1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Wu XQ, Su N, Fei Z, Fei F. Homer signaling pathways as effective therapeutic targets for ischemic and traumatic brain injuries and retinal lesions. Neural Regen Res 2021; 17:1454-1461. [PMID: 34916418 PMCID: PMC8771115 DOI: 10.4103/1673-5374.330588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage. Secondary damage presents the greatest challenge for medical staff; however, there are currently few effective therapeutic targets for secondary damage. Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system. Homer signaling can exert either positive or negative effects during such insults, depending on the specific subtype of Homer protein. Homer 1b/c couples with other proteins to form postsynaptic densities, which form the basis of synaptic transmission, while Homer1a expression can be induced by harmful external factors. Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells, mediated or affected by extracellular or intracellular signaling or cytoskeletal processes. This review summarizes the structural features, related signaling pathways, and diverse roles of Homer proteins in physiological and pathological processes. Upregulating Homer1a or downregulating Homer1b/c may play a neuroprotective role in secondary brain injuries. Homer also plays an important role in the formation of photoreceptor synapses. These findings confirm the neuroprotective effects of Homer, and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.
Collapse
Affiliation(s)
- Xiu-Quan Wu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca 2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.
Collapse
Affiliation(s)
- Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Beth A McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
6
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
8
|
Wang Y, Wang Y, Li GR. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget 2018; 7:50937-50951. [PMID: 27472391 PMCID: PMC5239449 DOI: 10.18632/oncotarget.10853] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/09/2016] [Indexed: 02/05/2023] Open
Abstract
The earlier study showed that lysophosphatidylcholine (lysoPC) induced apoptosis in human coronary artery smooth muscle cells (SMCs); however, the related molecular mechanisms are not fully understood. The present study investigated how lysoPC induces apoptosis in cultured human coronary artery SMCs using cell viability assay, flow cytometry, confocal microscopy, and molecular biological approaches. We found that lysoPC reduced cell viability in human coronary artery SMCs by eliciting a remarkable Ca2+ influx. The effect was antagonized by La3+, SKF-96365, or Pyr3 as well as by silencing TRPC1 or TRPC3. Co-immunoprecipitation revealed that TRPC1 and TRPC3 had protein-protein interaction. Silencing TRPC1 or TRPC3 countered the lysoPC-induced increase of Ca2+ influx and apoptosis, and the pro-apoptotic proteins Bax and cleaved caspase-3 and decrease of the anti-apoptotic protein Bcl-2 and the survival kinase pAkt. These results demonstrate the novel information that TRPC1/TRPC3 channels mediate lysoPC-induced Ca2+ influx and apoptosis via activating the pro-apoptotic proteins Bax and cleaved caspase-3 and inhibiting the anti-apoptotic protein Bcl-2 and the survival kinase pAkt in human coronary artery SMCs, which implies that TRPC1/TRC3 channels may be the therapeutic target of lysoPC-induced disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Yuan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Hippocampal Regulation of Postsynaptic Density Homer1 by Associative Learning. Neural Plast 2017; 2017:5959182. [PMID: 29238619 PMCID: PMC5697134 DOI: 10.1155/2017/5959182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022] Open
Abstract
Genes involved in synaptic plasticity, particularly genes encoding postsynaptic density proteins, have been recurrently linked to psychiatric disorders including schizophrenia and autism. Postsynaptic density Homer1 proteins contribute to synaptic plasticity through the competing actions of short and long isoforms. The activity-induced expression of short Homer1 isoforms, Homer1a and Ania-3, is thought to be related to processes of learning and memory. However, the precise regulation of Homer1a and Ania-3 with different components of learning has not been investigated. Here, we used in situ hybridization to quantify short and long Homer1 expression in the hippocampus following consolidation, retrieval, and extinction of associative fear memory, using contextual fear conditioning in rats. Homer1a and Ania-3, but not long Homer1, were regulated by contextual fear learning or novelty detection, although their precise patterns of expression in hippocampal subregions were dependent on the isoform. We also show for the first time that the two short Homer1 isoforms are regulated after the retrieval and extinction of contextual fear memory, albeit with distinct temporal and spatial profiles. These findings support a role of activity-induced Homer1 isoforms in learning and memory processes in discrete hippocampal subregions and suggest that Homer1a and Ania-3 may play separable roles in synaptic plasticity.
Collapse
|
10
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sommer B, Flores-Soto E, Gonzalez-Avila G. Cellular Na+ handling mechanisms involved in airway smooth muscle contraction (Review). Int J Mol Med 2017; 40:3-9. [PMID: 28534960 PMCID: PMC5466399 DOI: 10.3892/ijmm.2017.2993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
A decrease in bronchial diameter is designated as bronchoconstriction (BC) and impedes the flow of air through the airway. Asthma is characterized by inflammation of the airways, reversible BC and nonspecific hyperreactivity. These last two symptoms are dependent on airway smooth muscle. Stimuli that trigger contraction can be characterized as chemical (neurotransmitters, cytokines and terpenoids) and physical (volume inspired, air pressure). Both stimuli activate signaling pathways by acting on membrane proteins and facilitating the passage of ions through the membrane, generating a voltage change and a subsequent depolarization. Na+ plays an important role in preserving the resting membrane potential; this ion is extracted from the cells by the Na+/K+ ATPase (NKA) or introduced into the cytoplasm by the Na+/Ca2+ exchanger (NCX). During depolarization, Na+ appears to accumulate in specific regions beneath the plasma membrane, generating local concentration gradients which determine the handling of Ca2+. At rest, the smooth muscle has a basal tone that is preserved by the continuous adjustment of intracytoplasmic concentrations of Ca2+ and Na+. At homeostasis, the Na+ concentration is primarily dependent on three structures: the NKA, the NCX and non-specific cation channels (NSCC). These three structures, their functions and the available evidence of the probable role of Na+ in asthma are described in the present review.
Collapse
Affiliation(s)
- Bettina Sommer
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| | - Edgar Flores-Soto
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | - Georgina Gonzalez-Avila
- Biomedical Oncology Laboratory, Department of Chronic‑Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
12
|
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca 2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2017; 70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Partha Narayan Dey
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Birgit Honrath
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Axel Methner
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| |
Collapse
|
13
|
Lyon K, Adams A, Piva M, Asghari P, Moore ED, Vogl AW. Ca2+ signaling machinery is present at intercellular junctions and structures associated with junction turnover in rat Sertoli cells†. Biol Reprod 2017; 96:1288-1302. [DOI: 10.1093/biolre/iox042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
|
14
|
Zimmermann J, Neuhuber WL, Raab M. Homer1 (VesL-1) in the rat esophagus: focus on myenteric plexus and neuromuscular junction. Histochem Cell Biol 2017; 148:189-206. [PMID: 28337539 DOI: 10.1007/s00418-017-1555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Homer1, a scaffolding protein of the postsynaptic density (PSD), enriched at excitatory synapses is known to anchor and modulate group I metabotropic glutamate receptors (mGluRs) and different channel- and receptor-proteins. Homer proteins are expressed in neurons of different brain regions, but also in non-neuronal tissues like skeletal muscle. Occurrence and location of Homer1 and mGluR5 in myenteric plexus and neuromuscular junctions (NMJ) of rat esophagus have yet not been characterized. We located Homer1 and mGluR5 immunoreactivity (-iry) in rat esophagus and focused on myenteric neurons, intraganglionic laminar endings (IGLEs) and NMJs, using double- and triple-label immunohistochemistry and confocal laser scanning microscopy. Homer1-iry was found in a subpopulation of vesicular glutamate transporter 2 (VGLUT2) positive IGLEs and cholinergic varicosities within myenteric ganglia, but neither in nitrergic nor cholinergic myenteric neuronal cell bodies. Homer1-iry was detected in 63% of esophageal and, for comparison, in 35% of sternomastoid NMJs. Besides the location in the PSD, Homer1-iry colocalized with cholinergic markers, indicating a presynaptic location in coarse VAChT/CGRP/NF200- immunoreactive (-ir) terminals of nucleus ambiguus neurons supplying striated esophageal muscle. mGluR5-iry was found in subpopulations of myenteric neuronal cell bodies, VGLUT2-ir IGLEs and cholinergic varicosities within the myenteric neuropil and NMJs of esophagus and sternomastoid muscles. Thus, Homer1 may anchor mGluR5 at presynaptic sites of cholinergic boutons at esophageal motor endplates, in a small subpopulation of VGLUT2-ir IGLEs and cholinergic varicosities within myenteric ganglia possibly modulating Ca2+-currents and neurotransmitter release.
Collapse
Affiliation(s)
- J Zimmermann
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - W L Neuhuber
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - M Raab
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
15
|
Pacheco J, Vaca L. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:189-210. [DOI: 10.1007/978-3-319-57732-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca 2+ Entry: Impact on Ca 2+ Signaling and Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:159-188. [PMID: 28900914 DOI: 10.1007/978-3-319-57732-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), which are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. While TRPC1 was associated with SOCE and regulation of function in several cell types, none of the TRPC members displayed I CRAC, the store-operated current identified in lymphocytes and mast cells. Intensive search finally led to the identification of Orai1 and STIM1 as the primary components of the CRAC channel. Orai1 was established as the pore-forming channel protein and STIM1 as the ER-Ca2+ sensor protein involved in activation of Orai1. STIM1 also activates TRPC1 via a distinct domain in its C-terminus. However, TRPC1 function depends on Orai1-mediated Ca2+ entry, which triggers recruitment of TRPC1 into the plasma membrane where it is activated by STIM1. TRPC1 and Orai1 form distinct store-operated Ca2+ channels that regulate specific cellular functions. It is now clearly established that regulation of TRPC1 trafficking can change plasma membrane levels of the channel, the phenotype of the store-operated Ca2+ current, as well as pattern of SOCE-mediated [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1. This review will highlight current concepts of the activation and regulation of TRPC1 channels and its impact on cell function.
Collapse
|
17
|
Rao W, Peng C, Zhang L, Su N, Wang K, Hui H, Dai SH, Yang YF, Luo P, Fei Z. Homer1a attenuates glutamate-induced oxidative injury in HT-22 cells through regulation of store-operated calcium entry. Sci Rep 2016; 6:33975. [PMID: 27681296 PMCID: PMC5041114 DOI: 10.1038/srep33975] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Calcium disequilibrium is extensively involved in oxidative stress-induced neuronal injury. Although Homer1a is known to regulate several neuronal calcium pathways, its effects on, or its exact relationship with, oxidative stress-induced neuronal injury has not yet been fully elucidated. We found that Homer1a protected HT-22 cells from glutamate-induced oxidative stress injury by inhibiting final-phase intracellular calcium overload and mitochondrial oxidative stress. In these cells, stromal interactive molecule 1 (STIM1) puncta, but not the protein level, was significantly increased after glutamate treatment. Store-operated calcium entry (SOCE) inhibitors and cells in which a key component of SOCE (STIM1) was knocked out were used as glutamate-induced oxidative stress injury models. Both models demonstrated significant improvement of HT-22 cell survival after glutamate treatment. Additionally, increased Homer1a protein levels significantly inhibited SOCE and decreased the association of STIM1-Orai1 triggered by glutamate. These results suggest that up-regulation of Homer1a can protect HT-22 cells from glutamate-induced oxidative injury by disrupting the STIM1-Oria1 association, and then by inhibiting the SOCE-mediated final-phrase calcium overload. Thus, regulation of Homer1a, either alone or in conjunction with SOCE inhibition, may serve as key therapeutic interventional targets for neurological diseases in which oxidative stress is involved in the etiology or progression of the disease.
Collapse
Affiliation(s)
- Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Cheng Peng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ning Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.,Department of Radiotherapy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Kai Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hao Hui
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shu-Hui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yue-Fan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
18
|
Lin AHY, Sun H, Paudel O, Lin MJ, Sham JSK. Conformation of ryanodine receptor-2 gates store-operated calcium entry in rat pulmonary arterial myocytes. Cardiovasc Res 2016; 111:94-104. [PMID: 27013634 DOI: 10.1093/cvr/cvw067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Store-operated Ca(2+) entry (SOCE) contributes to a multitude of physiological and pathophysiological functions in pulmonary vasculatures. SOCE attributable to inositol 1,4,5-trisphosphate receptor (InsP3R)-gated Ca(2+) store has been studied extensively, but the role of ryanodine receptor (RyR)-gated store in SOCE remains unclear. The present study aims to delineate the relationship between RyR-gated Ca(2+) stores and SOCE, and characterize the properties of RyR-gated Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS PASMCs were isolated from intralobar pulmonary arteries of male Wister rats. Application of the RyR1/2 agonist 4-chloro-m-cresol (4-CmC) activated robust Ca(2+) entry in PASMCs. It was blocked by Gd(3+) and the RyR2 modulator K201 but was unaffected by the RyR1/3 antagonist dantrolene and the InsP3R inhibitor xestospongin C, suggesting RyR2 is mainly involved in the process. siRNA knockdown of STIM1, TRPC1, and Orai1, or interruption of STIM1 translocation with ML-9 significantly attenuated the 4-CmC-induced SOCE, similar to SOCE induced by thapsigargin. However, depletion of RyR-gated store with caffeine failed to activate Ca(2+) entry. Inclusion of ryanodine, which itself did not cause Ca(2+) entry, uncovered caffeine-induced SOCE in a concentration-dependent manner, suggesting binding of ryanodine to RyR is permissive for the process. This Ca(2+) entry had the same molecular and pharmacological properties of 4-CmC-induced SOCE, and it persisted once activated even after caffeine washout. Measurement of Ca(2+) in sarcoplasmic reticulum (SR) showed that 4-CmC and caffeine application with or without ryanodine reduced SR Ca(2+) to similar extent, suggesting store-depletion was not the cause of the discrepancy. Moreover, caffeine/ryanodine and 4-CmC failed to initiate SOCE in cells transfected with the ryanodine-binding deficient mutant RyR2-I4827T. CONCLUSIONS RyR2-gated Ca(2+) store contributes to SOCE in PASMCs; however, store-depletion alone is insufficient but requires a specific RyR conformation modifiable by ryanodine binding to activate Ca(2+) entry.
Collapse
Affiliation(s)
- Amanda H Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Hui Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Son A, Park S, Shin DM, Muallem S. Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. Am J Physiol Cell Physiol 2016; 310:C414-22. [PMID: 26739495 DOI: 10.1152/ajpcell.00349.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane contact sites (MCS) are critical junctions that form between the endoplasmic reticulum (ER) and membranes of various organelles, including the plasma membrane (PM). Signaling complexes, including mediators of Ca(2+) signaling, are assembled within MCS, such as the ER/PM junction. This is most evident in polarized epithelial cells, such as pancreatic cells. Core Ca(2+) signaling proteins cluster at the apical pole, the site of inositol 1,4,5-trisphosphate-mediated Ca(2+) release and Orai1/transient receptor potential canonical-mediated store-dependent Ca(2+) entry. Recent advances have characterized the proteins that tether the membranes at MCS and the role of these proteins in modulating physiological and pathological intracellular signaling. This review discusses recent advances in the characterization of Ca(2+) signaling at ER/PM junctions and the relation of these junctions to physiological and pathological Ca(2+) signaling in pancreatic acini.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Seonghee Park
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
20
|
Shin DM, Son A, Park S, Kim MS, Ahuja M, Muallem S. The TRPCs, Orais and STIMs in ER/PM Junctions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:47-66. [PMID: 27161224 DOI: 10.1007/978-3-319-26974-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ca(2+) second messenger is initiated at ER/PM junctions and propagates into the cell interior to convey the receptor information. The signal is maintained by Ca(2+) influx across the plasma membrane through the Orai and TRPC channels. These Ca(2+) influx channels form complexes at ER/PM junctions with the ER Ca(2+) sensor STIM1, which activates the channels. The function of STIM1 is modulated by other STIM isoforms like STIM1L, STIM2 and STIM2.1/STIM2β and by SARAF, which mediates the Ca(2+)-dependent inhibition of Orai channels. The ER/PM junctions are formed at membrane contact sites by tethering proteins that generate several types of ER/PM junctions, such as PI(4,5)P2-poor and PI(4,5)P2-rich domains. This chapter discusses several properties of the TRPC channels, the Orai channels and the STIMs, their key interacting proteins and how interaction of the STIMs with the channels gates their activity. The chapter closes by highlighting open questions and potential future directions in this field.
Collapse
Affiliation(s)
- Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, 120-752, South Korea.
| | - Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Seonghee Park
- Department of Physiology, School of Medicine, EwhaWomans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul, 158-710, South Korea
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, South Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Ong HL, de Souza LB, Ambudkar IS. Role of TRPC Channels in Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:87-109. [DOI: 10.1007/978-3-319-26974-0_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Constantin B. Role of Scaffolding Proteins in the Regulation of TRPC-Dependent Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:379-403. [PMID: 27161237 DOI: 10.1007/978-3-319-26974-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Plasma membrane ion channels, and in particular TRPC channels need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional role. The molecular composition of TRPC channels is an important factor in determining channel activation mechanisms. TRPC proteins are incorporated in macromolecular complexes including several key Ca(2 +) signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Evidence has been provided for association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins. The interaction between TRPC channels with adaptor proteins, determines their mode of regulation as well as their cellular localization and function. Adaptor proteins do not display any enzymatic activity but act as scaffold for the building of signaling complexes. The scaffolding proteins are involved in the assembling of these Ca(2+) signaling complexes, the correct sub-cellular localization of protein partners, and the regulation of the TRPC channelosome. In particular, these proteins, via their multiple protein-protein interaction motifs, can interact with various ion channels involved in the transmembrane potential, and membrane excitability. Scaffolding proteins are key components for the functional organization of TRPC channelosomes that serves as a platform regulating slow Ca(2+) entry, spatially and temporally controlled [Ca(2+)]i signals and Ca(2+) -dependent cellular functions.
Collapse
Affiliation(s)
- Bruno Constantin
- Laboratory STIM, ERL-7368 CNRS-Université de Poitiers, 1, rue Georges Bonnet, Bat. B36, Pôle Biologie-Santé, 86000, Poitiers, France.
| |
Collapse
|
23
|
Wang Y, Rao W, Zhang C, Zhang C, Liu MD, Han F, Yao LB, Han H, Luo P, Su N, Fei Z. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury. Cell Death Dis 2015; 6:e1843. [PMID: 26247728 PMCID: PMC4558508 DOI: 10.1038/cddis.2015.216] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 01/18/2023]
Abstract
Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a−/−) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a−/− mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs.
Collapse
Affiliation(s)
- Y Wang
- 1] Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China [2] Department of Neurosurgery, Wuhan Zhong Xin Hospital, Wuhan, P.R. China
| | - W Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - C Zhang
- Department of Neurology, Second Artillery General Hospital of PLA, Beijing, P.R. China
| | - C Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - M-D Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - F Han
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - L-b Yao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, P.R. China
| | - H Han
- Department of Medical Genetics and Developmental Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - P Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - N Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Z Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
24
|
Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1145-53. [PMID: 25712868 DOI: 10.1016/j.bbamcr.2015.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/23/2022]
Abstract
STIM1 is a ubiquitous Ca2+ sensor of the intracellular, agonist-sensitive, Ca2+ stores that communicates the filling state of the Ca2+ compartments to plasma membrane store-operated Ca2+ (SOC) channels. STIM1 has been presented as a point of convergence between store-operated and voltage-operated Ca2+ influx, both inducing activation of SOC channels while suppressing Cav1.2 channels. Here we report that Homer proteins play a relevant role in the communication between STIM1 and Cav1.2 channels. HEK-293 cells transiently expressing Cav1.2 channel subunits α1, β2 and α2δ-1 exhibited a significant Ca2+ entry upon treatment with a high concentration of KCl. In Cav1.2-expressing cells, treatment with thapsigargin (TG), to induce passive discharge of the intracellular Ca2+ stores, resulted in Ca2+ influx that was significantly greater than in cells not expressing Cav1.2 channels, a difference that was abolished by nifedipine and diltiazem. Treatment with TG induces co-immunoprecipitation of Homer1 with STIM1 and the Cav1.2 α1 subunit. Impairment of Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, or using siRNA Homer1, reduced the association of STIM1 and the Cav1.2 α1 subunit. These findings indicate that Homer is important for the association between both proteins. Finally, treatment with siRNA Homer1 or the PPKKFR peptide enhanced the nifedipine-sensitive component of TG response in Cav1.2-expressing cells. Altogether, these findings provide evidence for a new role of Homer1 supporting the regulation of Cav1.2 channels by STIM1.
Collapse
|
25
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
26
|
Huang W, Liu X, Fei Z, Zhang Y, Yang J. Down-regulation of Homer1b/c expression protects cultured neurons after traumatic injury. Neural Regen Res 2014; 7:2176-81. [PMID: 25538737 PMCID: PMC4268715 DOI: 10.3969/j.issn.1673-5374.2012.028.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Activation of metabotropic glutamate receptor 1a aggravates traumatic brain injury. The constitutively expressed protein Homer1b/c participates in delivering and anchoring metabotropic glutamate receptors in neurons. Here, we aimed to verify whether down-regulation of Homer1b/c by RNA interference could protect cultured rat cortical neurons from traumatic injury. We showed that 36 hours after transfection of Homer1b/c small interfering RNA, metabotropic glutamate receptor 1a was present only in the neuronal cytoplasm, but not in the dendrites. Calcium fluorescence intensity was also decreased significantly. Moreover, lactate dehydrogenase concentration was significantly decreased in Homer1b/c small interfering RNA-transfected cells compared with that in untransfected and control small interfering RNA-transfected cells 24 hours after traumatic neuronal injury. Our findings indicate that down-regulation of Homer1b/c could reduce metabotropic glutamate receptor 1a transfer from the cell body to the dendrite, relieve calcium overload, and protect neurons from traumatic injury.
Collapse
Affiliation(s)
- Weidong Huang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Xiaobin Liu
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University of Chinese PLA, Xi'an 710032, Shaanxi Province, China
| | - Yuelin Zhang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Jun Yang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| |
Collapse
|
27
|
Abstract
STIM1 regulates TRPC6 heteromultimerization with other TRPC channels and internalization to the endoplasmic reticulum, thus reducing Ca2+ entry mediated by TRPC6.
Collapse
|
28
|
Kukkonen JP, Leonard CS. Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 2014; 171:314-31. [PMID: 23902572 DOI: 10.1111/bph.12324] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/18/2013] [Accepted: 07/28/2013] [Indexed: 12/16/2022] Open
Abstract
Orexin (hypocretin) peptides and their two known G-protein-coupled receptors play essential roles in sleep-wake control and powerfully influence other systems regulating appetite/metabolism, stress and reward. Consequently, drugs that influence signalling by these receptors may provide novel therapeutic opportunities for treating sleep disorders, obesity and addiction. It is therefore critical to understand how these receptors operate, the nature of the signalling cascades they engage and their physiological targets. In this review, we evaluate what is currently known about orexin receptor signalling cascades, while a sister review (Leonard & Kukkonen, this issue) focuses on tissue-specific responses. The evidence suggests that orexin receptor signalling is multifaceted and is substantially more diverse than originally thought. Indeed, orexin receptors are able to couple to members of at least three G-protein families and possibly other proteins, through which they regulate non-selective cation channels, phospholipases, adenylyl cyclase, and protein and lipid kinases. In the central nervous system, orexin receptors produce neuroexcitation by postsynaptic depolarization via activation of non-selective cation channels, inhibition of K⁺ channels and activation of Na⁺/Ca²⁺ exchange, but they also can stimulate the release of neurotransmitters by presynaptic actions and modulate synaptic plasticity. Ca²⁺ signalling is also prominently influenced by these receptors, both via the classical phospholipase C-Ca²⁺ release pathway and via Ca²⁺ influx, mediated by several pathways. Upon longer-lasting stimulation, plastic effects are observed in some cell types, while others, especially cancer cells, are stimulated to die. Thus, orexin receptor signals appear highly tunable, depending on the milieu in which they are operating.
Collapse
Affiliation(s)
- J P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
29
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
30
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
31
|
Means SA, Cheng LK. Mitochondrial calcium handling within the interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2014; 307:G107-21. [PMID: 24789203 PMCID: PMC4080165 DOI: 10.1152/ajpgi.00380.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal (ICC) drive rhythmic pacemaking contractions in the gastrointestinal system. The ICC generate pacemaking signals by membrane depolarizations associated with the release of intracellular calcium (Ca(2+)) in the endoplasmic reticulum (ER) through inositol-trisphosphate (IP3) receptors (IP3R) and uptake by mitochondria (MT). This Ca(2+) dynamic is hypothesized to generate pacemaking signals by calibrating ER Ca(2+) store depletions and membrane depolarization with ER store-operated Ca(2+) entry mechanisms. Using a biophysically based spatio-temporal model of integrated Ca(2+) transport in the ICC, we determined the feasibility of ER depletion timescale correspondence with experimentally observed pacemaking frequencies while considering the impact of IP3R Ca(2+) release and MT uptake on bulk cytosolic Ca(2+) levels because persistent elevations of free intracellular Ca(2+) are toxic to the cell. MT densities and distributions are varied in the model geometry to observe MT influence on free cytosolic Ca(2+) and the resulting frequencies of ER Ca(2+) store depletions, as well as the sarco-endoplasmic reticulum Ca(2+) ATP-ase (SERCA) and IP3 agonist concentrations. Our simulations show that high MT densities observed in the ICC are more relevant to ER establishing Ca(2+) depletion frequencies than protection of the cytosol from elevated free Ca(2+), whereas the SERCA pump is more relevant to containing cytosolic Ca(2+) elevations. Our results further suggest that the level of IP3 agonist stimulating ER Ca(2+) release, subsequent MT uptake, and eventual activation of ER store-operated Ca(2+) entry may determine frequencies of rhythmic pacemaking exhibited by the ICC across species and tissue types.
Collapse
Affiliation(s)
- Shawn A. Means
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Affiliation(s)
- L. Eliasson
- Department of Clinical Sciences Malmö; Lund University Diabetes Centre; Lund University; Malmö Sweden
| |
Collapse
|
33
|
Nakajima A, Tsuji M, Inagaki M, Tamura Y, Kato M, Niiya A, Usui Y, Oguchi K. Neuroprotective effects of propofol on ER stress-mediated apoptosis in neuroblastoma SH-SY5Y cells. Eur J Pharmacol 2014; 725:47-54. [DOI: 10.1016/j.ejphar.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022]
|
34
|
Di Buduo CA, Moccia F, Battiston M, De Marco L, Mazzucato M, Moratti R, Tanzi F, Balduini A. The importance of calcium in the regulation of megakaryocyte function. Haematologica 2014; 99:769-78. [PMID: 24463213 DOI: 10.3324/haematol.2013.096859] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions.
Collapse
|
35
|
Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium 2014; 55:282-9. [PMID: 24508392 DOI: 10.1016/j.ceca.2014.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
Ca(2+) is now firmly established as the most important intracellular regulator of physiological and pathological events in a vast number of different cell types, including secretory epithelia. In these tissues, Ca(2+) signalling is crucially important for the control of both fluid secretion and electrolyte secretion as well as the regulation of macromolecule secretion. In this overview article, I shall attempt to give some general background to the concepts underlying our current thinking about Ca(2+) signalling in epithelia and its roles in regulating secretion. It is outside the scope of this review to provide a comprehensive account of Ca(2+) signalling and the many different processes in the many different secretory epithelia that are controlled by Ca(2+) signals. It is my aim to draw attention to some general features of Ca(2+) signalling processes in secretory epithelia, which are rather different from those in, for example, endocrine glands. The principal examples will be taken from studies of exocrine cells and, in particular, pancreatic acinar cells, as they are the pioneer cells with regard to investigations of Ca(2+) signalling due to primary intracellular Ca(2+) release. They also represent the cell type which has been characterized in most detail with regard to Ca(2+) transport events and mechanisms.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
36
|
Bondke Persson A, Persson PB. Tools of our trade. Acta Physiol (Oxf) 2013; 208:289-91. [PMID: 23746114 DOI: 10.1111/apha.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ryazantseva MA, Mozhayeva GN, Kaznacheyeva EV. The uncoupling of synaptic protein homer 1c from target proteins activates store-operated calcium entry in a neurotransmitter-like manner in human neuroblastoma cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 450:181-4. [PMID: 23821062 DOI: 10.1134/s001249661303006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Indexed: 11/22/2022]
|
38
|
Lipskaia L, Hadri L, Lopez JJ, Hajjar RJ, Bobe R. Benefit of SERCA2a gene transfer to vascular endothelial and smooth muscle cells: a new aspect in therapy of cardiovascular diseases. Curr Vasc Pharmacol 2013; 11:465-79. [PMID: 23905641 PMCID: PMC6019278 DOI: 10.2174/1570161111311040010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 01/16/2023]
Abstract
Despite the great progress in cardiovascular health and clinical care along with marked decline in morbidity and mortality, cardiovascular diseases remain the leading causes of death and disability in the developed world. New therapeutic approaches, targeting not only systematic but also causal dysfunction, are ultimately needed to provide a valuable alternative for treatment of complex cardiovascular diseases. In heart failure, there are currently a number of trials that have been either completed or are ongoing targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) gene transfer in the context of heart failure. Recently, a phase 2 trial was completed, demonstrating safety and suggested benefit of adeno-associated virus type 1/SERCA2a gene transfer in advanced heart failure, supporting larger confirmatory trials. The experimental and clinical data suggest that, when administrated through perfusion, virus vector carrying SERCA2a can also transduce vascular endothelial and smooth muscle cells (EC and SMC) thereby improving the clinical benefit of gene therapy. Indeed, recent advances in understanding the molecular basis of vascular dysfunction point towards a reduction of sarcoplasmic reticulum Ca2+ uptake and an impairment of Ca2+ cycling in vascular EC and SMC from patients and preclinical models with cardiac diseases or with cardiovascular risk factors such as diabetes, hypercholesterolemia, coronary artery diseases, as well as other conditions such as pulmonary hypertension. In recent years, several studies have established that SERCA2a gene-based therapy could be an efficient option to treat vascular dysfunction. This review focuses on the recent finding showing the beneficial effects of SERCA2a gene transfer in vascular EC and SMC.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Lahouaria Hadri
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Jose J. Lopez
- INSERM U770, CHU Bicêtre, Le Kremlin-Bicêtre, 94276, France
| | - Roger J. Hajjar
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Regis Bobe
- INSERM U770, CHU Bicêtre, Le Kremlin-Bicêtre, 94276, France
| |
Collapse
|
39
|
Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy. Exp Cell Res 2013; 319:1804-1814. [PMID: 23664835 DOI: 10.1016/j.yexcr.2013.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/22/2013] [Accepted: 04/28/2013] [Indexed: 01/14/2023]
Abstract
Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α1-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy.
Collapse
|
40
|
Jardin I, López JJ, Berna-Erro A, Salido GM, Rosado JA. Homer Proteins in Ca2+Entry. IUBMB Life 2013; 65:497-504. [DOI: 10.1002/iub.1162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
|
41
|
Takamori M. Structure of the neuromuscular junction: function and cooperative mechanisms in the synapse. Ann N Y Acad Sci 2013; 1274:14-23. [PMID: 23252893 DOI: 10.1111/j.1749-6632.2012.06784.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As an overview of the structure of the neuromuscular junction, three items are described focusing on cooperative mechanisms involving the synapse and leading to muscle contraction: (1) presynaptic acetylcholine release regulated by vesicle cycling (exocytosis and endocytosis); the fast-mode of endocytosis requires a large influx of external Ca(2+) and is promoted by the activation of G protein-coupled receptors and receptor tyrosine kinases; (2) postsynaptic acetylcholine receptor clustering mediated by the muscle-specific, Dok7-stimulated tyrosine kinase (MuSK) through two signaling mechanisms: one via agrin-Lrp4-MuSK (Ig1/2 domains) and the second via Wnt-MuSK (Frizzled-like cysteine-rich domain)-adaptor Dishevelled; Wnts/MuSK and Lrp4 direct a retrograde signal to presynaptic differentiation; (3) muscle contractile machinery regulated by Ca(2+) -release and Ca(2+) -influx channels, including the depolarization-activated ryanodine receptor-1 and the receptor- and/or store-operated transient receptor potential canonical. The first mechanism is dysfunctional in Lambert-Eaton myasthenic syndrome, the second in anti-acetylcholine receptor-negative myasthenia gravis (MG), and the third in thymoma-associated MG.
Collapse
|
42
|
Smani T, Dionisio N, López JJ, Berna-Erro A, Rosado JA. Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:658-64. [PMID: 23333715 DOI: 10.1016/j.bbamem.2013.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/30/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca(2+) homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Tarik Smani
- Institute of Biomedicine of Seville, Seville, Spain
| | - Natalia Dionisio
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - José J López
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain.
| |
Collapse
|
43
|
Contribution and regulation of TRPC channels in store-operated Ca2+ entry. CURRENT TOPICS IN MEMBRANES 2013; 71:149-79. [PMID: 23890115 DOI: 10.1016/b978-0-12-407870-3.00007-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).
Collapse
|
44
|
Li Y, Popko J, Krogh KA, Thayer SA. Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures. J Neurophysiol 2012; 109:1494-504. [PMID: 23274309 DOI: 10.1152/jn.00580.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons adapt to seizure activity structurally and functionally to attenuate hyperactive neural circuits. Homer proteins provide a scaffold in the postsynaptic density (PSD) by binding to ligands through an EVH1 domain and to other Homer proteins by a coiled-coil domain. The short Homer isoform 1a (H1a) has a ligand-binding domain but lacks a coiled-coil domain and thus acts in a dominant-negative manner to uncouple Homer scaffolds. Here, we show that treating rat hippocampal cultures with bicuculline and 4-aminopyridine (Bic+4-AP) evoked epileptiform activity and synchronized Ca(2+) spiking, measured with whole cell current-clamp and fura-2-based digital imaging; Bic+4-AP increased H1a mRNA through the activation of metabotropic glutamate receptor 5 (mGluR5). Treatment with Bic+4-AP for 4 h attenuated burst firing and induced synapse loss. Synaptic changes were measured using a confocal imaging-based assay that quantified clusters of PSD-95 fused to green fluorescent protein. Treatment with an mGluR5 antagonist blocked H1a expression, synapse loss, and burst attenuation. Overexpression of H1a inhibited burst firing similar to Bic+4-AP treatment. Furthermore, knockdown of H1a using a short hairpin RNA (shRNA) strategy reduced synapse loss and burst attenuation induced by Bic+4-AP treatment. Thus an epileptiform stimulus applied to hippocampal neurons in culture induced burst firing and H1a expression through the activation of mGluR5; a 4-h exposure to this stimulus resulted in synapse loss and burst attenuation. These results suggest that H1a expression functions in a negative-feedback manner to reduce network excitability by regulating the number of synapses.
Collapse
Affiliation(s)
- Yan Li
- Dept. of Pharmacology, Univ. of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
45
|
Peters M, Trembovler V, Alexandrovich A, Parnas M, Birnbaumer L, Minke B, Shohami E. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. J Neurotrauma 2012; 29:2831-4. [PMID: 22994850 DOI: 10.1089/neu.2012.2575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Death of Central Nervous System (CNS) neurons following traumatic brain injury (TBI) is a complex process arising from a combination of factors, many of which are still unknown. It has been found that inhibition of transient receptor potential (TRP) channels constitutes an effective strategy for preventing death of CNS neurons following TBI. TRP channels are classified into seven related subfamilies, most of which are Ca(2+) permeable and involved in many cellular functions, including neuronal cell death. We hypothesized that TRP channels of the TRPC subfamily may be involved in post-TBI pathophysiology and that the compound 5-isopropyl-2-methylphenol (carvacrol), by inhibition of TRP channels, may exert neuroprotective effect after TBI. To test these suppositions, carvacrol was given to mice after TBI and its effect on their functional recovery was followed for several weeks. Our results show that neurological recovery after TBI was significantly enhanced by application of carvacrol. To better define the type of the specific channel involved, the effect of carvacrol on the extent and speed of recovery after TBI was compared among mice lacking TRPC1, TRPC3, or TRPC5, relative to wild type controls. We found that neurological recovery after TBI was significantly enhanced by combining carvacrol with TRPC1 elimination, but not by the absence of TRPC3 or TRPC5, showing a synergistic effect between carvacrol application and TRPC1 elimination. We conclude that TRPC1-sensitive mechanisms are involved in TBI pathology, and that inhibition of this channel by carvacrol enhances recovery and should be considered for further studies in animal models and humans.
Collapse
Affiliation(s)
- Maximilian Peters
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochem J 2012; 445:29-38. [DOI: 10.1042/bj20120471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Homer is a family of cytoplasmic adaptor proteins that play different roles in cell function, including the regulation of G-protein-coupled receptors. These proteins contain an Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) homology 1 domain that binds to the PPXXF sequence motif, which is present in different Ca2+-handling proteins such as IP3 (inositol 1,4,5-trisphosphate) receptors and TRPC (transient receptor potential canonical) channels. In the present study we show evidence for a role of Homer proteins in the STIM1 (stromal interaction molecule 1)–Orai1 association, as well as in the TRPC1–IP3RII (type II IP3 receptor) interaction, which might be of relevance in platelet function. Treatment of human platelets with thapsigargin or thrombin results in a Ca2+-independent association of Homer1 with TRPC1 and IP3RII. In addition, thapsigargin and thrombin enhanced the association of Homer1 with STIM1 and Orai1 in a Ca2+-dependent manner. Interference with Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, reduced STIM1–Orai1 and TRPC1– IP3RII associations, as compared with the introduction of the inactive PPKKRR peptide. The PPKKFR peptide attenuates thrombin-evoked Ca2+ entry and the maintenance of thapsigargin-induced store-operated Ca2+ entry. Finally, the PPKKFR peptide attenuated thrombin-induced platelet aggregation. The findings of the present study support an important role for Homer proteins in thrombin-stimulated platelet function, which is likely to be mediated by the support of agonist-induced Ca2+ entry.
Collapse
|
47
|
Wang Y, Fei Z, Ma YH, Liu WB, Zhu J, Zhang C, Lin W, Qu Y. VEGF upregulates Homer 1a gene expression via the mitogen-activated protein kinase cascade in cultured cortex neurons. Neurosci Lett 2012; 515:44-9. [DOI: 10.1016/j.neulet.2012.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 01/21/2023]
|
48
|
Abstract
A rise in cytoplasmic [Ca2+] due to store-operated Ca2+ entry (SOCE) triggers a plethora of responses, both acute and long term. This leads to the important question of how this initial signal is decoded to regulate specific cellular functions. It is now clearly established that local [Ca2+] at the site of SOCE can vary significantly from the global [Ca2+] in the cytosol. Such Ca2+ microdomains are generated by the assembly of key Ca2+ signaling proteins within the domains. For example, GPCR, IP 3 receptors, TRPC3 channels, the plasma membrane Ca2+ pump and the endoplasmic reticulum (ER) Ca2+ pump have all been found to be assembled in a complex and all of them contribute to the Ca2+ signal. Recent studies have revealed that two other critical components of SOCE, STIM1 and Orai1, are also recruited to these regions. Thus, the entire machinery for activation and regulation of SOCE is compartmentalized in specific cellular domains which facilitates the specificity and rate of protein-protein interactions that are required for activation of the channels. In the case of TRPC1-SOC channels, it appears that specific lipid domains, lipid raft domains (LRDs), in the plasma membrane, as well as cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1), are involved in assembly of the TRPC channel complexes. Thus, plasma membrane proteins and lipid domains as well as ER proteins contribute to the SOCE-Ca2+ signaling microdomain and modulation of the Ca2+ signals per se. Of further interest is that modulation of Ca2+ signals, i.e. amplitude and/or frequency, can result in regulation of specific cellular functions. The emerging data reveal a dynamic Ca2+ signaling complex composed of TRPC1/Orai1/STIM1 that is physiologically consistent with the dynamic nature of the Ca2+ signal that is generated. This review will focus on the recent studies which demonstrate critical aspects of the TRPC1 channelosome that are involved in the regulation of TRPC1 function and TRPC1-SOC-generated Ca2+ signals.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|