1
|
The Ontogeny and Brain Distribution Dynamics of the Appetite Regulators NPY, CART and pOX in Larval Atlantic Cod (Gadus morhua L.). PLoS One 2016; 11:e0153743. [PMID: 27100086 PMCID: PMC4839749 DOI: 10.1371/journal.pone.0153743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Collapse
|
2
|
Abstract
Zebrafish is now becoming one of the most useful model organisms in neurobiology. In addition to its general advantageous properties (external fertilization, rapid development, transparency of embryos, etc.), the zebrafish is amenable to various genetic engineering technologies such as transgenesis, mutagenesis, gene knockdown, and transposon-mediated gene transfer. A transgenic approach unraveled two segregated neural circuits originating from ciliated and microvillous sensory neurons in the olfactory epithelium to distinct regions of the olfactory bulb, which likely convey different types of olfactory information (e.g., pheromones and odorants) to the higher olfactory centers. Furthermore, the two basic principles identified in mice, so-called one neuron-one receptor rule and convergence of like axons to target glomeruli, are basically preserved also in the zebrafish, rendering this organism a suitable model vertebrate for studies of the olfactory system. This review summarizes recent advances in our knowledge on genetic, molecular, and cellular mechanisms underlying the development and functional architecture of the olfactory neural circuitry in the zebrafish.
Collapse
|
3
|
Hamdani EH, Døving KB. The functional organization of the fish olfactory system. Prog Neurobiol 2007; 82:80-6. [PMID: 17433527 DOI: 10.1016/j.pneurobio.2007.02.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/19/2007] [Indexed: 11/28/2022]
Abstract
Recent developments in the functional anatomy and physiology of the fish olfactory system reveal three parallel pathways from the sensory epithelium, via the olfactory bulb to the telencephalon. There are three morphological types of sensory neurones spread in a seemingly overlapping arrangement in the olfactory epithelium. The axons of each type of sensory neurones converge to a specific region of the olfactory bulb and connect to separate sets of relay neurones. The axons of these relay neurones leave in three bundles to the telencephalon. Each bundle conveys specific information that elicits sets of characteristic behaviour in response to odours involved in essential life processes in the fish. One pathway is tuned to social cues, another to sex pheromones, and the third to food odours.
Collapse
|
4
|
Rolen SH, Caprio J. Processing of bile salt odor information by single olfactory bulb neurons in the channel catfish. J Neurophysiol 2007; 97:4058-68. [PMID: 17442768 DOI: 10.1152/jn.00247.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A chemotopic map of biologically relevant odorants (that include amino acids, bile salts, and nucleotides) exists in the olfactory bulb (OB) of channel catfish, Ictalurus punctatus. Neurons processing bile salt odorant information lie medially within this OB map; however, information as to how single neurons process bile salt odorant information is lacking. In the present report, recordings were obtained from 51 OB neurons from 30 channel catfish to determine the excitatory molecular receptive range (EMRR) of bile salt responsive neurons. All recordings were performed in vivo within the medial portions of the OB using extracellular electrophysiological techniques. Excitatory thresholds to bile salts typically ranged between 0.1 and 10 muM. The bile salt specificity of OB neurons were divided into three groups: neurons excited by taurine-conjugated bile salts only (group T), neurons excited by nonconjugated bile salts only (group N), and neurons excited by at least one member of each of the three classes of bile salts tested (group G). In addition to the conjugating group at C24 of the side-chain, OB neurons discriminated bile salts by the molecular features present at three other carbon positions (C3, C7, and C12) along the steroid backbone. These data suggest that OB neurons are selectively excited by combinations of molecular features found on the side-chain and along the steroid nucleus of bile salt molecules.
Collapse
Affiliation(s)
- S H Rolen
- Dept. of Biological Sciences, Louisiana State University, Life Sciences Bldg. Rm. 107, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
5
|
Mazumdar M, Sakharkar AJ, Singru PS, Subhedar N. Reproduction phase-related variations in neuropeptide Y immunoreactivity in the olfactory system, forebrain, and pituitary of the female catfish,Clarias batrachus (Linn.). J Comp Neurol 2007; 504:450-69. [PMID: 17701999 DOI: 10.1002/cne.21462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to determine whether neuropeptide Y (NPY) immunoreactivity in the cells and fibers in the forebrain and pituitary of Clarias batrachus is linked to the annual reproductive cycle. A steady rise in luteinizing hormone (LH) immunoreactivity was seen in the pituitary through preparatory (February-April) and prespawning (May-June) phases; it was greatly reduced during spawning (July-August; P < 0.001) and partially replenished during postspawning (September-November; P < 0.01) through resting (December-January) phases. Although NPY immunoreactivity in olfactory receptor neurons and olfactory nerve layer in olfactory bulb was gradually augmented during resting through prespawning phases (P < 0.001), attaining a peak in spawning phase (P < 0.001), a dramatic decline was encountered during postspawning phase (P < 0.001). A similar pattern was also observed in NPY-containing fibers of the medial olfactory tract (MOT) and pituitary. However, a different pattern of NPY immunoreactivity was observed in the neurons of nucleus entopeduncularis (NE) and nucleus preopticus periventricularis (NPP). Whereas these neurons and fibers in the forebrain showed significant augmentation during the resting through prespawning phases (P < 0.001), the immunoreactivity dramatically declined during spawning (P < 0.001) and was partially replenished in the postspawning phase. Testosterone injection of juveniles significantly augmented (P < 0.001) NPY immunoreactivity in NE neurons. We suggest that NPY cells of NE and NPP, and related fiber systems, might be involved in processing of sex steroid-borne information and regulation of the gonadotropin-releasing hormone-LH axis.
Collapse
Affiliation(s)
- Minakshi Mazumdar
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University Campus, Nagpur-440033, India
| | | | | | | |
Collapse
|
6
|
Fuller CL, Yettaw HK, Byrd CA. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol 2006; 499:218-30. [PMID: 16977629 DOI: 10.1002/cne.21091] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitral cell is the primary output neuron and central relay in the olfactory bulb of vertebrates. The morphology of these cells has been studied extensively in mammalian systems and to a lesser degree in teleosts. This study uses retrograde tract tracing and other techniques to characterize the morphology and distribution of mitral cells in the olfactory bulb of adult zebrafish, Danio rerio. These output neurons, located primarily in the glomerular layer and superficial internal cell layer, had variable-shaped somata that ranged in size from 4-18 microm in diameter and 31-96 microm2 in cross-sectional area. The mitral cells exhibited two main types of morphologies with regard to their dendrites: the unidendritic morphology was a single primary dendrite with one or more tufts, but multidendritic cells with several dendritic projections also were seen. The axons of these cells projected to either the medial or the lateral olfactory tract and, in general, the location of the cell on the medial or lateral side of the bulb was indicative of the tract to which it would project. Further, this study shows that the majority of zebrafish mitral cells likely innervate a single glomerulus rather than multiple glomeruli. This information is contrary to the multiple innervation pattern suggested for all teleost mitral cells. Our findings suggest that mitral cells in zebrafish may be more similar to mammalian mitral cells than previously believed, despite variation in size and structure. This information provides a revised anatomical framework for olfactory processing studies in this key model system.
Collapse
Affiliation(s)
- Cynthia L Fuller
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan 49008-5410, USA
| | | | | |
Collapse
|
7
|
Nikonov AA, Finger TE, Caprio J. Beyond the olfactory bulb: an odotopic map in the forebrain. Proc Natl Acad Sci U S A 2005; 102:18688-93. [PMID: 16339016 PMCID: PMC1317911 DOI: 10.1073/pnas.0505241102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report electrophysiological evidence that a simple odotopy, the spatial mapping of different odorants, is maintained above the level of the olfactory bulb (OB). Three classes of biologically relevant odorants for fish are processed in distinct regions of the forebrain (FB) in the channel catfish. Feeding cues, mainly amino acids and nucleotides, are represented in lateral, pallial portions of the FB, equivalent to the olfactory cortex of amniote vertebrates, whereas social signals mediated by bile salts are represented in medial FB centers, possibly homologous to portions of the amygdala. As in the OB, the different odorant classes map onto different territories; however, the response properties of units of the olfactory areas of the FB do not simply mirror those of the OB. For some units, distinctive response properties emerged, because the FB is the first center where odors subserving a common behavioral function (i.e., food function) converge.
Collapse
Affiliation(s)
- Alexander A Nikonov
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Room 202, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
8
|
Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H. A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 2005; 125:337-49. [PMID: 16273384 DOI: 10.1007/s00418-005-0077-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The olfactory marker protein (OMP) is expressed in mature chemosensory neurons in the nasal neuroepithelium. Here, we report the identification of a novel population of OMP-expressing neurons located bilaterally in the anterior/dorsal region of each nasal cavity at the septum. These cells are clearly separated from the regio olfactoria, harboring the olfactory sensory neurons. During mouse development, the arrangement of the anterior OMP-cells undergoes considerable change. They appear at about stage E13 and are localized in the nasal epithelium during early stages; by epithelial budding, ganglion-shaped clusters are formed in the mesenchyme during the perinatal phase, and a filiform layer directly underneath the nasal epithelium is established in adults. The anterior OMP-cells extend long axonal processes which form bundles and project towards the brain. The data suggest that the newly discovered group of OMP-cells in the anterior region of the nasal cavity may serve a distinct sensory function.
Collapse
Affiliation(s)
- Jörg Fleischer
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
9
|
Changes in response to olfactory cues across the ovulatory cycle in brook sticklebacks, Culaea inconstans. Anim Behav 2005. [DOI: 10.1016/j.anbehav.2003.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Gaikwad A, Biju KC, Muthal PL, Saha S, Subhedar N. Role of neuropeptide Y in the regulation of gonadotropin releasing hormone system in the forebrain of Clarias batrachus (Linn.): Immunocytochemistry and high performance liquid chromatography-electrospray ionization-mass spectrometric analysis. Neuroscience 2005; 133:267-79. [PMID: 15893649 DOI: 10.1016/j.neuroscience.2004.12.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 12/12/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Although the importance of neuropeptide Y (NPY) in the regulation of gonadotropin releasing hormone (GnRH) and reproduction has been highlighted in recent years, the neuroanatomical substrate within which these substances might interact has not been fully elucidated. Present work was undertaken with a view to define the anatomical-physiological correlates underlying the role exercised by NPY in the regulation of GnRH in the forebrain of the teleost Clarias batrachus. Application of double immunocytochemistry revealed close associations as well as colocalizations of the two peptides in the olfactory receptor neurons (ORNs), olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tract, fibers in the area ventralis telencephali/pars supracommissuralis and cells as well as fibers in the pituitary. NPY containing axons were found to terminate in the vicinity of GnRH cells in the pituitary with light as well as electron microscopy. Double immunoelectron microscopy demonstrated gold particles for NPY and GnRH colocalized on the membrane and in dense core of the secretory granules in the cells distributed in all components of the pituitary gland. To assess the physiological implication of these observations, NPY was injected via the intracranial route and the response of GnRH immunoreactive system was evaluated by relative quantitative morphometry as well as high performance liquid chromatography (HPLC) analysis. Two hours following NPY (20 ng/g body weight) administration, a dramatic increase was observed in the GnRH immunoreactivity in the ORNs, in the fibers of the olfactory bulb (163%) and medial olfactory tract (351%). High performance liquid chromatography-electrospray ionization-mass spectrometric analysis confirmed the immunocytochemical data. Significant rise in the salmon GnRH (sGnRH)-like peptide content was observed in the olfactory organ (194.23%), olfactory bulb (146.64%), telencephalon+preoptic area (214.10%) and the pituitary (136.72%) of the NPY-treated fish. However, GnRH in the hypothalamus was below detection limit in the control as well as NPY-treated fish. Present results suggest the involvement of NPY in the up-regulation of sGnRH containing system at different level of neuraxis extending from the olfactory epithelium to the pituitary in the forebrain of C. batrachus.
Collapse
Affiliation(s)
- A Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
11
|
The importance of olfactory signals in the gasterosteid mating system: sticklebacks go multimodal. Biol J Linn Soc Lond 2003. [DOI: 10.1111/j.1095-8312.2003.00254.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Biju KC, Singru PS, Schreibman MP, Subhedar N. Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.). Gen Comp Endocrinol 2003; 133:358-67. [PMID: 12957480 DOI: 10.1016/s0016-6480(03)00190-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.
Collapse
Affiliation(s)
- K C Biju
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|
13
|
Singru PS, Sakharkar AJ, Subhedar N. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus. Brain Res 2003; 977:157-68. [PMID: 12834876 DOI: 10.1016/s0006-8993(03)02626-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.
Collapse
Affiliation(s)
- Praful S Singru
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | |
Collapse
|
14
|
Nikonov AA, Caprio J. Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish. J Neurophysiol 2001; 86:1869-76. [PMID: 11600646 DOI: 10.1152/jn.2001.86.4.1869] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular electrophysiological recordings from single olfactory bulb (OB) neurons in the channel catfish, Ictalurus punctatus, indicated that the OB is divided into different functional zones, each processing a specific class of biologically relevant odor. Different OB regions responded preferentially at slightly above threshold to either a mixture of 1) bile salts (10(-7) to 10(-5) M Na(+) salts of taurocholic, lithocholic, and taurolithocholic acids), 2) nucleotides [10(-6) to 10(-4) M adenosine-5'-triphosphate (ATP), inosine-5'-monophosphate (IMP), and inosine-5'-triphosphate (ITP)], or 3) amino acids (10(-6) to 10(-4)M L-alanine, L-methionine, L-arginine, and L-glutamate). Excitatory responses to bile salts were observed primarily in a thin, medial strip in both the dorsal (100-450 microm) and ventral (900-1,200 microm) OB. Excitatory responses to nucleotides were obtained primarily from dorsal, caudolateral OB, whereas excitatory responses to amino acids occurred more rostrally in the dorsolateral OB, but continued more medially in the ventral OB. The chemotopy within the channel catfish OB is more comparable to that previously described by optical imaging studies in zebrafish than by field potential studies in salmonids. The present results are consistent with recent studies, suggesting that the specific spatial organization of output neurons in the OB is necessary for the quality coding/decoding of olfactory information.
Collapse
Affiliation(s)
- A A Nikonov
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
15
|
Sarkar S, Subhedar N. Seasonal changes in beta-endorphin-like immunoreactivity in the olfactory system of the female catfish, Clarias batrachus (Linn). Gen Comp Endocrinol 2001; 123:127-36. [PMID: 11482933 DOI: 10.1006/gcen.2001.7670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the olfactory system of the catfish Clarias batrachus, beta-endorphin-like immunoreactivity was seen in several olfactory receptor neurons (ORN) and their fiber projections extending caudally over the olfactory nerve to the olfactory bulb (OB). With beta-endorphin-like immunoreactivity as a cellular marker, the olfactory system in the female fish was investigated at different stages of its annual reproductive cycle. The reproductive cycle of the fish is divisible into four distinct phases: preparatory (February-April), prespawning (May-June), spawning (July-August), and postspawning (September-January). The gonosomatic index and the immunocytochemical profile of beta-endorphin-like immunoreactivity showed distinct changes as the fish progressed from one phase to another. In the preparatory phase, limited immunoreactivity was seen in the periphery of the bulb. However, the immunoreactivity showed a robust increase as the immunolabeled fibers extended progressively deeper into the bulb toward the mitral cell layer during the prespawning and spawning phases. Significant reduction in the immunoreactivity was noticed in the olfactory nerve layer of the fish in the postspawning phase. Several granule cells showed poor to moderate immunoreactivity during the spawning phase, although no immunoreactivity was seen in the inner cell layer during the rest of the year. The beta-endorphin-like immunoreactivity in the ORN also showed season-related changes, although these were less distinct. Whereas weak immunoreactivity confined to a few ORN was noticed in the fish collected in the preparatory phase, those in the prespawning phase showed conspicuous augmentation in immunoreactivity. During the spawning phase, the sensory layer of the olfactory epithelium showed reduced, homogenous immunoreactivity. In the postspawning phase, several ORN revealed distinct granular immunoreactivity, suggesting possibilities of de novo synthesis. These annual cyclic changes in the beta-endorphin-like immunoreactivity were consistently observed over a 30-month study period that spanned three consecutive spawning phases. The results suggest that the beta-endorphin-containing ORN, their fiber projections to the OB, and several granule cells in the inner cell layer may be involved in the processing of reproduction/reproductive behavior-related signals.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 010, India
| | | |
Collapse
|
16
|
Marchetti G, Cozzi B, Tavanti M, Russo V, Pellegrini S, Fabiani O. The distribution of neuropeptide Y-immunoreactive neurons and nerve fibers in the forebrain of the carp Cyprinus carpio L. J Chem Neuroanat 2000; 20:129-39. [PMID: 11118806 DOI: 10.1016/s0891-0618(00)00082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports the distribution of Neuropeptide Y (NPY)-immunoreactive neurons and fibers in the forebrain of the adult carp Cyprinus carpio L. Serial Nissl-stained sections were used for cytoarchitecture and identification of anatomical structures. Immunostaining of NPY-containing neurons and fibers was used as neurochemical marker and tool for comparison with other species, including the goldfish. The general outline of the cytoarchitecture of the carp forebrain is similar to that of other Cypriniformes. However, using NPY immunohistochemistry, we found several specific differences with the goldfish, especially in the diencephalon. In the hypothalamus of the carp NPY-immunoreactive (NPYir) neurons were identified in the n. dorsolateralis thalami, and in the n. ventralis lateralis thalami. In the same location, we observed the n. anterior hypothalami and the n. preglomerulosus pars lateralis, described in the goldfish, as parts of n. prerotundus. However, in the carp we were not able to identify a n. preglomerulosus pars medialis, a n. preglomerulosus pars medialis commissuralis and a n. glomerulosus. We describe a n. rotundus, in which we did not find substructures typical of the goldfish. Further differences with the goldfish, trout and salmon were also noted.
Collapse
Affiliation(s)
- G Marchetti
- Department of Animal Production, Section of Anatomy, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Sarkar S, Subhedar N. beta-endorphin and gonadotropin-releasing hormone in the forebrain and pituitary of the female catfish, Clarias batrachus: double-immunolabeling study. Gen Comp Endocrinol 2000; 118:39-47. [PMID: 10753565 DOI: 10.1006/gcen.1999.7437] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of beta-endorphin in modulating the gonadotropic action of gonadotropin-releasing hormone (GnRH) is well established in mammals. Although the information from teleosts also suggests that endogenous opioids modulate GnRH secretion and influence gonadotropic hormone release, the anatomical substrate in which opiate peptides and GnRH may interact has not been studied. Herein we describe the mammalian GnRH- and beta-endorphin-like immunoreactivities in the olfactory system, forebrain, and pituitary of the teleost, Clarias batrachus, using the double immunocytochemical method. While several olfactory receptor neurons showed beta-endorphin- or GnRH-like immunoreactivity, some neurons with dual immunoreactivities were also seen. GnRH- and/or beta-endorphin-like immunolabeled fascicles were seen in the olfactory nerves as they run caudally to the olfactory bulb and spread in the periphery. Several fascicles branch profusely to form tufts organized as spherical neuropils in the glomerular layer. Frequently, the innervation of the glomeruli showed a distinct pattern. While the fascicles on the medial side showed a predominance of beta-endorphin-like fibers, the majority of the fascicles on the lateral side of the bulb showed dual immunoreactivities. Several GnRH- and beta-endorphin-like immunoreactive fibers were seen in the medial olfactory tract as it extends through the telencephalon in the area ventralis telencephali/pars supracommissuralis; individual fibers with dual staining were also seen. The nucleus lateralis tuberis showed beta-endorphin- as well as GnRH-like immunoreactive neurons. While GnRH-containing cells were seen in the proximal pars distalis and pars intermedia, beta-endorphin-like cells were located throughout the pituitary; some cells in the pars intermedia showed dual immunoreactivity. The high degree of overlapping suggests the possibility of profound interplay between GnRH- and beta-endorphin-like immunoreactive systems at different levels of the neuraxis.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, 440 010, India
| | | |
Collapse
|
18
|
Khan FA, Jain MR, Saha SG, Subhedar N. FMRFamide-like immunoreactivity in the olfactory system responds to morphine treatment in the teleost Clarias batrachus: involvement of opiate receptors. Gen Comp Endocrinol 1998; 110:79-87. [PMID: 9514843 DOI: 10.1006/gcen.1997.7044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In view of the close relationship between the FMRF-related peptides and the central opiate-sensitive system, we investigated the effects of morphine, alone and in combination with naloxone, on the FMRFamide-like immunoreactivity in the olfactory system of the teleost, Clarias batrachus. In the olfactory system of normal and untreated fish, FMRFamide-like immunoreactivity was confined to the ganglion cells and fibers of the terminal nerve; the cells in the olfactory epithelium per se or the olfactory nerve were not immunoreactive. Intensely immunoreactive cells appeared in the olfactory epithelium following 2 h of intracranial morphine administration. FMRFamide-like immunoreactivity also appeared in the olfactory nerve fibers as they ran caudally and arborized in the glomerular layer of the bulb. However, immunoreactivity in the ganglion cells of the terminal nerve and the ensuing fibers was abolished, suggesting the transport/release of the immunoreactive material. Pretreatment with naloxone, a potent opiate receptor antagonist, reversed the effects of morphine, suggesting the involvement of opiate receptors in the regulation of the ganglion cells of the terminal nerve. The results provide initial immunocytochemical evidence in favor of a relationship between the opiates and FMRFamide-containing systems within the framework of the olfactory system.
Collapse
Affiliation(s)
- F A Khan
- Department of Pharmaceutical Sciences, Nagpur University, Nagpur, 440 010, India
| | | | | | | |
Collapse
|
19
|
Becerra M, Manso MJ, Rodriguez-Moldes I, Anadón R. Primary olfactory fibres project to the ventral telencephalon and preoptic region in trout (Salmo trutta): a developmental immunocytochemical study. J Comp Neurol 1994; 342:131-43. [PMID: 7515905 DOI: 10.1002/cne.903420112] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the development of the primary olfactory system of a teleost, the brown trout, with the aims of clarifying whether the caudal projection pertains to the olfactory or to the terminal nerve system, of identifying the brain regions receiving this projection, and of investigating its possible functional significance. As olfactory markers (OMs) we used two polyclonal antibodies (to substance P and to alpha-melanocyte-stimulating hormone) that were found to label the olfactory projection strongly after preadsortion of the antibody with the corresponding antigen (OMs), and as a terminal nerve marker we used an antiserum to FMRF-amide peptide. OM labelling was observed in both perikarya and axons of olfactory neurons. In adults, olfactory neurons projected not only to olfactory glomeruli in the olfactory bulb but also, as has been reported previously, to more caudal targets in the forebrain through the medial olfactory tract. Our results show that these targets include the ventral and commissural nuclei of the area ventralis telencephali, the periventricular preoptic region, and the organum vasculosum laminae terminalis. Glomeruli were not observed before hatching, and the extrabulbar olfactory projections appear late in development. Extensive periventricular preoptic olfactory plexuses and olfactory innervation of the organum vasculosum laminae terminalis did not appear until adulthood. The cells of the ganglion nervus terminalis, which form ganglionic groups along the olfactory nerves, were not stained with these olfactory markers at any developmental stage studied, nor was the medial olfactory tract FMRP-amide peptide immunoreactive. Our results thus confirm the existence of primary olfactory projections to extrabulbar targets in trout. The target regions identified in this study are implicated in sexual behaviour: We discuss the related possibility that, in teleosts, these extrabulbar olfactory projections (rather than projections of the terminal nerve, as is widely held) are the primary mediators of neuroendocrine response to pheromones.
Collapse
Affiliation(s)
- M Becerra
- Department of Fundamental Biology, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
20
|
Sas E, Maler L, Weld M. Connections of the olfactory bulb in the gymnotiform fish, Apteronotus leptorhynchus. J Comp Neurol 1993; 335:486-507. [PMID: 8227532 DOI: 10.1002/cne.903350403] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work examines the connectivity of the olfactory bulb in the gynmotiform fish Apteronotus leptorhynchus. Wheat germ agglutinin conjugated horseradish peroxidase was iontophoresed in different areas and depths of the bulb in order to define its efferent and afferent connections. The olfactory bulb projects bilaterally via the medial (medial and centromedial fascicles) and lateral olfactory (lateral and centrolateral fascicles) tracts. The nervus terminalis courses through the ventromedial aspect of the bulb to terminate in parts of the medial subpallium and hypothalamus. Its telencephalic component could be identified by a nonpreadsorbable substance P-like immunoreactivity. Fibers within the medial olfactory tract form four telencephalic terminal fields: peduncular, medial, intermediate and posterior fields. The diencephalic terminal fields in the habenula, preoptic, and hypothalamic areas appear to correspond to some of the nervus terminalis fibers (von Bartheld and Meyer [1986] Cell Tissue Res. 245:143-158, Krishna et al. [1992] Gen. Comp. Endocrinol. 85:111-117), and to axons of telencephalic bulbopetal cells of area dorsalis posterior. The terminal fields of the medial olfactory tract and nervus terminalis partially overlap in the ventral telencephalic areas partes ventralis, supracommissuralis, and rostral preoptic region. The lateral olfactory tract forms a lateral terminal field and contributes to the intermediate and posterior terminal fields. Olfactory fibers cross in the interbulbar, anterior, and habenular commissures and tuberal decussation. Consistent differences were noted between the medial and lateral olfactory bulb, with respect to their cytoarchitectonics, immunohistochemistry, and connections. In addition to the olfactory nerve, bulbar afferents are predominantly ipsilateral, with minor inputs originating from the contralateral bulb and telencephalic area dorsalis posterior, nucleus raphe centralis, and locus ceruleus.
Collapse
Affiliation(s)
- E Sas
- University of Ottawa, Faculty of Medicine, Department of Anatomy and Neurobiology, Ontario, Canada
| | | | | |
Collapse
|
21
|
Functional and morphological regeneration of olfactory tracts and subtracts in goldfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993. [DOI: 10.1007/bf00214718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Dulka JG, Sloley BD, Stacey NE, Peter RE. A reduction in pituitary dopamine turnover is associated with sex pheromone-induced gonadotropin secretion in male goldfish. Gen Comp Endocrinol 1992; 86:496-505. [PMID: 1398008 DOI: 10.1016/0016-6480(92)90074-t] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In goldfish, the gonadal steroid, 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-P), functions as a potent preovulatory female sex pheromone which stimulates rapid elevations in serum gonadotropin (GtH) levels and subsequent increases in milt production in males. GtH secretion in goldfish is known to be regulated by the stimulatory actions of gonadotropin-releasing hormone (GnRH) and the inhibitory actions of dopamine (DA). This study specifically examined whether the 17,20 beta-P-induced elevation in male GtH is caused by pheromone-mediated changes in DA inhibition at the level of the pituitary. First, we have demonstrated that dihydroxyphenylacetic acid (DOPAC) is the primary metabolite of DA catabolism in the brain and pituitary gland of goldfish. Second, we measured changes in circulating levels of GtH and changes in pituitary content of DA and its metabolite, DOPAC, as well as possible alterations in DA turnover rate (DOPAC/DA ratio) following short-term exposure of male goldfish to water-borne 17,20 beta-P. Water-borne 17,20 beta-P consistently increased serum GtH levels in males within 20 min of exposure and maintained elevated levels for up to 120 min. Although changes in pituitary DA content were not observed during periods of high GtH release, coincident reductions in pituitary levels of DOPAC were measured within 45 min of exposure to the pheromone. More importantly, there was a significant decrease in the rate of DA turnover in the pituitary, as assessed by comparing the ratio of DOPAC to DA present, at 20, 45, and 120 min of exposure. Since the reduction of DA turnover in the pituitary is inversely correlated with periods of increased GtH release, the present results suggest that water-borne 17,20 beta-P causes an abatement of DA release to the pituitary. Based on the latency of the GtH response to water-borne 17,20 beta-P, a rapid reduction of DA turnover in the pituitary appears to be at least part of the neuroendocrine trigger for 17,20 beta-P-induced GtH release in male goldfish.
Collapse
Affiliation(s)
- J G Dulka
- Department of Zoology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
23
|
Johnston SA, Maler L. Anatomical organization of the hypophysiotrophic systems in the electric fish, Apteronotus leptorhynchus. J Comp Neurol 1992; 317:421-37. [PMID: 1578005 DOI: 10.1002/cne.903170408] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of afferents to the pituitary was investigated by applying DiI crystals to the pituitary or pituitary stalk of the gymnotiform electric fish, Apteronotus leptorhynchus. Most hypophysiotrophic cells were found in the hypothalamus and were distributed throughout its rostrocaudal extent: nucleus preopticus periventricularis, pars anterior and posterior; suprachiasmatic nucleus; anterior, dorsal, ventral, lateral, and caudal hypothalamic nuclei; and nucleus tuberis lateralis, pars anterior and posterior. In addition a small number of retrogradely labeled cells were found in the ventral telencephalon (area ventralis, pars ventralis) and, most surprisingly, in a thalamic nucleus (nucleus centralis posterioris). The nucleus preopticus periventricularis pars posterior and the anterior hypothalamic nucleus appear to correspond to the parvicellular and magnocellular divisions of the nucleus preopticus of other teleosts. Integration of these results with immunohistochemical localization of monoamines and neuropeptides in the apteronotid brain suggests many homologies between the hypophysiotrophic nuclei of teleosts and other vertebrates, including mammals. Apteronotus communicates electrically during agonistic and sexual interactions. There are numerous anatomical links between the hypophysiotrophic systems and the brain areas related to electrocommunication.
Collapse
Affiliation(s)
- S A Johnston
- Department of Anatomy, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
24
|
Uchiyama H. Immunohistochemical subpopulations of retinopetal neurons in the nucleus olfactoretinalis in a teleost, the whitespotted greenling (Hexagrammos stelleri). J Comp Neurol 1990; 293:54-62. [PMID: 2312792 DOI: 10.1002/cne.902930105] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two subpopulations of retinopetal neurons in the nucleus olfactoretinalis (NOR) were revealed by means of general histological, tract tracing, and immunohistochemical methods in a marine teleost, the whitespotted greenling (Hexagrammos stelleri). Two types of cells in the NOR (M cell, L cell) were morphologically distinguishable from one another. The cell bodies of M cells were medium-size and fusiform, while those of L cells were large and ellipsoidal or irregular. M cells were located at the ventralmost region of the junction between the olfactory bulb and telencephalon, while L cells were scattered more rostrally along the ventromedial surface of the olfactory bulb. Following applications of HRP or Fluoro-Gold to the optic nerve, almost all M cells and about half of the L cells were labeled in the contralateral NOR. L cells showed strong immunoreactivities to gonadotropin releasing hormone (GnRH) and Phe-Met-Arg-Phe-NH2 (FMRFamide), whereas M cells showed only weak GnRH-immunoreactivity and no FMRFamide-immunoreactivity. Axons of L cells were detected in the optic nerve by means of GnRH- and FMRFamide-immunohistochemistry. The axons were concentrated in the myelinated edge (the oldest area) of the "ribbon" optic nerve. GnRH- and FMRFamide-immunoreactive fibers constituted a plexus at the junction between the inner nuclear layer and inner plexiform layer. The existence of two structurally separate classes of NOR cells suggests two functionally separate channels from the NOR to the retina.
Collapse
Affiliation(s)
- H Uchiyama
- Friday Harbor Laboratories, University of Washington 98250
| |
Collapse
|
25
|
Demski LS. Pathways for GnRH control of elasmobranch reproductive physiology and behavior. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/jez.1402520403] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|