1
|
Babu S, Krishnan M, Rajagopal P, Periyasamy V, Veeraraghavan V, Govindan R, Jayaraman S. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur J Pharmacol 2020; 873:173004. [PMID: 32045603 DOI: 10.1016/j.ejphar.2020.173004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
In our previous study, we have shown that β-sitosterol (SIT) enhances glycemic control by increasing the activation of insulin receptor (IR) and glucose transporter 4 (GLUT4) proteins in adipose tissue. However, the possible role of SIT on the regulation of post-receptor insulin signal transduction is not known. Hence, the study was aimed to assess the effects of SIT on IRS-1/Akt mediated insulin signaling molecules in high-fat diet and sucrose induced type-2 diabetic rats. An oral effective dose of SIT (20 mg/kg b.wt) was given for 30 days to high fat-fed type-2 diabetic rats to find out whether SIT regulates IRS-1/Akt pathway of insulin signaling. The results showed that SIT attenuated the insulin receptor substrate-1 serine phosphorylation (p-IRS-1Ser636) (P = 0.0003). However, it up-regulated the mRNA expression of IR (P = 0.0036) and post-receptor insulin signaling molecules such as IRS-1 (P < 0.0001), β-arrestin-2 (P < 0.0058), Akt (P = 0.0008), AS160 (P = 0.0030) and GLUT4 (P < 0.0001) with a concomitant increase in the levels of IRS-1(P < 0.0001), p-IRS1-1Tyr632 (P = 0.0014), Akt (P < 0.0001), p-AktSer473/Thr308 (P = 0.0006; P < 0.0001), AS160 and p-AS160Thr642 (P < 0.0001) compared with type-2 diabetic rats. In Silico analysis was also performed and it showed that SIT possesses the greater binding affinity with β-arrestin-2, c-Src, and IRS-1 as well as Akt proteins and proved to attenuate insulin resistance as this study coincides with in vivo findings. Our present study clearly shows that SIT attenuates high fat diet-induced detrimental changes in adipose tissue. Therefore, it is concluded from the present findings that, SIT could be used as potential therapeutic phytomedicine for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Shyamaladevi Babu
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Madhan Krishnan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramajayam Govindan
- Multi Disciplinary Research Unit, Madurai Medical College, TamilNadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Langeswaran K, Jeyaraman J, R JB, Biswas A, Dhurgadevi KR. Identifying dual leucine zipper kinase (DLK) inhibitors using e-pharamacophore screening and molecular docking. J Recept Signal Transduct Res 2019; 39:99-105. [PMID: 31282287 DOI: 10.1080/10799893.2019.1620776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer's is a neural disorder causing gradual loss in structure and function of nerve cell. To treat such disorders, c-Jun N-terminal Kinase (JNK) Pathway inhibitors were developed by representing chemical compounds that were used to inhibit the JNK signaling pathways. DLK is the stress sensor and implicating as regulatory factor in JNK pathway. Therefore, in the present investigation, pharmacophore screening was tried to identify the chemical compounds that involving inhibition of DLK proteins. To explore the pharmacophore region and mode of binding with DLK protein, N- (I H-pyrazol-3-y l) pyridin-2-aminer inhibitors were docked with DLK. Results reveal the information on the interaction mechanism of protein and ligand with chemical characteristics required to inhibit DLK protein. Such predicted information (AAAARH) was used as query to find out potential novel lead compounds sourced from public database. As an outcome of 65 compounds were listed based on the fitness score (2≥), and were subjected to glide HTVS.SP and XP. Best performing 5 lead compounds were shortlisted for dynamic simulations. This exhibited a constant RMSD over 20 ns of timescale.
Collapse
Affiliation(s)
- K Langeswaran
- a Bioinformatics, Alagappa University , Karaikudi , India
| | | | | | - Abir Biswas
- b Bharathidasan University , Tiruchirappalli , India
| | | |
Collapse
|
3
|
Reith MEA, Jones KT, Zhen J, Topiol S. Latch and trigger role for R445 in DAT transport explains molecular basis of DTDS. Bioorg Med Chem Lett 2017; 28:470-475. [PMID: 29258773 DOI: 10.1016/j.bmcl.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/12/2023]
Abstract
A recent study reports on five different mutations as sources of dopamine transporter (DAT) deficiency syndrome (DTDS). One of these mutations, R445C, is believed to be located on the intracellular side of DAT distal to the primary (S1) or secondary (S2) sites to which substrate binding is understood to occur. Thus, the molecular mechanism by which the R445C mutation results in DAT transport deficiency has eluded explanation. However, the recently reported X-ray structures of the endogenous amine transporters for dDAT and hSERT revealed the presence of a putative salt bridge between R445 and E428 suggesting a possible mechanism. To evaluate whether the R445C effect is a result of a salt bridge interaction, the mutants R445E, E428R, and the double mutant E428R/R445E were generated. The single mutants R445E and E428R displayed loss of binding and transport properties of the substrate [3H]DA and inhibitor [3H]CFT at the cell surface while the double mutant E428R/R445E, although nonfunctional, restored [3H]DA and [3H]CFT binding affinity to that of WT. Structure based analyses of these results led to a model wherein R445 plays a dual role in normal DAT function. R445 acts as a component of a latch in its formation of a salt bridge with E428 which holds the primary substrate binding site (S1) in place and helps enforce the inward closed protein state. When this salt bridge is broken, R445 acts as a trigger which disrupts a local polar network and leads to the release of the N-terminus from its position inducing the inward closed state to one allowing the inward open state. In this manner, both the loss of binding and transport properties of the R445C variant are explained.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA; Department Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Kymry T Jones
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Juan Zhen
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Sid Topiol
- 3D-2drug, LLC, P.O. Box 184, Fair Lawn, NJ, USA.
| |
Collapse
|
4
|
Topiol S, Bang-Andersen B, Sanchez C, Plenge P, Loland CJ, Juhl K, Larsen K, Bregnedal P, Bøgesø KP. X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT. Bioorg Med Chem Lett 2017; 27:470-478. [DOI: 10.1016/j.bmcl.2016.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/25/2023]
|
5
|
Khan M, Kumar A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome. J Mol Graph Model 2016; 70:212-225. [DOI: 10.1016/j.jmgm.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|
6
|
Muthusamy K, Chinnasamy S, Nagarajan S, Sivaraman T, Chinnasamy S. Isolation and characterization of bioactive compounds of Clematis gouriana Roxb. ex DC against snake venom phospholipase A 2 (PLA 2) computational and in vitro insights. J Biomol Struct Dyn 2016; 35:1936-1949. [PMID: 27355444 DOI: 10.1080/07391102.2016.1202862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bioactive compounds were isolated from Clematis gouriana Roxb. ex DC. The compounds were separated, characterized, the structures elucidated and submitted to the PubChem Database. The PubChem Ids SID 249494134 and SID 249494135 were tested against phospholipases A2 (PLA2) of Naja naja (Indian cobra) venom for PLA2 activity. Both the compounds showed promising inhibitory activity; computational data also substantiated the results. The two compounds underwent density functional theory calculation to observe the chemical stability and electrostatic potential profile. Molecular interactions between the compounds and PLA2 were observed at the binding pocket of the PLA2 protein. Further, this protein-ligand complexes were simulated for a timescale of 100 ns of molecular dynamics simulation. Experimental and computational results showed significant PLA2 inhibition activity.
Collapse
Affiliation(s)
- Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Sathishkumar Chinnasamy
- a Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Subbiah Nagarajan
- b Department of Chemistry , Sastra University , Thanjavur 613401 , Tamil Nadu , India
| | | | - Selvakumar Chinnasamy
- d Faculty of Medicine, Department of Microbiology and Immunology , Misurata University , Misrata , Libya
| |
Collapse
|
7
|
Exploration of insights, opportunities and caveats provided by the X-ray structures of hSERT. Bioorg Med Chem Lett 2016; 26:5058-5064. [PMID: 27624075 DOI: 10.1016/j.bmcl.2016.08.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/16/2023]
Abstract
The recently reported X-ray structures of the human serotonin (5-HT) transporter SERT with bound inhibitors open new opportunities for drug discovery at SERT, selectivity design with respect to other neurotransmitter sodium transporters, and enhanced understanding of the molecular events involved in SERT action. Through computational and structural analyses, we explore the binding and migration of 5-HT at SERT. Consistent with earlier studies of leucine migration at the bacterial homolog of SERT, LeuT, we find multiple potential 'stopover' sites for 5-HT binding at SERT including the two (transmembrane S1 and extracellular vestibule S2) seen in the binding of the SSRI (S)-citalopram (S-Cit) to SERT, as well as other sites. Docking studies reveal the possibility of both hetero- (S-Cit+5-HT) and homo-dimeric (5-HT+5-HT) co-binding at both these sites which may explain earlier published allosteric activity observations and provide novel design strategies. Comparisons with substrate bound X-ray structures of the dopamine transporter reveal a number of potential sources of selectivity, some of which may be 'artificial' including target based, species related, experimental design related, and ligand dependent examples including substrate versus inhibitor related features.
Collapse
|
8
|
Topiol S, Sabio M. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5. Bioorg Med Chem Lett 2016; 26:484-494. [DOI: 10.1016/j.bmcl.2015.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
|
9
|
Chinnasamy S, Chinnasamy S, Muthusamy K. High-affinity selective inhibitor against phospholipase A2 (PLA2): a computational study. J Recept Signal Transduct Res 2015; 36:111-8. [PMID: 26422703 DOI: 10.3109/10799893.2015.1056306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10 ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.
Collapse
Affiliation(s)
| | - Selvakkumar Chinnasamy
- b Department of Microbiology , Faculty of Medicine, Misurata University , Misurata , Libya
| | - Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu , India and
| |
Collapse
|
10
|
Virtual screening of potential inhibitor against FtsZ protein from Staphylococcus aureus. Interdiscip Sci 2014; 6:331-9. [DOI: 10.1007/s12539-012-0229-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
11
|
Vijayalakshmi P, Nisha J, Rajalakshmi M. Virtual screening of potential inhibitor against FtsZ protein from Staphylococcus aureus. Interdiscip Sci 2014:331-339. [PMID: 25373631 DOI: 10.1007/s12539-012-0072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
The gram-positive bacterium Staphylococcus aureus, responsible for a wide variety of diseases in human involve all organ systems ranging from localized skin infections to life-threatening systemic infections. FtsZ, the key protein of bacterial cell division was selected as a potent anti bacterial target. In order to identify the new compounds structure based screening process was carried out. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FtsZ from a large chemical database. The docking score and docking energy values were compared and their atomic interaction was also evaluated. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted towards the FtsZ. Finally we selected C ID 16284, 25916, 15894, 13403 as better lead compounds. From these results, we conclude that our insilico results will provide a framework for the detailed in vitro and in vivo studies about the FtsZ protein activity in drug development process.
Collapse
Affiliation(s)
- Periyasamy Vijayalakshmi
- Bioinformatics centre (BIF), PG& Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Tiruchirapalli, 620002, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Rawat R, Kumar S, Chadha BS, Kumar D, Oberoi HS. An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies. Antonie van Leeuwenhoek 2014; 107:103-17. [DOI: 10.1007/s10482-014-0308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
|
13
|
Chinnasamy S, Chinnasamy S, Nagamani S, Muthusamy K. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2014; 33:1516-27. [PMID: 25192471 DOI: 10.1080/07391102.2014.963146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM-GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.
Collapse
Affiliation(s)
- Sathishkumar Chinnasamy
- a Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | | | | | | |
Collapse
|
14
|
Sivakamavalli J, Tripathi SK, Singh SK, Vaseeharan B. Homology modeling, molecular dynamics, and docking studies of pattern-recognition transmembrane protein-lipopolysaccharide and β-1,3 glucan-binding protein fromFenneropenaeus indicus. J Biomol Struct Dyn 2014; 33:1269-80. [DOI: 10.1080/07391102.2014.943807] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Kanagarajan S, Mutharasappan N, Dhamodharan P, Jeyaraman M, Ramadas K, Jeyaraman J. Exploring the structural features of Aspartate Trans Carbamoylase (TtATCase) fromThermus thermophilusHB8 through in silico approaches: a potential drug target for inborn error of pyrimidine metabolism. J Biomol Struct Dyn 2013; 32:591-601. [DOI: 10.1080/07391102.2013.782825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
In silico structural and functional analysis of the human TOPK protein by structure modeling and molecular dynamics studies. J Mol Model 2012; 19:407-19. [PMID: 22940854 DOI: 10.1007/s00894-012-1566-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
Abstract
Over expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) has been associated with leukemia, myeloma tumors and various other cancers. The function and regulatory mechanism of TOPK in tumor cells remains unclear. Structural studies that could reveal the regulatory mechanism have been a challenge because of the unavailabity of TOPK's crystal structure. Hence, in this study, the 3D structure of TOPK protein has been constructed by using multiple templates. The quality and reliability of the generated model was checked and the molecular dynamics method was utilized to refine the model. APBS method was employed to know the electrostatic potential surface of the modeled protein and it was found that the optimum pH for protein stability is 3.4 which will further help in mechanistic hypothesis of TOPK protein. Active site of TOPK was identified from available literature and HTVS was employed to identify the lead molecules. The expected binding modes of protein-ligand complexes were reproduced in the MD simulation which indicates that the complex is relatively stable. The pharmacokinetic properties of the lead molecules are also under acceptable range. TOPK act as a substrate for CDK1 and the protein-protein docking and dynamics studies were carried out to analyze the effect of Thr9Ala mutation of TOPK in the two protein complex formation. It shows that the wild type complex is more stable when compared with the mutant type. Such structural information at atomic level not only exhibits the action modes of TOPK inhibitors but also furnishes a novel starting point for structure based drug design of TOPK inhibitors.
Collapse
|
17
|
Zhong H, Haddjeri N, Sánchez C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter--a review of current understanding of its mechanism of action. Psychopharmacology (Berl) 2012; 219:1-13. [PMID: 21901317 DOI: 10.1007/s00213-011-2463-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/19/2011] [Indexed: 02/08/2023]
Abstract
RATIONALE Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action. OBJECTIVE This paper reviews current knowledge about the mechanism of action of escitalopram. RESULTS The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration. CONCLUSIONS The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.
Collapse
Affiliation(s)
- Huailing Zhong
- U-Pharm Laboratories LLC, 239 New Road, Suite A-107, Parsippany, NJ 07054, USA.
| | | | | |
Collapse
|
18
|
Homology modeling, molecular dynamics, and molecular docking studies of Trichomonas vaginalis carbamate kinase. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9719-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Singh KD, Kirubakaran P, Nagarajan S, Sakkiah S, Muthusamy K, Velmurgan D, Jeyakanthan J. Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. J Mol Model 2011; 18:39-51. [PMID: 21445710 DOI: 10.1007/s00894-011-1018-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
Abstract
To date, no suitable vaccine or specific antiviral drug is available to treat Chikungunya viral (CHIKV) fever. Hence, it is essential to identify drug candidates that could potentially impede CHIKV infection. Here, we present the development of a homology model of nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV). The protein modeled was optimized using molecular dynamics simulation; the junction peptides of a nonstructural protein complex were then docked in order to investigate the possible protein-protein interactions between nsP2 and the proteins cleaved by nsP2. The modeling studies conducted shed light on the binding modes, and the critical interactions with the peptides provide insight into the chemical features needed to inhibit the CHIK virus infection. Energy-optimized pharmacophore mapping was performed using the junction peptides. Based on the results, we propose the pharmacophore features that must be present in an inhibitor of nsP2 protease. The resulting pharmacophore model contained an aromatic ring, a hydrophobic and three hydrogen-bond donor sites. Using these pharmacophore features, we screened a large public library of compounds (Asinex, Maybridge, TOSLab, Binding Database) to find a potential ligand that could inhibit the nsP2 protein. The compounds that yielded a fitness score of more than 1.0 were further subjected to Glide HTVS and Glide XP. Here, we report the best four compounds based on their docking scores; these compounds have IDs of 27943, 21362, ASN 01107557 and ASN 01541696. We propose that these compounds could bind to the active site of nsP2 protease and inhibit this enzyme. Furthermore, the backbone structural scaffolds of these four lead compounds could serve as building blocks when designing drug-like molecules for the treatment of Chikungunya viral fever.
Collapse
|
20
|
Skovstrup S, Taboureau O, Bräuner-Osborne H, Jørgensen FS. Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem 2010; 5:986-1000. [PMID: 20491137 DOI: 10.1002/cmdc.201000100] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A homology model of the human GABA transporter (GAT-1) based on the recently reported crystal structures of the bacterial leucine transporter from Aquifex aeolicus (LeuT) was developed. The stability of the resulting model embedded in a membrane environment was analyzed by extensive molecular dynamics (MD) simulations. Based on docking studies and subsequent MD simulations of three compounds, the endogenous ligand GABA and two potent inhibitors, (R)-nipecotic acid and the anti-epilepsy drug tiagabine, various binding modes were identified and are discussed. Whereas GABA and (R)-nipecotic acid, which are both substrates, are stabilised with residues located deep inside the occluded state binding pocket (including residues Tyr 60 and Ser 396), tiagabine, which contains a large aliphatic side chain, is stabilised in a binding mode that extends from the substrate binding pocket (i.e., stabilised by Phe 294) to the extracellular vestibule, where the side chain is stabilised by aliphatic residues. The tiagabine binding mode, reaching from the substrate binding site to the extracellular vestibule, forces the side chain of Phe 294 to adopt a distinct conformation from that found in the occluded conformation of the transporter. Hence, in presence of tiagabine, GAT-1 is constrained in an open-to-out conformation. Our results may be of particular interest for the design of new GAT-1 inhibitors.
Collapse
Affiliation(s)
- Søren Skovstrup
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
21
|
Zhang P, Cyriac G, Kopajtic T, Zhao Y, Javitch JA, Katz JL, Newman AH. Structure-activity relationships for a novel series of citalopram (1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) analogues at monoamine transporters. J Med Chem 2010; 53:6112-21. [PMID: 20672825 DOI: 10.1021/jm1005034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(+/-)-Citalopram (1, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), and its eutomer, escitalopram (S-(+)-1) are selective serotonin reuptake inhibitors (SSRIs) that are used clinically to treat anxiety and depression. To further explore structure-activity relationships at the serotonin transporter (SERT), a series of (+/-)-4- and 5-substituted citalopram analogues were designed, synthesized, and evaluated for binding at the SERT, dopamine transporter (DAT) and norepinephrine transporter (NET) in native rodent tissue. Many of these analogues showed high SERT binding affinities (Ki=1-40 nM) and selectivities over both NET and DAT. Selected enantiomeric pairs of analogues were synthesized and both retained enantioselectivity as with S- and R-1, wherein S>R at the SERT. In addition, the enantiomeric pairs of 1 and 5 were tested for binding at the homologous bacterial leucine transporter (LeuT), wherein low affinities and the absence of enantioselectivity suggested distinctive binding sites for these compounds at SERT as compared to LeuT. These novel ligands will provide molecular tools to elucidate drug-protein interactions at the SERT and to relate those to behavioral actions in vivo.
Collapse
Affiliation(s)
- Peng Zhang
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Nyola A, Karpowich NK, Zhen J, Marden J, Reith ME, Wang DN. Substrate and drug binding sites in LeuT. Curr Opin Struct Biol 2010; 20:415-22. [PMID: 20739005 DOI: 10.1016/j.sbi.2010.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/14/2010] [Accepted: 05/20/2010] [Indexed: 01/13/2023]
Abstract
LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.
Collapse
Affiliation(s)
- Ajeeta Nyola
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|