1
|
Kowalski S, Wityk P, Raczak-Gutknecht J, Olszewska A, Żmijewski M, Kocić I. The imidazoline I 2 receptor agonist 2-BFI enhances cytotoxic activity of hydroxychloroquine by modulating oxidative stress, energy-related metabolism and autophagic influx in human colorectal adenocarcinoma cell lines. Eur J Pharmacol 2025; 996:177590. [PMID: 40185322 DOI: 10.1016/j.ejphar.2025.177590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Recently, interest in imidazoline receptors (IRs) has been increasing. Over the years, a growing number of studies have highlighted the therapeutic potential of ligands targeting these receptors, however, the potential role of imidazoline I2 receptor agonists in cancer treatment has not been thoroughly investigated. Colorectal cancer (CRC) is among the most prevalent and lethal forms of cancer worldwide. The complexity of CRC necessitates individualized approaches. One promising area of research within CRC therapy is the regulation of autophagy. Recent studies have explored the relationship between autophagy and cancer progression, revealing that autophagy modulation could be a potential strategy for CRC treatment. However, the mechanisms underlying autophagy regulation remain poorly understood. This study aimed to evaluate the effect of the imidazoline I2 receptor agonist, namely 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI), on colorectal cancer cells, HT-29 and HCT-116 cell lines, particularly its impact when co-incubated with the autophagy inhibitor, hydroxychloroquine (HCQ). The results showed that 2-BFI synergistically increased the cytotoxic effect of HCQ by inducing oxidative stress and apoptosis. Furthermore, our investigation indicated impairment autophagic influx in colon cancer cells treated by 2-BFI. The comprehensive metabolomic analysis revealed significant alterations in key metabolic pathways including MAO activity, oxidative stress responses, energy-related metabolites and amino acids metabolism. Altogether, these findings demonstrate potential a new therapeutic strategy based on autophagy regulation and the selective induction of oxidative stress in colorectal cancer cells. Moreover, this study provides a foundation for further investigation into the therapeutic potential of imidazoline receptor agonists in cancer therapy.
Collapse
Affiliation(s)
- Szymon Kowalski
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Paweł Wityk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland; Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| | - Anna Olszewska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Mirzaei N, Mota BC, Birch AM, Davis N, Romero-Molina C, Katsouri L, Palmer EOC, Golbano A, Riggall LJ, Nagy I, Tyacke R, Nutt DJ, Sastre M. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer's disease. Br J Pharmacol 2020; 178:654-671. [PMID: 33140839 DOI: 10.1111/bph.15312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1β and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-β (Aβ)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Amy M Birch
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carmen Romero-Molina
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Loukia Katsouri
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Arantxa Golbano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura J Riggall
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Istvan Nagy
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Robin Tyacke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
3
|
Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol Rev 2020; 72:50-79. [PMID: 31819014 DOI: 10.1124/pr.118.016311] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I1, I2, and I3) have been proposed and the understanding of each has seen differing progress over the decades. I1 receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I1/α 2-adrenoceptor selectivity. Newer I1 receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride] have little to no activity on α 2-adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I2 receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I2 receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I2 receptor agonist, CR4056 [2-phenyl-6-(1H-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I2 receptor-based first-in-class nonopioid analgesic. The understanding of I3 receptors is relatively limited. Existing data suggest that I3 receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic β-cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I1 and I2) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.
Collapse
Affiliation(s)
- Pascal Bousquet
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Alan Hudson
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jesús A García-Sevilla
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jun-Xu Li
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| |
Collapse
|
4
|
Milne B, Jhamandas K, Sutak M, Grenier P, Cahill CM. Stereo-selective inhibition of spinal morphine tolerance and hyperalgesia by an ultra-low dose of the alpha-2-adrenoceptor antagonist efaroxan. Eur J Pharmacol 2013; 702:227-34. [DOI: 10.1016/j.ejphar.2013.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
5
|
Belujon P, Bezard E, Taupignon A, Bioulac B, Benazzouz A. Noradrenergic modulation of subthalamic nucleus activity: behavioral and electrophysiological evidence in intact and 6-hydroxydopamine-lesioned rats. J Neurosci 2007; 27:9595-606. [PMID: 17804620 PMCID: PMC6672980 DOI: 10.1523/jneurosci.2583-07.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) plays a key role in the pathophysiology of Parkinson's disease. The modulation of the STN by norepinephrine, however, is unknown. The present study aims at characterizing the effects of systemic administration of noradrenergic agents on locomotor activity and on in vivo extracellularly recorded STN neuronal activity in intact and 6-hydroxydopamine (6-OHDA)-lesioned rats. Using selective agonists and antagonists of alpha1 and alpha2 adrenergic receptors (ARs), we show that STN neurons have functional alpha1- and alpha2-AR controlling STN firing with an impact on locomotor activity. We further demonstrate that those systemic effects are supported, at least in part, by a direct modulation of STN neuronal activity, using patch-clamp recordings of STN neurons in brain slices. These findings support the premise that hypokinesia is associated with an increased STN neuronal activity, and that improvements of parkinsonian motor abnormalities are associated with a decrease in STN activity. Our data challenge assumptions about the role of alpha1-AR and alpha2-AR in the regulation of STN neurons in both intact and 6-OHDA-lesioned rats and further ground the rationale for using alpha2-AR noradrenergic antagonists in Parkinson's disease, albeit via an unexpected mechanism.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Behavior, Animal/drug effects
- Electrophysiology
- Hypokinesia/chemically induced
- Hypokinesia/physiopathology
- Immunohistochemistry
- Male
- Medial Forebrain Bundle/drug effects
- Motor Activity/drug effects
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Organ Culture Techniques
- Oxidopamine
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/physiopathology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Subthalamic Nucleus/drug effects
- Subthalamic Nucleus/metabolism
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Pauline Belujon
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, Université Victor Segalen, 33076 Bordeaux Cedex, France
| | - Erwan Bezard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, Université Victor Segalen, 33076 Bordeaux Cedex, France
| | - Anne Taupignon
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, Université Victor Segalen, 33076 Bordeaux Cedex, France
| | - Bernard Bioulac
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, Université Victor Segalen, 33076 Bordeaux Cedex, France
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, Université Victor Segalen, 33076 Bordeaux Cedex, France
| |
Collapse
|
6
|
Tanabe M, Kino Y, Honda M, Ono H. Presynaptic I1-imidazoline receptors reduce GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 2006; 26:1795-802. [PMID: 16467528 PMCID: PMC6793622 DOI: 10.1523/jneurosci.4642-05.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Imidazoline receptors are expressed widely in the CNS. In the present study, whole-cell patch-clamp recordings were made from medium spiny neurons in dorsal striatum slices from the rat brain, and the roles of I1-imidazoline receptors in the modulation of synaptic transmission were studied. Moxonidine, an I1-imidazoline receptor agonist, decreased the GABAA receptor-mediated IPSCs in a concentration-dependent manner. However, glutamate-mediated EPSCs were hardly affected. The depression of IPSCs by moxonidine was antagonized by either idazoxan or efaroxan, which are both imidazoline receptor antagonists containing an imidazoline moiety. In contrast, yohimbine and SKF86466 (6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine), which are alpha2-adrenergic receptor antagonists with no affinity for imidazoline receptors, did not affect the moxonidine-induced inhibition of IPSCs. Moxonidine increased the paired-pulse ratio and reduced the frequency of miniature IPSCs without affecting their amplitude, indicating that this agent inhibits IPSCs via presynaptic mechanisms. Moreover, the sulfhydryl alkylating agent N-ethylmaleimide (NEM) significantly reduced the moxonidine-induced inhibition of IPSCs. Thus, the activation of presynaptic I1-imidazoline receptors decreases GABA-mediated inhibition of medium spiny neurons in the striatum, in which NEM-sensitive proteins such as G(i/o)-type G-proteins play an essential role. The adenylate cyclase activator forskolin partly opposed IPSC inhibition elicited by subsequently applied moxonidine. Furthermore, the protein kinase C (PKC) activator phorbol 12,13-dibutyrate attenuated and the PKC inhibitor chelerythrine potentiated the moxonidine-induced inhibition of IPSCs. These results suggest that IPSC inhibition via presynaptic I1-imidazoline receptors involves intracellular adenylate cyclase activity and is influenced by static PKC activity in the striatum.
Collapse
Affiliation(s)
- Mitsuo Tanabe
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | | | | | | |
Collapse
|
7
|
Chopin P, Colpaert FC, Marien M. Effects of acute and subchronic administration of dexefaroxan, an alpha(2)-adrenoceptor antagonist, on memory performance in young adult and aged rodents. J Pharmacol Exp Ther 2002; 301:187-96. [PMID: 11907173 DOI: 10.1124/jpet.301.1.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the influence of dexefaroxan, a potent and selective alpha(2)-adrenoceptor antagonist, on cognitive performance in rodents. In young adult rats, dexefaroxan reversed the deficits induced by UK 14304 [5-bromo-N-(4,5-dihydro-1-H-imidazol-2-yl)-6-quinoxalinamine], scopolamine, and diazepam in a passive avoidance task. In this test, dexefaroxan also attenuated the spontaneous forgetting induced by a 15-week training-testing interval. Moreover, dexefaroxan, given immediately after training, increased the memory performance of rats trained with a weak electric footshock in the passive avoidance test, facilitated spatial memory processes in the Morris water maze task in rats, and increased the performance of mice in an object recognition test. Thus, dexefaroxan appears to have a promnesic effect in these tests by facilitating the processes of memory retention, rather than acquisition or other noncognitive influences. The facilitatory effects of dexefaroxan in young adult rats persisted even after a 21- to 25-day constant subcutaneous infusion by using osmotic minipumps, indicating that tolerance to the promnesic effect of the drug did not occur during this prolonged treatment interval. Furthermore, in the passive avoidance and Morris water maze tests, dexefaroxan ameliorated the age-related memory deficits of 24-month-old rats to a level that was comparable to that of young adult animals, and reversed the memory deficits induced by excitotoxin lesions of the nucleus basalis magnocellularis region. Together, these findings support a potential utility of dexefaroxan in the treatment of cognitive deficits occurring in Alzheimer's disease.
Collapse
|