1
|
Xie J, Kalwar Q, Yan P, Guo X. Expression and characterization of the serum proteome from yak induced into estrus by improved nutrition. Anim Biotechnol 2021; 33:930-940. [PMID: 33625304 DOI: 10.1080/10495398.2020.1853137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regulation of estrus plays a crucial role in the livestock industry. It is reported that providing better nutrition can induce early estrus in animals. However, little is known about the major endocrine and physiological mechanisms that could enhance estrus in anestrus animals. Hence in the current research two different groups of yaks, non-breeding season (February-June, NBS) estrus yaks as the experiment group and breeding season (July-September, BS) estrus animals as the control group were compared using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Study displayed that cold season supplementation significantly improved growth performance, serum biochemical indicators and reproductive hormone concentrations in yaks. We also identified 25 differentially expressed proteins in yak serum using iTRAQ proteomics. Go and KEGG analysis indicated that calcium signaling pathway and beta-alanine metabolism may be candidate pathways for seasonal estrus induced by nutrition. Differential protein expression was validated using parallel reaction monitoring (PRM). The results of this study initially identified A2M, IGF2, A1BG and APOA1 as candidate proteins for seasonal estrus induced by nutrition. Altogether, In conclusion, our results show that providing additional nutrients in the cold season can improve yak productivity and reproductive efficiency, and provide a new reference.
Collapse
Affiliation(s)
- Jianpeng Xie
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Zou Y, Gong P, Zhao W, Zhang J, Wu X, Xin C, Xiong Z, Li Z, Wu X, Wan Q, Li X, Chen J. Quantitative iTRAQ-based proteomic analysis of piperine protected cerebral ischemia/reperfusion injury in rat brain. Neurochem Int 2018; 124:51-61. [PMID: 30579855 DOI: 10.1016/j.neuint.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 01/15/2023]
Abstract
Piperine is the key bioactive factor in black pepper, and has been reported to alleviate cerebral ischemic injury. However, the mechanisms underlying its neuroprotective effects following cerebral ischemia remain unclear. In this study, rats were administered vehicle (dimethyl sulfoxide) or piperine, 20 mg/kg, daily for 14 days before focal cerebral artery occlusion. After occlusion for 2 h followed by reperfusion for 24 h. Histological examinations were used to assess whether piperine has a neuroprotective effect in the rat model of cerebral ischemia/reperfusion injury. The levels of proteins in the ischemic penumbra were evaluated by isobaric tags for relative and absolute quantitation-based proteomics. A total of 3687 proteins were identified, including 23 proteins that were highly significantly differentially expressed between the control and piperine groups. The proteomic findings were verified by immunofluorescence and western blot analysis. Interestingly, piperine administration downregulated a number of critical factors in the complement and coagulation cascades, including complement component 3, fibrinogen gamma chain, alpha-2-macroglobulin, and serpin family A member 1. Collectively, our findings suggest that the neuroprotective effects of piperine following cerebral ischemia/reperfusion injury are related to the regulation of the complement and coagulation cascades.
Collapse
Affiliation(s)
- Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaolin Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Can Xin
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhongwei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang Li
- Queensland Brain Institute of the University of Queensland, St Lucia, Queensland, Australia
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Department of Neurosurgery, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Wei Y, Zeng B, Zhang H, Chen C, Wu Y, Wang N, Wu Y, Shen L. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis. Int J Mol Sci 2016; 17:ijms17101644. [PMID: 27690006 PMCID: PMC5085677 DOI: 10.3390/ijms17101644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023] Open
Abstract
Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF) by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF). By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA). The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.
Collapse
Affiliation(s)
- Yan Wei
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Beibei Zeng
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Hua Zhang
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Cheng Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yanli Wu
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Nanlan Wang
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Yanqiu Wu
- Department of Environmental Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Zhao KW, Murray EJB, Murray SS. Fibroblastic synoviocytes secrete plasma proteins via α2 -macroglobulins serving as intracellular and extracellular chaperones. J Cell Biochem 2016; 116:2563-76. [PMID: 25900303 DOI: 10.1002/jcb.25201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
Changes in plasma protein levels in synovial fluid (SF) have been implicated in osteoarthritis and rheumatoid arthritis. It was previously thought that the presence of plasma proteins in SF reflected ultrafiltration or extravasation from the vasculature, possibly due to retraction of inflamed endothelial cells. Recent proteomic analyses have confirmed the abundant presence of plasma proteins in SF from control and arthritic patients. Systematic depletion of high-abundance plasma proteins from SF and conditioned media from synoviocytes cultured in serum, and protein analysis under denaturing/reducing conditions have limited our understanding of sources and the native structures of "plasma protein" complexes in SF. Using Western blotting, qPCR, and mass spectrometry, we found that Hig-82 lapine fibroblastic synovicytes cultured under serum-free conditions expressed and secreted plasma proteins, including the cytokine-binding protein secreted phosphoprotein 24 kDa (Spp24) and many of the proteases and protease inhibitors found in SF. Treating synoviocytes with TGF-β1 or BMP-2 for 24 h upregulated the expression of plasma proteins, including Spp24, α2 -HS-glycoprotein, α1 -antitrypsin, IGF-1, and C-reactive protein. Furthermore, many of the plasma proteins of mass <151 kDa were secreted as disulfide-bound complexes with members of the α2 -macroglobulin (A2M) family, which serve as intracellular and extracellular chaperones, not protease inhibitors. Using brefeldin A to block vesicular traffic and protease inhibitors to inhibit endogenous activation of naïve A2M, we demonstrated that the complexes were formed in the endoplasmic reticulum lumen and that Ca(2+) cysteine protease-dependent processes are involved.
Collapse
Affiliation(s)
- Ke-Wei Zhao
- Research Service (151), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, 91343
| | - Elsa J Brochmann Murray
- Geriatric Research, Education and Clinical Center (11E), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, 91343.,Department of Medicine, University of California, Los Angeles, California, 90095
| | - Samuel S Murray
- Geriatric Research, Education and Clinical Center (11E), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, 91343.,Department of Medicine, University of California, Los Angeles, California, 90095.,Interdepartmental Program in Biomedical Engineering, University of California, Los Angeles, California, 90095
| |
Collapse
|
5
|
Olausson P, Ghafouri B, Ghafouri N, Gerdle B. Specific proteins of the trapezius muscle correlate with pain intensity and sensitivity - an explorative multivariate proteomic study of the trapezius muscle in women with chronic widespread pain. J Pain Res 2016; 9:345-56. [PMID: 27330327 PMCID: PMC4898258 DOI: 10.2147/jpr.s102275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic widespread pain (CWP) including fibromyalgia syndrome (FMS) has a high prevalence and is associated with prominent negative consequences. CWP/FMS exhibits morphological and functional alterations in the central nervous system. The importance of peripheral factors for maintaining the central alterations are under debate. In this study, the proteins from biopsies of the trapezius muscle from 18 female CWP/FMS patients and 19 healthy female controls were analyzed. Pain intensity and pressure pain thresholds (PPT) over the trapezius muscles were registered. Twelve proteins representing five different groups of proteins were important regressors of pain intensity in CWP/FMS (R2=0.99; P<0.001). In the regression of PPT in CWP/FMS, it was found that 16 proteins representing six groups of proteins were significant regressors (R2=0.95, P<0.05). Many of the important proteins were stress and inflammation proteins, enzymes involved in metabolic pathways, and proteins associated with muscle damage, myopathies, and muscle recovery. The altered expression of these proteins may reflect both direct and indirect nociceptive/inflammatory processes as well as secondary changes. The relative importance of the identified proteins and central alterations in CWP need to be investigated in future research. Data from this and the previous study concerning the same cohorts give support to the suggestion that peripheral factors are of importance for maintaining pain aspects in CWP/FMS.
Collapse
Affiliation(s)
- Patrik Olausson
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Libby RP, Yafi FA, Anaissie J, Hellstrom WJG. Evaluation of collagenase Clostridium histolyticum for the treatment of Peyronie’s disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Federici Canova D, Pavlov AM, Norling LV, Gobbetti T, Brunelleschi S, Le Fauder P, Cenac N, Sukhorukov GB, Perretti M. Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response. J Control Release 2015; 217:284-92. [PMID: 26385167 PMCID: PMC4649706 DOI: 10.1016/j.jconrel.2015.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022]
Abstract
Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis.
Collapse
Affiliation(s)
- Donata Federici Canova
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Anton M Pavlov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom; Saratov State University, Saratov, Russia
| | - Lucy V Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | | | | - Nicolas Cenac
- INSERM UMR1043, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Gleb B Sukhorukov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
8
|
Chuang WH, Lee KK, Liu PC. Characterization of alpha-2-macroglobulin from groupers. FISH & SHELLFISH IMMUNOLOGY 2013; 35:389-398. [PMID: 23711467 DOI: 10.1016/j.fsi.2013.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Alpha-2-macroglobulin (α-2-M) is a protease inhibitor broadly present in the plasma of vertebrates and invertebrates, and is an important non-specific humoral factor in defence system of the animals. This study conducted the immuno-analysis and mass spectrometric analysis methods to investigate the characteristics of the protease inhibitor, α-2-M, among groupers and related species. Rabbit antiserum to the purified α-2-M of Epinephelus coioides was used in different immunological methods to determine the immune cross-reactions of the α-2-M in samples. Plasma of Epinephelus bruneus, Epinephelus fuscoguttatus, Epinephelus lanceolatus, and Epinephelus quoyanus exhibited high protease inhibitory activities by BAPNA-trypsin assay. To purify the α-2-M protein, plasma protein of grouper E. coioides was first precipitated by using PEG 6000, then Blue Sepharose 6 Fast Flow, DEAE Sephacel, Con A Separose 4B and Phenyl Sepharose High Performance columns were used on FPLC system for purification. The molecular mass of grouper plasma α-2-M was determined as a 180 kDa protein on non-reduced SDS-PAGE. In addition, it was determined as 97 and 80 kDa protein on reduced SDS-PAGE. Enzymatic and chemical deglycosylation of glycogen revealed that the contents of glycogen in 97 and 80 kDa subunits were 12.4% and 15%, respectively, and were all belonging to N-linked type. Only one precipitation arc was visualized in all plasma of Epinephelus spp. using the rabbit antiserum to the purified α-2-M of E. coioides, on crossed immunoelectrophoresis (CIE) gels. The plasma of Epinephelus spp. and seawater fish species showed stronger responses than freshwater fish species while that of other animal species showed no response by dot-blot assay. One single band was detected on Native PAGE-Western blotting assay, one single 180 kDa band was detected on non-reduced SDS-PAGE-Western blotting, and four bands (80, 97, 160, 250 kDa) were detected on reduced SDS-PAGE when various grouper plasma was performed respectivity. However, no band was detected using plasma from the freshwater fish species and other animal species. Thus, further indicates that the protein structure of α-2-M of Epinephelus spp. was closely related among seawater fish species. In addition the identity of the two subunits was identified using LC/MS/MS which was similar to α-2-M of grass carp (Ctenopharyngodon idella) and bluegill sunfish (Lepomis macrochirus) on the protein hit.
Collapse
Affiliation(s)
- Wen-Hsiao Chuang
- Department of Aquaculture, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202, Taiwan
| | | | | |
Collapse
|
9
|
Zhao KW, Murray SS, Murray EJB. Secreted phosphoprotein-24 kDa (Spp24) attenuates BMP-2-stimulated Smad 1/5 phosphorylation and alkaline phosphatase induction and was purified in a protective complex with alpha2 -Macroglobulins From Serum. J Cell Biochem 2013; 114:378-87. [PMID: 22949401 DOI: 10.1002/jcb.24376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023]
Abstract
Secreted phosphoprotein-24 kDa (Spp24) binds cytokines of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) superfamily and is one of the most abundant serum phosphoproteins synthesized by the liver. Little is known about how Spp24 binding affects BMP signal transduction and osteoblastic differentiation or how this labile protein is transported from the liver to remote tissues, such as bone. When Spp24 was administered to W-20-17 mesenchymal stem cells with rhBMP-2, short-term Smad1/5 phosphorylation was inhibited, intermediate-term alkaline phosphatase (ALP) induction was blunted, and long-term mineralization was unaffected. This supports the hypothesis that Spp24 proteolysis restricts the duration of its regulatory effects, but offers no insight into how Spp24 is transported intact from the liver to bone. When Spp24 was immunopurified from serum and subjected to native PAGE and Western blotting, a high molecular weight band of >500 kDa was found. Under reducing SDS-PAGE, a 24 kDa band corresponding to monomeric Spp24 was liberated, suggesting that Spp24 is bound to a complex linked by disulfide bonds. However, such a complex cannot be disrupted by 60 mM EDTA under non-reducing condition or in purification buffers containing 600 mM NaCl and 0.1% Tween-20 at pH 2.7-8.5. LC-MS/MS analysis of affinity-purified, non-reducing SDS-PAGE separated, and trypsin digested bands showed that the Spp24 was present in a complex with three α(2) -macroglobulins (α(2) -macroglobulin [α(2) M], pregnancy zone protein [PZP] and complement C3 [C3]), as well as ceruloplasmin and the protease inhibitor anti-thrombin III (Serpin C1), which may protect Spp24 from proteolysis.
Collapse
Affiliation(s)
- Ke-Wei Zhao
- Geriatric Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA
| | | | | |
Collapse
|
10
|
Bijttebier J, Tilleman K, Dhaenens M, Deforce D, Van Soom A, Maes D. Comparative proteome analysis of porcine follicular fluid and serum reveals that excessive alpha(2)-macroglobulin in serum hampers successful expansion of cumulus-oocyte complexes. Proteomics 2009; 9:4554-65. [PMID: 19688730 DOI: 10.1002/pmic.200900270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Porcine follicular fluid (pFF) constitutes the micro-environment of the maturing oocyte. Although pFF is a transudate of serum, in pigs, it is superior to serum in promoting in vitro expansion of the cumulus cells, a specialized cell population surrounding the oocyte. A comparative proteome analysis of autologous serum and pFF was performed to investigate proteins involved in successful cumulus expansion of porcine oocytes. iTRAQ labeling followed by 2-D LC ESI-Q-TOF MS/MS revealed 63 proteins common to both fluids of which the abundance of 13 proteins was significantly different (p<0.05). Seven proteins were more concentrated in serum whereas six proteins were more abundant in pFF. To investigate the importance of these proteins, the cumulus matrices of COCs were collected after in vitro maturation in media supplemented with either of both biologically fluids and then subjected to 2-D PAGE analysis. alpha(2)-Macroglobulin and CH4 and secrete domains of swine IgM, which were both less abundant in pFF, were absent from cumulus matrix extracts after in vitro maturation in pFF. Although both proteins were incorporated in the matrices of cumulus-oocyte complexes matured in serum, depletion of alpha(2)-macroglobulin from serum could significantly compensate for the impaired cumulus expansion of oocytes matured in serum.
Collapse
Affiliation(s)
- Jo Bijttebier
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
11
|
Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, Di Cesare PE, Goldring MB, Abramson SB, Liu CJ. Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage 2008; 16:1413-20. [PMID: 18485748 PMCID: PMC2574789 DOI: 10.1016/j.joca.2008.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/24/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE As we previously reported, ADAMTS-7 and ADAMTS-12, two members of ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family, degrade cartilage oligomeric matrix protein (COMP) in vitro and are significantly induced in the cartilage and synovium of arthritic patients [Liu CJ, Kong W, Ilalov K, Yu S, Xu K, Prazak L, et al. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J 2006;20(7):988-90; Liu CJ, Kong W, Xu K, Luan Y, Ilalov K, Sehgal B, et al. ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 2006;281(23):15800-8]. The purpose of this study was to determine (1) whether cleavage activity of ADAMTS-7 and ADAMTS-12 of COMP are associated with COMP degradation in osteoarthritis (OA); (2) whether alpha-2-macroglobulin (a(2)M) is a novel substrate for ADAMTS-7 and ADAMTS-12; and (3) whether a(2)M inhibits ADAMTS-7 or ADAMTS-12 cleavage of COMP. METHODS An in vitro digestion assay was used to examine the degradation of COMP by ADAMTS-7 and ADAMTS-12 in the cartilage of OA patients; in cartilage explants incubated with tumor necrosis factor-alpha (TNF-alpha) or interleukin-1-beta (IL-1beta) with or without blocking antibodies; and in human chondrocytes treated with specific small interfering RNA (siRNA) to knockdown ADAMTS-7 or/and ADAMTS-12. Digestion of a(2)M by ADAMTS-7 and ADAMTS-12 in vitro and the inhibition of ADAMTS-7 or ADAMTS-12-mediated digestion of COMP by a(2)M were also analyzed. RESULTS The molecular mass of the COMP fragments produced by either ADAMTS-7 or ADAMTS-12 were similar to those observed in OA patients. Specific blocking antibodies against ADAMTS-7 and ADAMTS-12 dramatically inhibited TNF-alpha- or IL-1beta-induced COMP degradation in the cultured cartilage explants. The suppression of ADAMTS-7 or ADAMTS-12 expression by siRNA silencing in the human chondrocytes also prevented TNF-alpha- or IL-1beta-induced COMP degradation. Both ADAMTS-7 and ADAMTS-12 were able to cleave a(2)M, giving rise to 180- and 105-kDa cleavage products, respectively. Furthermore, a(2)M inhibited both ADAMTS-7- and ADAMTS-12-mediated COMP degradation in a concentration (or dose)-dependent manner. CONCLUSION Our observations demonstrate the importance of COMP degradation by ADAMTS-7 and ADAMTS-12 in vivo. Furthermore, a(2)M is a novel substrate for ADAMTS-7 and ADAMTS-12. More significantly, a(2)M represents the first endogenous inhibitor of ADAMTS-7 and ADAMTS-12.
Collapse
Affiliation(s)
- Y Luan
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hopkins DR, Keles S, Greenspan DS. The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol 2007; 26:508-23. [PMID: 17560775 PMCID: PMC2722432 DOI: 10.1016/j.matbio.2007.05.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 01/14/2023]
Abstract
A decade ago, bone morphogenetic protein 1 (BMP1) was shown to provide the activity necessary for proteolytic removal of the C-propeptides of procollagens I-III: precursors of the major fibrillar collagens. Subsequent studies have shown BMP1 to be the prototype of a small group of extracellular metalloproteinases that play manifold roles in regulating formation of the extracellular matrix (ECM). Soon after initial cloning of BMP1, genetic studies showed the related Drosophila proteinase Tolloid (TLD) to be necessary for the formation of the dorsal-ventral axis in early embryogenesis. It is now clear that the BMP1/TLD-like proteinases, conserved in species ranging from Drosophila to humans, act in dorsal-ventral patterning via activation of transforming growth factor beta (TGFbeta)-like proteins BMP2, BMP4 (vertebrates) and decapentaplegic (arthropods). More recently, it has become apparent that the BMP1/TLD-like proteinases are activators of a broader subset of the TGFbeta superfamily of proteins, with implications that these proteinases may be key in orchestrating the formation of ECM with growth factor activation and BMP signaling in morphogenetic processes.
Collapse
Affiliation(s)
- Delana R. Hopkins
- Program in Molecular and Cellular Pharmacology, University of Wisconsin, Madison, WI 53706, USA
| | - Sunduz Keles
- Departments of Statistics, Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel S. Greenspan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin, Madison, WI 53706, USA
- Departments of Pathology and Laboratory Medicine and Pharmacology, University of Wisconsin, Madison, WI 53706, USA
- Corresponding author. Department of Pathology and Laboratory Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA. Tel.: +1 608 262 4676; fax: +1 608 262 6691. E-mail address: (D.S. Greenspan)
| |
Collapse
|
13
|
Zhang Y, Ge G, Greenspan DS. Inhibition of Bone Morphogenetic Protein 1 by Native and Altered Forms of α2-Macroglobulin. J Biol Chem 2006; 281:39096-104. [PMID: 17071617 DOI: 10.1074/jbc.m601362200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four mammalian bone morphogenetic protein 1 (BMP1)-like proteinases act to proteolytically convert procollagens to the major fibrous components of the extracellular matrix. They also activate lysyl oxidase, an enzyme necessary to the covalent cross-linking that gives collagen fibrils much of their tensile strength. Thus, these four proteinases are attractive targets for interventions designed to limit the excess formation of fibrous collagenous matrix that characterizes fibrosis. Although it has previously been reported that the serum protein alpha(2)-macroglobulin is unable to inhibit the astacin-like proteinases meprin alpha and meprin beta, we herein demonstrate alpha(2)-macroglobulin to be a potent inhibitor of the similar BMP1-like proteinases. BMP1 is shown to cleave the alpha(2)-macroglobulin "bait" region, at a single specific site, which resembles the sites at which BMP1-like proteinases cleave the C-propeptides of procollagens I-III. alpha(2)-Macroglobulin is an irreversible inhibitor that is shown to bind bone morphogenetic protein 1 in a covalent complex. It is also demonstrated that genetically modified alpha(2)-macroglobulin, in which the native bait region is replaced by sequences flanking the probiglycan BMP1 cleavage site, is enhanced approximately 24-fold in its ability to inhibit BMP1, and is capable of inhibiting the biosynthetic processing of procollagen I by cells. These findings suggest possible therapeutic interventions involving ectopic expression of modified versions of alpha(2)-macroglobulin in the treatment of fibrotic conditions.
Collapse
Affiliation(s)
- Yue Zhang
- Program in Cellular and Molecular Biology, the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
14
|
Tseng YL, Wu WB, Hsu CC, Peng HC, Huang TF. Inhibitory effects of human α2-macroglobulin and mouse serum on the PSGL-1 and glycoprotein Ib proteolysis by a snake venom metalloproteinase, triflamp. Toxicon 2004; 43:769-77. [PMID: 15284011 DOI: 10.1016/j.toxicon.2004.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/05/2004] [Accepted: 03/08/2004] [Indexed: 11/27/2022]
Abstract
Triflamp, a 28 kDa snake venom metalloproteinase purified from the venom of Trimeresurus flavoviridis, possesses the proteolytic activities toward P-selectin glycoprotein ligand-1 (PSGL-1), glycoprotein Ib (GPIb) and fibrinogen. In human whole blood preparation, however, triflamp (6 microg/ml) failed to cleave neutrophil PSGL-1 and platelet GPIb. Human alpha2-macroglobulin (alpha2M) was mainly responsible for the neutralization of the proteolytic effects of triflamp on PSGL-1, GPIb and fibrinogen. Human alpha2M neutralized triflamp at a stoichiometry about 1.1:1 (molar basis) determined by azocaseinolysis. SDS-PAGE analysis revealed that triflamp cleaved the bait-region of alpha2M. Western blot demonstrated that triflamp interacted with the C-terminal half-subunits of truncated alpha2M resulting in the formation of high-molecular-weight species of alpha2M-triflamp complexes. In the presence of competing nucleophile, 0.2 M methylamine, the proteolytic activity of triflamp was conserved. In vivo we found that mice neutrophils were resistant to the cleavage of PSGL-1 by triflamp. However, mouse PSGL-1 and GPIb were susceptible to be cleaved by triflamp in washed mouse neutrophil and platelet preparation, respectively. Similarly, mouse serum was also responsible for the inactivation of the proteolytic activity of triflamp. This study provides direct evidences for the reasonable explanation regarding the reduced proteolytic activity of triflamp toward its substrates in whole blood preparation and in vivo model.
Collapse
Affiliation(s)
- Yu-Lun Tseng
- Department of Pharmacology, College of Medicine, National Taiwan University, No.1. Sec. 1, Jen-Ai Rd, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Ireland JLH, Jimenez-Krassel F, Winn ME, Burns DS, Ireland JJ. Evidence for autocrine or paracrine roles of alpha2-macroglobulin in regulation of estradiol production by granulosa cells and development of dominant follicles. Endocrinology 2004; 145:2784-94. [PMID: 15001551 DOI: 10.1210/en.2003-1407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha(2)-Macroglobulin (alpha(2)-M) inhibits proteinases and modulates the actions of growth factors and cytokines. Despite the key roles proteinases, growth factors, and cytokines have in folliculogenesis, the role of alpha(2)-M in follicular development is unknown. Our objectives were to: 1) determine whether granulosa cells produce alpha(2)-M and have alpha(2)-M receptors, 2) examine the effect of alpha(2)-M on estradiol production by granulosa cells, 3) establish whether amounts of alpha(2)-M and alpha(2)-M receptors were altered during dominant nonovulatory follicle development, and 4) examine alpha(2)-M's mechanism of action. The results demonstrated that bovine granulosa cells contain 5.2- and 15-kb mRNAs and 720- and 500-kDa proteins that correspond, respectively, to sizes of mRNAs and proteins for alpha(2)-M and the alpha(2)-M receptor. Treatment of granulosa cells with alpha(2)-M resulted in a specific dose-responsive increase in estradiol production. Cell viability, cell number, and the amount of aromatase in granulosa cells were not altered by alpha(2)-M. Treatment of granulosa cells with factors that bind alpha(2)-M or its receptor did not mimic alpha(2)-M action. Although intrafollicular amounts of alpha(2)-M remained unchanged, amounts of alpha(2)-M receptor in granulosa cells were strongly inversely associated with concentrations of estradiol in dominant and subordinate follicles. Based on these results, we concluded that alpha(2)-M may have autocrine or paracrine roles in granulosa cells potentially important for regulation of estradiol production and development of dominant follicles.
Collapse
Affiliation(s)
- J L H Ireland
- Molecular Reproductive Endocrinology Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824-1225, USA.
| | | | | | | | | |
Collapse
|
16
|
Garlisi CG, Zou J, Devito KE, Tian F, Zhu FX, Liu J, Shah H, Wan Y, Motasim Billah M, Egan RW, Umland SP. Human ADAM33: protein maturation and localization. Biochem Biophys Res Commun 2003; 301:35-43. [PMID: 12535637 DOI: 10.1016/s0006-291x(02)02976-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADAM33 (a disintegrin and metalloprotease) was recently found to be a novel asthma susceptibility gene. Domain-specific antibodies were used to study its expression and processing. When the pro-domain and catalytic domain were expressed by a stable-transfected cell line, the pro-domain was removed by cleavage within a putative furin cleavage site. The catalytic domain was active in an alpha(2)-macroglobulin complex formation assay and mutation of the catalytic site glutamic acid (E346A) eliminated activity. In transient transfections using the full-length protein, a pro-form and mature form were detectable and alternate glycosylation was demonstrated at sites within the catalytic domain. ADAM33 was detected on the cell surface, with the majority of protein detected intracellularly. The E346A mutation had no significant effect on protein processing. Endogenous ADAM33 was detected in bronchus tissue, bronchial smooth muscle cells, and MRC-5 fibroblasts, consistent with a role in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Charles G Garlisi
- Allergy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wei P, Zhao YG, Zhuang L, Hurst DR, Ruben S, Sang QXA. Protein engineering and properties of human metalloproteinase and thrombospondin 1. Biochem Biophys Res Commun 2002; 293:478-88. [PMID: 12054626 DOI: 10.1016/s0006-291x(02)00255-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This work generated many truncated proteins and Glu(385) to Ala (E(385)/A) mutants of the human metalloproteinase and thrombospondin 1 (METH-1 or ADAMTS1) and specific antibodies. METH-1 was an active endopeptidase and both the metalloproteinase and the disintegrin/cysteine-rich domains were required for the proteinase activity. A point mutation at the zinc-binding site (E(385)/A) abolished the catalytic activity. METH-1 protein function may be modulated through proteolytic cleavage at multiple sites. One 135 kDa species had an NH(2)-terminal sequence of L(33)GRPSEEDEE. A species at 115 kDa and some other protein bands began with F(236)VSSHRYV(243), indicating that METH-1 proenzyme might be activated by a proprotein convertase such as furin by cleaving the R(235)-F(236) peptide bond. This cleavage was not an autocatalytic process since the E(385)/A mutants were also processed. Furthermore, a 52 kDa band with an NH(2)-terminal sequence of L(800)KEPLTIQV resulted from the digestion between the first and the second thrombospondin 1-like motifs in the spacer region of the extracellular matrix-binding domains.
Collapse
Affiliation(s)
- Ping Wei
- Human Genome Sciences Inc., Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
18
|
Qazi U, Kolodziej SJ, Gettins PG, Stoops JK. The structure of the C949S mutant human alpha(2)-macroglobulin demonstrates the critical role of the internal thiol esters in its proteinase-entrapping structural transformation. J Struct Biol 2000; 131:19-26. [PMID: 10945966 DOI: 10.1006/jsbi.2000.4269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional reconstruction of a protein-engineered mutant alpha(2)-macroglobulin (alpha(2)M) in which a serine residue was substituted for the cysteine 949 (C949S), making it unable to form internal thiol ester moieties, was compared with native and methylamine-transformed alpha(2)Ms. The native alpha(2)M structure consists of two oppositely oriented Z-shaped strands. Thiol ester cleavage following an encounter with a proteinase or a nucleophilic attack by methylamine causes a structural transformation in which the strands assume an opposite handedness and a significant portion of the protein density migrates from the distal ends of the molecule toward the center. The C949S mutant showed a protein density distribution very similar to that of transformed alpha(2)M, with a compact central region of protein density connected to two receptor-binding arms on each end of the molecule. Since no particle shapes characteristic of native or half-transformed alpha(2)Ms were seen in electron micrographs and the C949S mutant and alpha(2)M-methylamine structures are highly similar, we conclude that the intact thiol esters maintain native alpha(2)M in a quasi-stable state. In their absence, alpha(2)M folds into the more stable transformed structure, which displays the functionally important receptor-binding domains and contains the proteinase-entrapping internal cavity.
Collapse
Affiliation(s)
- U Qazi
- Dept. of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Walter M, Sutton RM, Schechter NM. Highly efficient inhibition of human chymase by alpha(2)-macroglobulin. Arch Biochem Biophys 1999; 368:276-84. [PMID: 10441378 DOI: 10.1006/abbi.1999.1309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inhibition of human chymase by the protease inhibitor alpha(2)-macroglobulin (alpha2M) was investigated. Titration of chymase hydrolytic activity with purified alpha2M showed that approximately 1 mol of alpha2M tetramer inhibits 1 mol of chymase. Inhibition was associated with cleavage of the alpha2M bait region and formation of a 200-kDa covalent complex. NH(2)-terminal sequencing of chymase-treated alpha2M revealed cleavage at bonds Phe684-Tyr685 and Tyr685-Glu686 of the bait region. alpha2M pretreated with methylamine, an inactivator of alpha2M, did not inhibit chymase. The apparent second-order rate constant for inhibition (k(ass)) was 5 x 10(6) M(-1) s(-1), making alpha2M the most efficient natural protein protease inhibitor of chymase so far described. The k(ass) value for inhibition was decreased approximately 10-fold by addition of heparin, a glycosaminoglycan produced by mast cells that binds to chymase. Heparin did not change significantly the stoichiometry of inhibition or block covalent complex formation. These results indicate that alpha2M is an important inhibitor to consider in the regulation of human chymase.
Collapse
Affiliation(s)
- M Walter
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | |
Collapse
|
20
|
Kuno K, Terashima Y, Matsushima K. ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix. J Biol Chem 1999; 274:18821-6. [PMID: 10373500 DOI: 10.1074/jbc.274.26.18821] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.
Collapse
Affiliation(s)
- K Kuno
- Department of Molecular Pharmacology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan.
| | | | | |
Collapse
|
21
|
Loechel F, Overgaard MT, Oxvig C, Albrechtsen R, Wewer UM. Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J Biol Chem 1999; 274:13427-33. [PMID: 10224107 DOI: 10.1074/jbc.274.19.13427] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins that are believed to play key roles in cell-cell and cell-matrix interactions. We have shown recently that human ADAM 12-S (meltrin alpha) is an active metalloprotease. It is synthesized as a zymogen, with the prodomain maintaining the protease in a latent form. We now provide evidence that the latency mechanism of ADAM 12 can be explained by the cysteine switch model, in which coordination of Zn2+ in the active site of the catalytic domain by a cysteine residue in the prodomain is critical for inhibition of the protease. Replacing Cys179 with other amino acids results in an ADAM 12 proform that is proteolytically active, but latency can be restored by placing cysteine at other positions in the propeptide. None of the amino acids adjacent to the crucial cysteine residue is essential for blocking activity of the protease domain. In addition to its latency function, the prodomain is required for exit of ADAM 12 protease from the endoplasmic reticulum. Tissue inhibitor of metalloprotease-1, -2, and -3 were not found to block proteolytic activity of ADAM 12, hence a physiological inhibitor of ADAM 12 protease in the extracellular environment remains to be identified.
Collapse
Affiliation(s)
- F Loechel
- Institute of Molecular Pathology, University of Copenhagen, Copenhagen DK-2100, Denmark DK-8000, USA
| | | | | | | | | |
Collapse
|
22
|
Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM. Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem 1998; 273:16993-7. [PMID: 9642263 DOI: 10.1074/jbc.273.27.16993] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins with structural homology to snake venom metalloproteases. We recently described the cloning and sequencing of human ADAM 12 (meltrin alpha). In this report we provide evidence that the metalloprotease domain of ADAM 12 is catalytically active. We used the trapping mechanism of alpha2-macroglobulin to assay for protease activity of wild-type and mutant ADAM 12 proteins produced in a COS cell transfection system. We found that ADAM 12 is synthesized as a zymogen, with the prodomain maintaining the metalloprotease in a latent form, probably by means of a cysteine switch. The zymogen could be activated chemically by alkylation with N-ethylmaleimide. Cleavage of the prodomain at a site for a furin-like endopeptidase resulted in an ADAM 12 protein with proteolytic activity. The protease activity was sensitive to inhibition by 1,10-phenanthroline and could be eliminated by mutation of the critical glutamate residue at the active site. The demonstration that the ADAM 12 metalloprotease domain is functional may have important implications for future studies that explore the role of ADAM 12 protein in development and disease.
Collapse
Affiliation(s)
- F Loechel
- Institute of Molecular Pathology, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
23
|
Grinnell F, Zhu M, Parks WC. Collagenase-1 complexes with alpha2-macroglobulin in the acute and chronic wound environments. J Invest Dermatol 1998; 110:771-6. [PMID: 9579544 DOI: 10.1046/j.1523-1747.1998.00192.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to examine the appearance and activation of collagenase-1 (MMP-1) in the wound environment. We found that MMP-1 accumulates in the fluid phase of the burn wound environment within 2 d of injury and reaches maximal levels by day 4. Two forms of the enzyme were evident; one that corresponded to proMMP-1 and another that corresponded to a group of high molecular mass (approximately 200 kDa and >200 kDa doublet) MMP-1 containing complexes. ProMMP-1 and MMP-1 containing complexes also occurred in wound fluid from venous stasis ulcers, but neither was detected in mastectomy fluid or in plasma. Levels of the proteinase inhibitor alpha2-macroglobulin in burn fluid and chronic ulcer wound fluid were almost as high as in plasma, and the high molecular mass MMP-1 containing complexes in burn fluid appeared to result from binding between alpha2-macroglobulin and activated MMP-1. These observations provide direct evidence that active MMP-1 in the fluid phase of the wound environment becomes complexed to alpha2-macroglobulin.
Collapse
Affiliation(s)
- F Grinnell
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | |
Collapse
|
24
|
Mazzoni IE, Kenigsberg RL. Transforming growth factor-alpha's effects on astroglial-cholinergic cell interactions in the medial septal area in vitro are mediated by alpha 2-macroglobulin. Neuroscience 1997; 81:1019-30. [PMID: 9330364 DOI: 10.1016/s0306-4522(97)00242-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We reported previously that two epidermal growth factor receptor ligands, epidermal growth factor and transforming growth factor-alpha, inhibit medial septal cholinergic cell phenotypic expression (choline acetyltransferase and acetylcholinesterase activities) in vitro indirectly via (a) soluble molecule(s) released from astrocytes [Kenigsberg R. L. et al. (1992) Neuroscience 50, 85-97; Kenigsberg R. L. and Mazzoni I. E. (1995) J. Neurosci. Res. 41, 734-744; Mazzoni I. E. and Kenigsberg R. L. (1996) Brain Res. 707, 88-99]. In the present study, we found that this response to transforming growth factor-alpha is mediated, for the most part, by alpha 2-macroglobulin, a potent protease inhibitor with a wide spectrum of biological activities. In this regard, the effects of transforming growth factor-alpha on cholinergic cells can be blocked with immunoneutralizing antibodies raised against alpha 2-macroglobulin. Furthermore, western blot analysis reveals that although alpha 2-macroglobulin is present in conditioned media from control septal cultures, it is more abundant in those treated with transforming growth factor-alpha. In addition, exogenous alpha 2-macroglobulin, both in its native and trypsin-activated forms, can mimic transforming growth factor-alpha's effects on septal cholinergic cell expression. However, while the native antiprotease can slightly but significantly decrease choline acetyltransferase activity, trypsin-activated alpha 2-macroglobulin, in the nanomolar range, induces as marked a decrease in this enzyme activity as that noted with transforming growth factor-alpha. Furthermore, trypsin-activated alpha 2-macroglobulin, like epidermal growth factor/transforming growth factor-alpha, decreases choline acetyltransferase activity by arresting its spontaneous increase that occurs with time in culture, does so in a reversible manner and is not neurotoxic. In addition, trypsin-activated alpha 2-macroglobulin, in the nanomolar range, can affect choline acetyltransferase in a dual manner, up-regulating it at low concentrations while down-regulating it at higher ones. These responses are identical in mixed neuronal-glial and pure neuronal septal cultures. Furthermore, when concentrations of trypsin-activated alpha 2-macroglobulin, which alone decrease choline acetyltransferase, are added simultaneously with nerve growth factor, they serve to potentiate the nerve growth factor-induced increase in enzymatic activity. As GABAergic cell expression is not affected by alpha 2-macroglobulin, it appears that the effects of this protease inhibitor on medial septal neuronal expression are neurotransmitter-specific. Finally, trypsin-activated but not native alpha 2-macroglobulin promotes a dose-dependent aggregation of the septal neurons. This change in morphology, however, is not related to those noted in choline acetyltransferase activity. In summary, these data suggest that the expression of alpha 2-macroglobulin in astroglia from the medial septal nucleus can be controlled by epidermal growth factor receptor ligands to impact the functioning of basal forebrain cholinergic neurons.
Collapse
Affiliation(s)
- I E Mazzoni
- Centre de Recherche, Hôpital Ste-Justine, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Pemberton AD, Belham CM, Huntley JF, Plevin R, Miller HR. Sheep mast cell proteinase-1, a serine proteinase with both tryptase- and chymase-like properties, is inhibited by plasma proteinase inhibitors and is mitogenic for bovine pulmonary artery fibroblasts. Biochem J 1997; 323 ( Pt 3):719-25. [PMID: 9169605 PMCID: PMC1218375 DOI: 10.1042/bj3230719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sheep mast cell proteinase-1 (sMCP-1), a serine proteinase with dual chymase/tryptase activity, is expressed in gastrointestinal mast cells, and released systemically and on to the mucosal surface during gastrointestinal nematode infection. The potential for native plasma proteinase inhibitors to control sMCP-1 activity was investigated. Sheep alpha1-proteinase inhibitor (alpha1PI) inhibited sMCP-1 slowly, with second-order association rate constant (kass) 1. 1x10(3) M-1.s-1, whereas sheep contrapsin inhibited trypsin (kass 2.2x10(6) M-1.s-1) but not sMCP-1. Western-blot analysis and gel filtration showed that when added to serum or plasma, sMCP-1 was partitioned between alpha1PI and alpha2-macroglobulin. The possibility that significant cleavage of plasma proteins could occur before sMCP-1 was inhibited was investigated using gel filtration and SDS/PAGE after adding sMCP-1 to plasma. Cleavage of ovine fibrinogen occurred in the presence of excess alpha1PI and alpha2-macroglobulin, the alpha-chain being cleaved C-terminally and the beta-chain at the putative Lys-27. In addition, sMCP-1 was found to be mitogenic for bovine pulmonary artery fibroblasts, but was not mitogenic in the presence of soya-bean trypsin inhibitor. In terms of fibrinogen cleavage and fibroblast stimulation, sMCP-1 shows functional similarities to mast cell tryptase.
Collapse
Affiliation(s)
- A D Pemberton
- Department of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Veterinary Field Station, Easter Bush, Roslin, Midlothian EH25 9RG, Scotland, U.K
| | | | | | | | | |
Collapse
|
26
|
Ren XD, Dodds AW, Enghild JJ, Chu CT, Law SK. The effect of residue 1106 on the thioester-mediated covalent binding reaction of human complement protein C4 and the monomeric rat alpha-macroglobulin alpha 1 I3. FEBS Lett 1995; 368:87-91. [PMID: 7542207 DOI: 10.1016/0014-5793(95)00606-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The histidine at position 1106 of the C4B isotype of human complement is involved in catalyzing the covalent binding of the thioester to glycerol and water. By replacing the histidine with other residues, it was found that tyrosine is also capable of mediating the reaction. We propose that they act as nucleophiles by first attacking the thioester, upon activation, to form acyl intermediates, which subsequently react with the hydroxyl groups of glycerol or water. The monomeric alpha-macroglobulin, alpha 1I3 of the rat, was also studied. Unlike alpha 2-macroglobulin, which is a tetramer, alpha 1I3 has binding properties similar to those of C4A.
Collapse
Affiliation(s)
- X D Ren
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|