.3892/mmr.2012.1132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/13/2012] [Indexed: 11/05/2022] Open
Abstract
Reactive oxygen species (ROS) are important in the development of diabetic testicular dysfunction. Overproduction of ROS promotes the process of apoptosis, which shows that there is a crosstalk between oxidative stress and apoptosis. Recent research has suggested that NADPH oxidase is the main source of ROS. In this study, we investigated whether the NADPH oxidase inhibitor, apocynin, can improve diabetes‑induced testicular dysfunction by suppressing oxidative stress. The streptozocin (STZ)-induced diabetic rats were administered apocynin, and the mRNA and protein expression of Bax, Bcl-2, p47phox and p67phox was examined by real-time PCR (RT-PCR) and western blot analysis. Production of ROS was measured by thiobarbituric acid reactive substances (TBARS) assay. Terminal-deoxynucleoitidyl transferase mediated nick end-labeling (TUNEL) assay was used to detect apoptosis and ELISA was used to detect total testosterone levels. The mRNA and protein expression of Bcl-2 was significantly reduced, and that of Bax, p47phox and p67phox was significantly increased in the diabetic rats compared to the control group. Apocynin significantly increased the expression of Bcl-2 and decreased the expression of Bax, p47phox and p67phox at both the mRNA and protein levels. The production of ROS and apoptotic cells significantly increased in the diabetic group compared to the control group. Apocynin significantly reduced the production of ROS and apoptotic cells and increased the total testosterone level. In conclusion, apocynin is capable of ameliorating testicular dysfunction.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li M, Zhuan L, Wang T, Rao K, Yang J, Yang J, Quan W, Liu J, Ye Z. Apocynin improves erectile function in diabetic rats through regulation of NADPH oxidase expression. J Sex Med 2012; 9:3041-50. [PMID: 23088159 DOI: 10.1111/j.1743-6109.2012.02960.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Diabetes is a risk factor for erectile dysfunction (ED). The proposed mechanisms responsible for diabetic ED are associated with an increase in reactive oxygen species (ROS) production, overactivity of RhoA/ROCK signaling pathway and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as seen in experimental models of diabetic rats. AIM The aim of this study was to investigate whether NADPH oxidase inhibitor apocynin can ameliorate Streptozotocin (STZ)-induced diabetes-related ED by reducing the ROS production and inhibiting the activity of RhoA/ROCK signaling pathway. METHODS The diabetic rats were treated with and without the NADPH oxidase inhibitor apocynin. MAIN OUTCOME MEASURES Erectile responses were evaluated by determining mean arterial blood pressure (MAP) and intracavernosal pressure (ICP) with electrical stimulation of the cavernous nerve. Levels of mRNA expression were measured by real-time polymerase chain reaction (RT-PCR). Levels of protein expression were examined by Western Blot. ROS production was measured by dihydroethidium (DHE) staining and thiobarbituric acid reactive substances assay. RESULTS The ratio of Maximum ICP-to-MAP (MaxICP/MAP) was significantly decreased in diabetic ED rats, compared to that of age-matched control rats (P < 0.05). Apocynin improved erectile function of diabetic rats (P < 0.05). Expression levels of RhoA (cytosol), nNOS and eNOS were reduced, compared to those of control rats (P < 0.05). Apocynin significantly elevated their expression levels in diabetic rats (P < 0.05). Expression levels of ROCK1, RhoA (membrane fraction), p-MYPT1 and NADPH oxidase subunits p47(phox) and p67(phox) were increased in diabetic rats when compared to those of control rats (P < 0.05), and it was observed that apocynin significantly reduced their expression levels in diabetic rats (P < 0.05). ROS production was increased in diabetic rats when compared to that of control rats (P < 0.05), the effect of apocynin was a reduction in the ROS production in diabetic rats (P < 0.05). CONCLUSION NADPH oxidase inhibitor apocynin can ameliorate diabetes-related ED by reducing the ROS production and inhibiting the activity of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu M, Tang YQ, Dai DZ, Zheng YF, Cheng YS, Zhang Q, Dai Y. Comparison of sildenafil with strontium fructose diphosphate in improving erectile dysfunction against upregulated cavernosal NADPH oxidase, protein kinase Cε, and endothelin system in diabetic rats. J Pharm Pharmacol 2011; 64:244-51. [DOI: 10.1111/j.2042-7158.2011.01390.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Phosphodiesterase type 5 inhibitors are potent in relieving erectile dysfunction (ED), however, they are less satisfactory in diabetic patients, probably due to the pro-inflammatory biomarkers caused by diabetes. Therefore, it was interesting to compare the effects of sildenafil with strontium fructose 1,6-diphosphate (FDP-Sr) on cavernosal vascular activity and expressions of pro-inflammatory biomarkers in diabetic rats.
Methods
Male Sprague-Dawley rats were injected with streptozocin (60 mg/kg, i.p.) to develop diabetes. The animals were diabetic for eight weeks with sildenafil (12 mg/kg per day) or FDP-Sr (200 mg/kg per day) being administered for the last four of those eight weeks.
Key findings
Sildenafil was more effective in relieving reduced vascular dilatation (relevant to ED), but less in attenuating over-expressions of NADPH oxidase p22, p47 and p67 subunits, and ETA/BR (endothelin receptor type A and type B) in the diabetic cavernosum. In contrast, FDP-Sr was less effective in improving ED, but more effective in normalizing the abnormal NADPH oxidase and ETA/BR.
Conclusions
The activated NADPH oxidase and upregulated ETAR and ETBR due to diabetic lesions played a minor or moderate role in ED. By offering extra ATP, FPD-Sr suppressed these abnormalities, however, sildenafil did not. A combined therapy of sildenafil with FDP-Sr may be more effective in relieving ED in diabetic patients through normalizing pro-inflammatory cytokines and improving the nitric oxide/cGMP pathway in the cavernosum.
Collapse
Affiliation(s)
- Ming Xu
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yi-Qun Tang
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - De-Zai Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yu-Feng Zheng
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yu-Si Cheng
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Yin Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Hotston M, Jeremy JY, Persad R, Bloor J, Shukla N. 8-isoprostane F2α up-regulates the expression of type 5 phosphodiesterase in cavernosal vascular smooth muscle cells: inhibition with sildenafil, iloprost, nitric oxide and picotamide. BJU Int 2011; 106:1794-8. [PMID: 20500512 DOI: 10.1111/j.1464-410x.2010.09270.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To explore the possible role of of 8-isoprostane F(2α) (8-IPF(2α) ) in the aetiology of erectile dysfunction (ED), as the over-production of superoxide (O(2)(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase results in the formation of 8-IPF(2α) in vascular tissue, which has similar properties to thromboxane A(2) (TXA(2) ). TXA(2) is vasoconstrictor and up-regulates the expression of NADPH oxidase and phosphodiesterase type 5 (PDE5). MATERIALS AND METHODS Cavernosal vascular smooth muscle cells (CVSMCs) were incubated with 8-IPF(2α) or the TXA(2) analogue, U46619, ±sildenafil, iloprost (a stable prostacyclin [PGI(2) ] analogue) or the nitric oxide (NO) donor NONOate for 16 h. The formation of O(2)(-) was then measured, PDE5 expression assessed using Western blotting and PGI(2) and 8-IPF(2α) formation measured using enzyme-linked immunoassays. RESULTS 8-IPF(2α) promoted the formation of O(2)(-) , an effect inhibited by apocynin (an NADPH oxidase inhibitor) and up-regulated the expression of PDE5. Under identical incubation conditions, 8-IPF(2α) induced an increase in the formation of 8-IPF(2α) but reduced the formation of PGI(2) . All, these effects were reversed by sildenafil, iloprost, NONOate and picotamide. CONCLUSIONS These data show that O(2) (-) derived from NADPH oxidase influences the relative balance of PGI(2) and 8-IPF(2α) in CVSMCs, which in turn alters the degree of PDE5 expression. This is a novel pathogenic mechanism underlying ED and a novel mechanism of action of sildenafil.
Collapse
Affiliation(s)
- Matthew Hotston
- Department of Urology and Bristol Heart Institute, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
20
|
Lambeth JD, Krause KH, Clark RA. NOX enzymes as novel targets for drug development. Semin Immunopathol 2008; 30:339-63. [PMID: 18509646 DOI: 10.1007/s00281-008-0123-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia-reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer's disease, Parkinson's disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.
Collapse
|
21
|
|