1
|
Sunakawa Y, Kondo M, Yamamoto Y, Inomata T, Inoue Y, Mori D, Mizuno T. Design of Cell-Adhesive Shellac Derivatives and Endowment of Photoswitchable Cell-Adhesion Properties. ACS APPLIED BIO MATERIALS 2023; 6:5493-5501. [PMID: 37978057 DOI: 10.1021/acsabm.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The emergence of new biodegradable cell-adhesion materials is an attractive topic in biomaterial chemistry, particularly for the development of cell incubation scaffolds and drug encapsulation materials used in in situ regenerative therapy. Shellac is a natural resin with unique film-forming properties and high miscibility with various chemicals, in addition to being biodegradable and nontoxic to biological systems. However, since native shellac does not adhere to mammalian cells, there have been no reports of using shellac to develop cell-adhesive biomaterials. In this study, we report on the development of cell-adhesive shellac derivatives through slight chemical modification. Shellac is a mixture of oligoesters that consists of hydroxyl fatty acids and resin acids, and therefore, all oligomers have one carboxylic acid group at the terminal. We discovered that a simple modification of hydrophobic chemical groups, particularly those containing aromatic groups in the ester form, could dramatically improve cell-adhesion properties for mammalian cells. Furthermore, by using photocleavable esters containing aromatic groups, we successfully endowed photoswitchable properties in cell adhesion. Given that shellac is a low-cost, biodegradable, and nontoxic natural resin, the modified shellacs have the potential to become new and attractive biomaterials applicable to in situ regenerative therapy.
Collapse
Affiliation(s)
- Yurino Sunakawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Mai Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasushi Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasumichi Inoue
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Mori
- Gifu Shellac Manufacturing Co., Ltd., 1-41, Higashiuzura, Gifu-shi, Gifu 500-8618, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
2
|
Abstract
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the “repair stem cell(s),” assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow–derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.
Collapse
Affiliation(s)
- José J Minguell
- Laboratorio de Trasplante de Médula Osea, Clínica Las Condes, Lo Fontecilla 441, Las Condes, Santiago, Chile.
| | | |
Collapse
|
3
|
Bonaventura G, Chamayou S, Liprino A, Guglielmino A, Fichera M, Caruso M, Barcellona ML. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability. PLoS One 2015; 10:e0140790. [PMID: 26517263 PMCID: PMC4627815 DOI: 10.1371/journal.pone.0140790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. AIM The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay. RESULTS Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Department of Pharmaceutical Science, Biochemistry Section, University of Catania, Catania, Italy
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sandrine Chamayou
- Unità di Medicina della Riproduzione, Fondazione Hera, Sant’Agata Li Battiati (CT), Italy
| | - Annalisa Liprino
- Department of Obstetrics and Gynecology and Radiological Sciences (OGiRA), University of Catania, Catania, Italy
| | - Antonino Guglielmino
- Unità di Medicina della Riproduzione, Fondazione Hera, Sant’Agata Li Battiati (CT), Italy
| | - Michele Fichera
- Department of Obstetrics and Gynecology and Radiological Sciences (OGiRA), University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Clinic and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Maria Luisa Barcellona
- Department of Pharmaceutical Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Joo S, Lim HJ, Jackson JD, Atala A, Yoo JJ. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells. J Tissue Eng 2014; 5:2041731414524758. [PMID: 24555015 PMCID: PMC3927963 DOI: 10.1177/2041731414524758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/28/2014] [Indexed: 12/29/2022] Open
Abstract
Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2'-deoxycytidine doses (0.5 and 3 µM) were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2'-deoxycytidine-treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers.
Collapse
Affiliation(s)
- Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA ; Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyun Ju Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Excitation-contraction coupling in ventricular myocytes is enhanced by paracrine signaling from mesenchymal stem cells. J Mol Cell Cardiol 2012; 52:1249-56. [PMID: 22465692 DOI: 10.1016/j.yjmcc.2012.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 12/17/2022]
Abstract
In clinical trials mesenchymal stem cells (MSCs) are transplanted into cardiac ischemic regions to decrease infarct size and improve contractility. However, the mechanism and time course of MSC-mediated cardioprotection are incompletely understood. We tested the hypothesis that paracrine signaling by MSCs promotes changes in cardiac excitation-contraction (EC) coupling that protects myocytes from cell death and enhances contractility. Isolated mouse ventricular myocytes (VMs) were treated with control tyrode, MSC conditioned-tyrode (ConT) or co-cultured with MSCs. The Ca handling properties of VMs were monitored by laser scanning confocal microscopy and whole cell voltage clamp. ConT superfusion of VMs resulted in a time dependent increase of the Ca transient amplitude (ConT(15min): ΔF/F(0)=3.52±0.38, n=14; Ctrl(15min): ΔF/F(0)=2.41±0.35, n=14) and acceleration of the Ca transient decay (τ: ConT: 269±18ms n=14; vs. Ctrl: 315±57ms, n=14). Voltage clamp recordings confirmed a ConT induced increase in I(Ca,L) (ConT: -5.9±0.5 pA/pF n=11; vs. Ctrl: -4.04±0.3 pA/pF, n=12). The change of τ resulted from increased SERCA activity. Changes in the Ca transient amplitude and τ were prevented by the PI3K inhibitors Wortmannin (100nmol/L) and LY294002 (10μmol/L) and the Akt inhibitor V (20μmol/L) indicating regulation through PI3K signal transduction and Akt activation which was confirmed by western blotting. A change in τ was also prevented in eNOS(-/-) myocytes or by inhibition of eNOS suggesting an NO mediated regulation of SERCA activity. Since paracrine signaling further resulted in increased survival of VMs we propose that the Akt induced change in Ca signaling is also a mechanism by which MSCs mediate an anti-apoptotic effect.
Collapse
|
6
|
Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011; 63:221-41. [PMID: 21277921 DOI: 10.1016/j.addr.2011.01.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/26/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating 'living' tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human body, are described in detail and discussed in the light of current trends toward designing biologically inspired microenviroments for in situ tissue engineering purposes.
Collapse
|
7
|
Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci U S A 2011; 108:2258-63. [PMID: 21257905 DOI: 10.1073/pnas.1018064108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.
Collapse
|
8
|
Eitan Y, Sarig U, Dahan N, Machluf M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 2010; 16:671-83. [PMID: 19780649 DOI: 10.1089/ten.tec.2009.0111] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have developed an efficient decellularization process for the isolation of extracellular matrix (ECM) from native cardiac tissue. The isolated ECM exhibited desirable mechanical properties in terms of elasticity, strength and durability-properties required from scaffolds used for cardiac tissue repair. This study further investigates the potential use of this scaffold for cardiac tissue engineering in terms of interactions with seeded cells and biocompatibility. We used the commonly studied fibroblasts, cardiomyocytes, and mesenchymal stem cells, which were isolated and seeded onto the scaffold. Cell density and distribution were followed by 3,3'-dioctadecyloxacarbocyanine perchlorate staining, and their proliferation and viability were assessed by AlamarBlue assay and fluorecein-diacetate/propidium iodide staining. Fibroblast-seeded scaffolds shrank to 1-2 mm(3) spheroids, and their glycosaminoglycans significantly increased by 23%. The expression of ECM remodeling-related mRNAs of collagens I and III, matrix metalloproteinase 2, and type 1 tissue inhibitor of metalloproteinases was quantified by real-time polymerase chain reaction, and was found significantly elevated in fibroblast-seeded scaffold, compared with the control cells on plates. Fibroblast-seeded scaffolds lost some flexibility, yet gained strength compared with the acellular scaffolds, as shown by mechanical testing. Scaffold seeded with cardiomyocyte began to beat in concert few days after seeding, and the myocytes expressed typical functional cardiac markers such as alpha-actinin, troponin I, and connexin43. The cells revealed aligned elongated morphology, as presented by immunofluorescent staining and scanning electron microscopy. Mesenchymal stem cell-seeded scaffolds maintained viability over 24 days in culture. These findings further strengthen the potential use of acellular cardiac ECM as a biomaterial for heart regeneration.
Collapse
Affiliation(s)
- Yuval Eitan
- The Laboratory of Cancer Drug Delivery and Mammalian Cell Technology, Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
9
|
Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med 2010; 1:43-52. [PMID: 22096336 PMCID: PMC3217290 DOI: 10.4103/0976-9668.71674] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, there has been a tremendous increase in the understanding of stem cell biology. Stem cells have clonogenic and self-renewing capabilities, and under certain conditions, can differentiate into multiple lineages of mature cells. Recent studies have shown that adult stem cells can be isolated from a wide variety of tissues, including bone marrow, peripheral blood, muscle, and adipose tissue. The potential clinical applications lead to an extended interest in the use of stem cells in many medical disciplines. In this article, we present an overview of stem cells with special reference to cardiovascular and renal diseases treatments by stem cells.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
10
|
Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 2010; 5:e9200. [PMID: 20169166 PMCID: PMC2821411 DOI: 10.1371/journal.pone.0009200] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/21/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP. METHODOLOGY/PRINCIPAL FINDINGS Animals received syngeneic MSCs (1x10(6) cells) by tail vein at an age before major photoreceptor loss. PRINCIPAL RESULTS both rod and cone photoreceptors were preserved (5-6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs. CONCLUSIONS/SIGNIFICANCE These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.
Collapse
Affiliation(s)
- Shaomei Wang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Drost AC, Weng S, Feil G, Schäfer J, Baumann S, Kanz L, Sievert KD, Stenzl A, Möhle R. In vitro Myogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells as a Potential Treatment for Urethral Sphincter Muscle Repair. Ann N Y Acad Sci 2009; 1176:135-43. [DOI: 10.1111/j.1749-6632.2009.04610.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Enoki C, Otani H, Sato D, Okada T, Hattori R, Imamura H. Enhanced mesenchymal cell engraftment by IGF-1 improves left ventricular function in rats undergoing myocardial infarction. Int J Cardiol 2009; 138:9-18. [PMID: 19411121 DOI: 10.1016/j.ijcard.2009.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 03/31/2009] [Accepted: 04/05/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND We hypothesized that enhanced mesenchymal cell (MC) engraftment with insulin-like growth factor-1 (IGF-1) improves left ventricular (LV) function and survival. METHODS AND RESULTS IGF-1 (10 microg/ml) increased adhesion and inhibited apoptosis under hypoxia in vitro through activation of phosphatidylinositol 3-kinase (PI3K) in bone marrow-derived MCs obtained from transgenic rats expressing green fluorescence protein. Myocardial infarction (MI) in rats was produced by ligature of the left coronary artery. One month after MI, rat hearts were injected with MCs in the presence or absence of 10 microg/ml IGF-1 with or without PI3K inhibitor, 5 microM LY294002. IGF-1 significantly increased engraftment of MCs between 6 h and 3 days after transplantation associated with the increase in stromal cell-derived factor-1alpha in the infracted LV. The transplanted MCs had disappeared 1 month after transplantation in all groups. MC transplantation with IGF-1 significantly increased neovascularization and inhibited cardiomyocyte apoptosis 3 days and 1 month after MC transplantation. This was associated with improved LV function 1 month after MC transplantation and eventually survival. LY294002 abrogated all of the beneficial effects of MC transplantation with IGF-1. IGF-1 alone had no effect on neovascularization and did not improve LV function and/or survival. CONCLUSIONS These results suggest that IGF-1 improves engraftment of MCs at the time of transplantation via activation of PI3K and this improved engraftment of MCs may be attributed to an increased neovascularization and inhibition of cardiomyocyte death, leading to improvement of LV function and prolongation of survival despite the eventual loss of the transplanted MCs.
Collapse
Affiliation(s)
- Chiharu Enoki
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Moriguchi City, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Tatsumi K, Otani H, Sato D, Enoki C, Iwasaka T, Imamura H, Taniuchi S, Kaneko K, Adachi Y, Ikehara S. Granulocyte-colony stimulating factor increases donor mesenchymal stem cells in bone marrow and their mobilization into peripheral circulation but does not repair dystrophic heart after bone marrow transplantation. Circ J 2008; 72:1351-1358. [PMID: 18654025 DOI: 10.1253/circj.72.1351] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Hereditary disordered cardiac muscle could be replaced with intact cardiomyocytes derived from genetically intact bone marrow (BM)-derived stem cells. METHODS AND RESULTS Cardiomyopathic mice with targeted mutation of delta-sarcoglycan gene underwent intra-BM-BM transplantation (IBM-BMT) from transgenic mice expressing green fluorescence protein. The host BM and the peripheral blood were completely reconstituted by donor-derived hematopoietic cells by IBM-BMT. Treatment with granulocyte-colony stimulating factor (G-CSF) markedly increased donor-derived mesenchymal stem cells (MSC) in the BM and their mobilization into the peripheral blood after IBM-BMT. Treatment with isoproterenol (iso) for 7 days caused myocardial damage and left ventricular (LV) dysfunction in the cardiomyopathic mice. Co-treatment with iso and G-CSF increased donor BM cell recruitment to the heart and temporarily improved LV function in the cardiomyopathic mice with or without IBM-BMT. However, the cardiac muscle was not replaced with donor BM-derived cardiomyocytes in the cardiomyopathic mice with or without IBM-BMT, and this was associated with no improvement of LV function of mice aged 20 weeks. CONCLUSIONS These results suggest that G-CSF enhances engraftment of donor MSC in the BM and their mobilization into the peripheral circulation after IBM-BMT but MSC recruited to the heart do not differentiate into cardiomyocytes and do not repair the dystrophic heart.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Bone Marrow Transplantation
- Cardiomyopathies/drug therapy
- Cardiomyopathies/pathology
- Cardiomyopathies/physiopathology
- Cardiomyopathies/surgery
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Genes, Reporter
- Granulocyte Colony-Stimulating Factor/pharmacology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Isoproterenol/pharmacology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscular Dystrophies/drug therapy
- Muscular Dystrophies/pathology
- Muscular Dystrophies/physiopathology
- Muscular Dystrophies/surgery
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Papillary Muscles/drug effects
- Papillary Muscles/pathology
- Sarcoglycans/genetics
- Sarcoglycans/metabolism
- Time Factors
- Ventricular Function, Left/drug effects
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Kimiko Tatsumi
- The Department of Pediatrics, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong L, Colpan A, Peptan IA. Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 12:2747-53. [PMID: 17518644 DOI: 10.1089/ten.2006.12.2747] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for tissue engineering and regenerative medicine applications. However, effective regulation to improve differentiation potentials of MSCs plays a critical role in promoting successful tissue formation. Because estrogen has been demonstrated to modulate tissue and organ development and differentiation, we hypothesized that adding estrogen could effectively improve the multiple differentiation potentials of human bone marrow MSCs in vitro. In the present study, 17-beta estradiol (E2) was investigated for in vitro osteogenic and adipogenic differentiations of MSCs isolated from a healthy male human donor. After MSCs were exposed to osteogenic differentiation medium supplemented with E2 at different concentrations, osteocalcin expression is upregulated and calcium deposition (21.0%) is significantly improved ( p < 0.01; n = 4). Under adipogenic stimulation, E2 increased 35.4% lipid accumulations more than that of the group without the E2 supplement ( p < 0.01; n = 4). Estrogen's effect on osteogenesis occurs via estrogen receptors (ER)-alpha and -beta, whereas the effect on adipogenesis is through ER-alpha. Estrogen's regulation of differentiations of MSCs is dose dependent. The present study indicated that estrogen could potentially improve the role of MSCs in tissue engineering and regeneration by serving as a modulator of differentiation.
Collapse
Affiliation(s)
- Liu Hong
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612-7211, USA
| | | | | |
Collapse
|
15
|
Sell S. Adult stem cell plasticity: introduction to the first issue of stem cell reviews. ACTA ACUST UNITED AC 2007; 1:1-7. [PMID: 17132868 DOI: 10.1385/scr:1:1:001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Abstract
Molecular cardiology is a new and fast-growing area of cardiovascular medicine that aims to apply molecular biology techniques for the mechanistic investigation, diagnosis, prevention and treatment of cardiovascular disease. As an emerging discipline, it has changed conceptual thinking of cardiovascular development, disease etiology and pathophysiology. Although molecular cardiology is still at a very early stage, it has opened a promising avenue for understanding and controlling cardiovascular disease. With the rapid development and application of molecular biology techniques, scientists and clinicians are closer to curing heart diseases that were thought to be incurable 20 years ago. There clearly is a need for a more thorough understanding of the molecular mechanisms of cardiovascular diseases to promote the advancement of stem cell therapy and gene therapy for heart diseases. The present paper briefly reviews the state-of-the-art techniques in the following areas of molecular cardiology: gene analysis in the diseased heart; transgenic techniques in cardiac research; gene transfer and gene therapy for cardiovascular disease; and stem cell therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Zhongjie Sun
- Department of Medicine, College of Medicine, University of Florida, Gainesville 32610-0274, USA.
| |
Collapse
|
17
|
Pedrotty DM, Bursac N. Cardiomyoplasty: the prospect of human stem cells. ACTA ACUST UNITED AC 2005; 24:125-7. [PMID: 15971852 DOI: 10.1109/memb.2005.1436471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dawn M Pedrotty
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|