1
|
Fuhr A, Roediger R, Simelitidis M, Gamper-Tsigaras J, Templin M, Kormann M, Antkowiak B, Rudolph U, Köhler D, Rosenberger P, Ngamsri KC, Konrad FM. Regulation of neutrophil migration in acute pulmonary inflammation by extraneuronal α1 gamma-aminobutyric acid A receptors. Cell Death Dis 2025; 16:313. [PMID: 40251174 PMCID: PMC12008292 DOI: 10.1038/s41419-025-07488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 04/20/2025]
Abstract
Acute pulmonary inflammation is a common disease on intensive care. Due to the lack of specific treatments, lethality is still very high. The ionotropic GABAA-receptors are known from the central nervous system (CNS) and have recently been detected in the lung. These receptors have been shown to influence inflammatory processes. Opposing data has been reported, where both, GABA site agonists and antagonists achieved anti-inflammatory effects. The distribution of the 19 known GABAA-receptor subunits (α1-6, β1-3, γ1-3, δ, ε, π, θ and ρ1-3) and their role in inflammation remain unclear. In murine models of LPS- and bacteria-induced inflammation, Muscimol (GABAA-receptor agonist) and Bicuculline (antagonist) were administered before the onset of inflammation. Transcription of GABAA-receptor subunits was evaluated by real-time polymerase chain reaction. Neutrophil counts and adhesion molecule expression in wild type and GABAα1 knock-in mice were determined by flow-cytometry. Myeloperoxidase, neutrophil extracellular traps and cytokines were determined. In a model of ventilator-induced lung injury, blood gas analysis was performed using arterial blood. A multiplex western blot was done to assess signaling proteins. Muscimol and Bicuculline inhibited neutrophil influx in the bronchoalveolar lavage but did not change neutrophil activation. Both altered surface expression of adhesion molecules on neutrophils and reduced release of interleukin-6 (IL-6). The increased α1 subunit expression on lung epithelium and endothelium after inflammation was abolished by Muscimol and Bicuculline. In GABAα1-knock-in mice the protective effects of both agents were no longer observed. Only Muscimol lowered protein extravasation, improved blood gas analysis and lung function. A multiplex assay ascribed these anti-inflammatory effects to the influence of the IL-6 and phosphoinositide 3-kinase signaling pathways. In conclusion, Muscimol and Bicuculline exert various protective effects in two murine models of acute pulmonary inflammation. The multiple effects of Muscimol were linked to the inhibition of the proinflammatory signaling pathways IL-6 and PI3K.
Collapse
Affiliation(s)
- Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Robin Roediger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Mariana Simelitidis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University Tuebingen, Tübingen, Germany
| | - Michael Kormann
- Stem Cell Network Tuebingen, University Tuebingen, Tübingen, Germany
| | - Bernd Antkowiak
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosicences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tübingen, Germany.
| |
Collapse
|
2
|
Berro LF, Rowlett JK, Platt DM. GABAergic compounds for the treatment of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:383-399. [PMID: 39523061 DOI: 10.1016/bs.irn.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Decades of research have implicated the gamma-aminobutyric acid (GABA)ergic system as one of the main mediators of the behavioral effects of alcohol. Of importance, the addiction-related effects of alcohol also have been shown to be mediated in part by GABAergic systems, raising the possibility that pharmacotherapies targeting GABAergic receptors may be promising candidates for the treatment of alcohol use disorder (AUD). Alcohol modulates the activity of GABAA and GABAB receptors, and studies show that compounds targeting some of those receptors may decrease the addiction-related behavioral effects of alcohol. Specifically, drugs that share similar pharmacological properties with alcohol, such as positive allosteric modulators (PAMs) of GABAA and GABAB receptors, have been proposed as substitution therapies for AUD. Available evidence also suggests that negative allosteric modulators (NAMs) of GABAergic receptors may be potential therapeutics for AUD, although this effect is selective for specific receptor subtypes. Therefore, this Chapter reviews the available evidence on the use of GABAergic compounds for the treatment of AUD. Several GABAA and GABAB ligands show promising results, with a particularly positive therapeutic profile demonstrated for α5GABAA receptor NAMs, α4/6δGABAA receptor modulators (both positive and negative, including neurosteroids), and GABAB receptor PAMs. As newer and better GABAergic compounds become available, future research should focus on understanding how these ligands can modulate different clinical symptoms of AUD, with potential new areas of research encompassing alcohol withdrawal syndrome and AUD-related insomnia.
Collapse
Affiliation(s)
- Laís F Berro
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States.
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
3
|
Bendas Feres Lima I, Fátima Marques de Moraes LD, Roberto da Fonseca C, Clinton Llerena Junior J, Mehrjouy M, Tommerup N, Ferreira Bastos E. Mesomelia-synostoses syndrome: contiguous deletion syndrome, SULF1 haploinsufficiency or enhancer adoption? Mol Cytogenet 2024; 17:15. [PMID: 38992676 PMCID: PMC11241779 DOI: 10.1186/s13039-024-00684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Mesomelia-Synostoses Syndrome (MSS)(OMIM 600,383) is a rare autosomal dominant disorder characterized by mesomelic limb shortening, acral synostoses and multiple congenital malformations which is described as a contiguous deletion syndrome involving the two genes SULF1 and SLCO5A1. The study of apparently balanced chromosomal rearrangements (BCRs) is a cytogenetic strategy used to identify candidate genes associated with Mendelian diseases or abnormal phenotypes. With the improved development of genomic technologies, new methods refine this search, allowing better delineation of breakpoints as well as more accurate genotype-phenotype correlation. CASE PRESENTATION We present a boy with a global development deficit, delayed speech development and an ASD (Asperger) family history, with an apparently balanced "de novo" reciprocal translocation [t(1;8)(p32.2;q13)dn]. The cytogenetic molecular study identified a likely pathogenic deletion of 21 kb in the 15q12 region, while mate pair sequencing identified gene-truncations at both the 1p32.2 and 8q13 translocation breakpoints. CONCLUSIONS The identification of a pathogenic alteration on 15q12 involving GABRA5 was likely the main cause of the ASD-phenotype. Importantly, the chr8 translocation breakpoint truncating SLCO5A1 exclude SLCO5A1 as a candidate for MSS, leaving SULF1 as the primary candidate. However, the deletions observed in MSS remove a topological associated domain (TAD) boundary separating SULF1 and SLCO5A1. Hence, Mesomelia-Synostoses syndrome is either caused by haploinsufficiency of SULF1 or ectopic enhancer effects where skeletal/chrondrogenic SULF1 enhancers drive excopic expression of developmental genes in adjacent TADs including PRDM14, NCOA2 and/or EYA1.
Collapse
Affiliation(s)
- Ingrid Bendas Feres Lima
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Juan Clinton Llerena Junior
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil
- Reference Center for Rare Diseases/IFF/Fiocruz, Rio de Janeiro, Brazil
| | - Mana Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elenice Ferreira Bastos
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Zhang Y, Lai J, Wang X, Li M, Zhang Y, Ji C, Chen Q, Lu S. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Arch Anim Breed 2023; 66:357-368. [PMID: 38111388 PMCID: PMC10726026 DOI: 10.5194/aab-66-357-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
The litter trait is one of the most important economic traits, and increasing litter size is of great economic value in the pig industry. However, the molecular mechanisms underlying pig litter traits remain elusive. To identify molecular markers and candidate genes for pig litter traits, a genome-wide association study (GWAS) and selection signature analysis were conducted in a Yorkshire pig population. A total of 518 producing sows were genotyped with Illumina Porcine SNP 50 BeadChip, and 1969 farrowing records for the total number born (TNB), the number born alive (NBA), piglets born dead (PBD), and litter weight born alive (LWB) were collected. Then, a GWAS was performed for the four litter traits using a repeatability model. Based on the estimated breeding values (EBVs) of TNB, 15 high- and 15 low-prolificacy individuals were selected from the 518 sows to implement selection signature analysis. Subsequently, the selection signatures affecting the litter traits of sows were detected by using two methods including the fixation index (FST) and θ π . Combining the results of the GWAS and selection signature analysis, 20 promising candidate genes (NKAIN2, IGF1R, KISS1R, TYRO3, SPINT1, ADGRF5, APC2, PTBP1, CLCN3, CBR4, HPF1, FAM174A, SCP2, CLIC1, ZFYVE9, SPATA33, KIF5C, EPC2, GABRA2, and GABRA4) were identified. These findings provide novel insights into the genetic basis of pig litter traits and will be helpful for improving the reproductive performances of sows in pig breeding.
Collapse
Affiliation(s)
- Yu Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinhua Lai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanlin Zhang
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Chunlv Ji
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
5
|
Bengtsson SKS, Sjöstedt J, Malinina E, Das R, Doverskog M, Johansson M, Haage D, Bäckström T. Extra-Synaptic GABA A Receptor Potentiation and Neurosteroid-Induced Learning Deficits Are Inhibited by GR3027, a GABA A Modulating Steroid Antagonist. Biomolecules 2023; 13:1496. [PMID: 37892178 PMCID: PMC10604444 DOI: 10.3390/biom13101496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Objectives In Vitro: To study the effects of GR3027 (golexanolone) on neurosteroid-induced GABA-mediated current responses under physiological GABAergic conditions with recombinant human α5β3γ2L and α1β2γ2L GABAA receptors expressed in human embryonic kidney cells, using the response patch clamp technique combined with the Dynaflow™ application system. With α5β3γ2L receptors, 0.01-3 μM GR3027, in a concentration-dependent manner, reduced the current response induced by 200 nM THDOC + 0.3 µM GABA, as well as the THDOC-induced direct gated effect. GR3027 (1 μM) alone had no effect on the GABA-mediated current response or current in the absence of GABA. With α1β2γ2L receptors, GR3027 alone had no effect on the GABA-mediated current response or did not affect the receptor by itself. Meanwhile, 1-3 µM GR3027 reduced the current response induced by 200 nM THDOC + 30 µM GABA and 3 µM GR3027 that induced by 200 nM THDOC when GABA was not present. Objectives In Vivo: GR3027 reduces allopregnanolone (AP)-induced decreased learning and anesthesia in male Wistar rats. Rats treated i.v. with AP (2.2 mg/kg) or vehicle were given GR3027 in ratios of 1:0.5 to 1:5 dissolved in 10% 2-hydroxypropyl-beta-cyclodextrin. A dose ratio of AP:GR3027 of at least 1:2.5 antagonized the AP-induced decreased learning in the Morris Water Mase (MWM) and 1:7.5 antagonized the loss of righting reflex (LoR). GR3027 treatment did not change other functions in the rat compared to the vehicle group. Conclusions: GR3027 functions in vitro as an inhibitor of GABAA receptors holding α5β3γ2L and α1β2γ2L, in vivo, in the rat, as a dose-dependent inhibitor toward AP's negative effects on LoR and learning in the MWM.
Collapse
Affiliation(s)
- Sara K. S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Jessica Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Evgenya Malinina
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Roshni Das
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
- Umecrine Cognition AB, SE-171 65 Solna, Sweden
| | | | - Maja Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
- Umecrine Cognition AB, SE-171 65 Solna, Sweden
| | - David Haage
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
- Department of Nursing Sciences, Mid Sweden University, AE-851 70 Sundsvall, Sweden
| | - Torbjörn Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Umeå University, SE-901 85 Umeå, Sweden
- Umecrine Cognition AB, SE-171 65 Solna, Sweden
| |
Collapse
|
6
|
Rastin C, Schenkel LC, Sadikovic B. Complexity in Genetic Epilepsies: A Comprehensive Review. Int J Mol Sci 2023; 24:14606. [PMID: 37834053 PMCID: PMC10572646 DOI: 10.3390/ijms241914606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.
Collapse
Affiliation(s)
- Cassandra Rastin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Laila C. Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Bäckström T, Turkmen S, Das R, Doverskog M, Blackburn TP. The GABA system, a new target for medications against cognitive impairment-Associated with neuroactive steroids. J Intern Med 2023; 294:281-294. [PMID: 37518841 DOI: 10.1111/joim.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The prevalence of cognitive dysfunction, dementia, and neurodegenerative disorders such as Alzheimer's disease (AD) is increasing in parallel with an aging population. Distinct types of chronic stress are thought to be instrumental in the development of cognitive impairment in central nervous system (CNS) disorders where cognitive impairment is a major unmet medical need. Increased GABAergic tone is a mediator of stress effects but is also a result of other factors in CNS disorders. Positive GABA-A receptor modulating stress and sex steroids (steroid-PAMs) such as allopregnanolone (ALLO) and medroxyprogesterone acetate can provoke impaired cognition. As such, ALLO impairs memory and learning in both animals and humans. In transgenic AD animal studies, continuous exposure to ALLO at physiological levels impairs cognition and increases degenerative AD pathology, whereas intermittent ALLO injections enhance cognition, indicating pleiotropic functions of ALLO. We have shown that GABA-A receptor modulating steroid antagonists (GAMSAs) can block the acute negative cognitive impairment of ALLO on memory in animal studies and in patients with cognitive impairment due to hepatic encephalopathy. Here we describe disorders affected by steroid-PAMs and opportunities to treat these adverse effects of steroid-PAMs with novel GAMSAs.
Collapse
Affiliation(s)
| | - Sahruh Turkmen
- Department of Clinical Sciences, University of Umeå, Umeå, Sweden
| | - Roshni Das
- Department of Clinical Sciences, University of Umeå, Umeå, Sweden
- Umecrine Cognition AB, Solna, Sweden
| | | | | |
Collapse
|
8
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Antonelli A, Giannini A, Chedraui P, Monteleone P, Caretto M, Genazzani AD, Mannella P, Simoncini T, Genazzani AR. Mood disorders and hormonal status across women's life: a narrative review. Gynecol Endocrinol 2022; 38:1019-1027. [PMID: 36433781 DOI: 10.1080/09513590.2022.2149730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Depressive disorders and anxiety states represent one of the most frequent psychiatric pathologies occurring transiently in vulnerable women throughout their life, from puberty to menopause. It is now known that sex hormones play a key role on the nervous system, interfering with neuronal plasticity and enhancing the processes of learning, memory, cognition, and mood. Numerous mechanisms are at the base of these processes, displaying interactions between estrogen and serotoninergic, dopaminergic, and GABAergic receptors at the central level. Therefore, given the sexual steroids fluctuations throughout the entire female lifespan, and considering the role played by sex hormones at the central level, it is not surprising to observe the onset of mood or neurodegenerative disorders over time. This is especially true for women in hormonal transition phase, such as puberty, postpartum and the menopausal transition. Moreover, all these conditions are characterized by hormone withdrawal, imbalance, or modifications due to menopausal hormone therapies or contraceptives which could prompt to a deterioration of mood and cognition impairment or to an improvement in the quality of life. More studies are needed to better understand the hormone-related effects on the nervous system, and the underlying pathways involved in transitional or chronic mood disorders, to promote new patient-specific therapeutic strategies more effective than the current ones and tailored according to the individual need and women's life period.
Collapse
Affiliation(s)
- Alice Antonelli
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Peter Chedraui
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
- Facultad de Ciencias de la Salud, Universidad Católica "Nuestra Señora de la Asunción", Asunción, Paraguay
| | - Patrizia Monteleone
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Caretto
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro D Genazzani
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Mannella
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Boychuk JA, Butler CR, Smith KC, Halmos MB, Smith BN. Zolpidem Profoundly Augments Spared Tonic GABAAR Signaling in Dentate Granule Cells Ipsilateral to Controlled Cortical Impact Brain Injury in Mice. Front Syst Neurosci 2022; 16:867323. [PMID: 35694044 PMCID: PMC9178240 DOI: 10.3389/fnsys.2022.867323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Type A GABA receptors (GABAARs) are pentameric combinations of protein subunits that give rise to tonic (ITonicGABA) and phasic (i.e., synaptic; ISynapticGABA) forms of inhibitory GABAAR signaling in the central nervous system. Remodeling and regulation of GABAAR protein subunits are implicated in a wide variety of healthy and injury-dependent states, including epilepsy. The present study undertook a detailed analysis of GABAAR signaling using whole-cell patch clamp recordings from mouse dentate granule cells (DGCs) in coronal slices containing dorsal hippocampus at 1–2 or 8–13 weeks after a focal, controlled cortical impact (CCI) or sham brain injury. Zolpidem, a benzodiazepine-like positive modulator of GABAARs, was used to test for changes in GABAAR signaling of DGCs due to its selectivity for α1 subunit-containing GABAARs. Electric charge transfer and statistical percent change were analyzed in order to directly compare tonic and phasic GABAAR signaling and to account for zolpidem’s ability to modify multiple parameters of GABAAR kinetics. We observed that baseline ITonicGABA is preserved at both time-points tested in DGCs ipsilateral to injury (Ipsi-DGCs) compared to DGCs contralateral to injury (Contra-DGCs) or after sham injury (Sham-DGCs). Interestingly, application of zolpidem resulted in modulation of ITonicGABA across groups, with Ipsi-DGCs exhibiting the greatest responsiveness to zolpidem. We also report that the combination of CCI and acute application of zolpidem profoundly augments the proportion of GABAAR charge transfer mediated by tonic vs. synaptic currents at both time-points tested, whereas gene expression of GABAAR α1, α2, α3, and γ2 subunits is unchanged at 8–13 weeks post-injury. Overall, this work highlights the shift toward elevated influence of tonic inhibition in Ipsi-DGCs, the impact of zolpidem on all components of inhibitory control of DGCs, and the sustained nature of these changes in inhibitory tone after CCI injury.
Collapse
Affiliation(s)
- Jeffery A Boychuk
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, United States
| | - Corwin R Butler
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Katalin Cs Smith
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Miklos B Halmos
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Bret N Smith
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, United States
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Manna SSS. Possible influence of neurosteroids in the anxiolytic effects of alpha-casozepine. Med Hypotheses 2021; 155:110655. [PMID: 34392107 DOI: 10.1016/j.mehy.2021.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Alpha-casozepine (α CZP), a tryptic hydrolysate of milk casein is a decapeptide shown to promote sleep and produce anxiolytic or anticonvulsant activity. Intriguingly, studies indicate structural similarities to benzodiazepine (BZD)-like molecules (e.g., diazepam), resulting in positive modulation of γ-aminobutyric acid A type (GABAA) receptors. However, some unexplained anomalous behaviour of α-CZP includes 1) 1000 times less affinity for BZD site on GABAA receptor in vitro conditions, whereas in vivo it showed 10-fold increased affinity when compared to diazepam; 2) anxiolytic effects were observed only in stressed conditions and 3) unlike diazepam, it failed to exhibit dependence or habituation. Interestingly, neurosteroids like allopregnanolone or its analogues that are synthesized de novo have both genomic and non-genomic actions. The rapid nongenomic neuronal inhibition of these compounds is mediated by GABAA receptors through autocrine and paracrine actions. Studies have shown that changes in the levels of neurosteroids during acute (rise) and chronic stress (decreased), consequently, altering the senetivity of GABAA receptor subunits. Neurosteroids even at low concentration (nanomolar range) potentiate the response of GABA indirectly, while at higher concentrations they directly activate the receptor-channel complex. Interestingly, coadministration of neurosteroids and BZPs has shown not only to prevent the development of tolerance of BZP and augmented recovery from BZP withdrawal anxiety and hyperactivity in mice. The combination also produced synergetic anxiolytic effects. Taken together, the evidence suggests possible implications of neurosteroids in the actions of CZP via BZD receptors. The present hypothesis brings out the possible role of neurosteroids and the various factors that might participate in CZP-induce anxiolytic effects.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Dr. B. C. Roy College of Pharmacy Allied Health Sciences, Dr Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, West Bengal, India.
| |
Collapse
|
12
|
Stone RH, Abousaud M, Abousaud A, Kobak W. A Systematic Review of Intravaginal Diazepam for the Treatment of Pelvic Floor Hypertonic Disorder. J Clin Pharmacol 2020; 60 Suppl 2:S110-S120. [PMID: 33274514 DOI: 10.1002/jcph.1775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022]
Abstract
This systematic review evaluates the efficacy of intravaginal diazepam in treating chronic pelvic pain and sexual dysfunction associated with high-tone pelvic floor dysfunction. A literature search was conducted in Medline and Web of Science, including articles from the database's inception to July 2019. The search identified 126 articles, and 5 articles met study inclusion criteria: 2 observational reviews and 3 small randomized, controlled trials (RCTs) evaluating intravaginal diazepam for high-tone pelvic floor dysfunction. The 2 observational studies identified subjective reports of improvement in sexual function for a majority of women, 96% and 71%, in each study. However, there were no statistical differences between Female Sexual Function Index (FSFI) and Visual Analog Scale (VAS) scores for pain identified. One RCT found no significant changes between groups in median FSFI or VAS scores, and a second RCT found no significant changes between groups in 100-mm VAS scores. The third RCT demonstrated that compared with placebo, treatment with transcutaneous electrical nerve stimulation and intravaginal diazepam for women with vestibulodynia and high-tone pelvic floor dysfunction yielded significant differences in reduction of dyspareunia (P ≤ .05), ability to relax pelvic floor muscles after contraction (P ≤.05), and current perception threshold values at a 5-Hz stimulation related to C fibers (P < .05), but no significant changes in 10-cm VAS scores. Intravaginal diazepam may be helpful in women with a specific diagnosis of high-tone pelvic floor dysfunction, but more and larger studies are needed to confirm these potential effects.
Collapse
Affiliation(s)
- Rebecca H Stone
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Marin Abousaud
- Department of Pharmacy, Emory Healthcare, Atlanta, Georgia, USA
| | - Aseala Abousaud
- Department of Pharmacy, Emory Healthcare, Atlanta, Georgia, USA
| | - William Kobak
- Department of Clinical Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Yabuki Y, Liu J, Kawahata I, Izumi H, Shinoda Y, Koga K, Ueno S, Shioda N, Fukunaga K. Anti-Epileptic Effects of FABP3 Ligand MF1 through the Benzodiazepine Recognition Site of the GABA A Receptor. Int J Mol Sci 2020; 21:ijms21155525. [PMID: 32752296 PMCID: PMC7432285 DOI: 10.3390/ijms21155525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed the fatty acid-binding protein 3 (FABP3) ligand MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid) as a therapeutic candidate for α-synucleinopathies. MF1 shows affinity towards γ-aminobutyric acid type-A (GABAA) receptor, but its effect on the receptor remains unclear. Here, we investigate the pharmacological properties of MF1 on the GABAA receptor overexpressed in Neuro2A cells. While MF1 (1–100 μm) alone failed to evoke GABA currents, MF1 (1 μm) promoted GABA currents during GABA exposure (1 and 10 μm). MF1-promoted GABA currents were blocked by flumazenil (10 μm) treatment, suggesting that MF1 enhances receptor function via the benzodiazepine recognition site. Acute and chronic administration of MF1 (0.1, 0.3 and 1.0 mg/kg, p.o.) significantly attenuated status epilepticus (SE) and the mortality rate in pilocarpine (PILO: 300 mg/kg, i.p.)-treated mice, similar to diazepam (DZP: 5.0 mg/kg, i.p.). The anti-epileptic effects of DZP (5.0 mg/kg, i.p.) and MF1 (0.3 mg/kg, p.o.) were completely abolished by flumazenil (25 mg/kg, i.p.) treatment. Pentylenetetrazol (PTZ: 90 mg/kg, i.p.)-induced seizures in mice were suppressed by DZP (5.0 mg/kg, i.p.), but not MF1. Collectively, this suggests that MF1 is a mild enhancer of the GABAA receptor and exercises anti-epileptic effects through the receptor’s benzodiazepine recognition site in PILO-induced SE models.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Jiaqi Liu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8216, Japan;
| | - Shinya Ueno
- Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8216, Japan;
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (Y.Y.); (J.L.); (I.K.); (H.I.); (Y.S.)
- Correspondence: ; Tel.: +81-22-795-6836; Fax: 81-22-795-6835
| |
Collapse
|
14
|
Tortosa V, Pietropaolo V, Brandi V, Macari G, Pasquadibisceglie A, Polticelli F. Computational Methods for the Identification of Molecular Targets of Toxic Food Additives. Butylated Hydroxytoluene as a Case Study. Molecules 2020; 25:E2229. [PMID: 32397407 PMCID: PMC7248939 DOI: 10.3390/molecules25092229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Butylated hydroxytoluene (BHT) is one of the most commonly used synthetic antioxidants in food, cosmetic, pharmaceutical and petrochemical products. BHT is considered safe for human health; however, its widespread use together with the potential toxicological effects have increased consumers concern about the use of this synthetic food additive. In addition, the estimated daily intake of BHT has been demonstrated to exceed the recommended acceptable threshold. In the present work, using BHT as a case study, the usefulness of computational techniques, such as reverse screening and molecular docking, in identifying protein-ligand interactions of food additives at the bases of their toxicological effects has been probed. The computational methods here employed have been useful for the identification of several potential unknown targets of BHT, suggesting a possible explanation for its toxic effects. In silico analyses can be employed to identify new macromolecular targets of synthetic food additives and to explore their functional mechanisms or side effects. Noteworthy, this could be important for the cases in which there is an evident lack of experimental studies, as is the case for BHT.
Collapse
Affiliation(s)
- Valentina Tortosa
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Valentina Pietropaolo
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Gabriele Macari
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Andrea Pasquadibisceglie
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
- National Institute of Nuclear Physics, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
15
|
Bengtsson S, Bäckström T, Brinton R, Irwin R, Johansson M, Sjöstedt J, Wang M. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2020; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
Affiliation(s)
- S.K.S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - T. Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - R. Brinton
- Center for Innovation in Brain Science, Professor Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R.W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - M. Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - J. Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M.D. Wang
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| |
Collapse
|
16
|
Maljevic S, Keren B, Aung YH, Forster IC, Mignot C, Buratti J, Lafitte A, Freihuber C, Rodan LH, Bergin A, Hubert L, Poirier K, Munnich A, Besmond C, Hauser N, Miller R, McWalter K, Nabbout R, Héron D, Leguern E, Depienne C, Petrou S, Nava C. Novel GABRA2 variants in epileptic encephalopathy and intellectual disability with seizures. Brain 2020; 142:e15. [PMID: 31032849 DOI: 10.1093/brain/awz079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Keren
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Ye Htet Aung
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ian C Forster
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Julien Buratti
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Aurélie Lafitte
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Cécile Freihuber
- AP-HP, Hôpital Trousseau, Service de Neuropédiatrie, Paris, France
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Bergin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurence Hubert
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Karine Poirier
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Arnold Munnich
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Claude Besmond
- INSERM UMR 1163, Translational Genetics Lab., Paris-Descartes University, Imagine Institute, Paris, France
| | - Natalie Hauser
- Inova Health System, Inova Translational Medicine Institute, Falls Church, VA, USA
| | - Rebecca Miller
- Inova Health System, Inova Translational Medicine Institute, Falls Church, VA, USA
| | | | - Rima Nabbout
- APHP, Hôpital Necker Enfants Malades, Centre de référence épilepsies rares, Service de Neurologie pédiatrique, Paris, France
| | - Delphine Héron
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France
| | - Eric Leguern
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Christel Depienne
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France.,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Caroline Nava
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», Paris, France.,Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| |
Collapse
|
17
|
Xin J, Yuan M, Peng Y, Wang J. Analysis of the Deleterious Single-Nucleotide Polymorphisms Associated With Antidepressant Efficacy in Major Depressive Disorder. Front Psychiatry 2020; 11:151. [PMID: 32256400 PMCID: PMC7093583 DOI: 10.3389/fpsyt.2020.00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with negative effects on both mental and physical health of the patient. Currently, antidepressants are among the major ways to ease or treat MDD. However, the existing antidepressants have limited efficacy in treating MDD, with a large fraction of patients either responding inadequately or differently to antidepressants during the treatment. Pharmacogenetics studies have found that the genetic features of some genes are associated with the antidepressant efficacy. In order to obtain a better understanding on the relationship between the genetic factors and antidepressant treatment response, we compiled a list of 233 single-nucleotide polymorphisms (SNPs) significantly associated with the antidepressant efficacy in treating MDD. Of the 13 non-synonymous SNPs in the list, three (rs1065852, rs3810651, and rs117986340) may influence the structures and function of the corresponding proteins. Besides, the influence of rs1065852 on the structure of CYP2D6 was further investigated via molecular dynamics simulations. Our results showed that compared to the native CYP2D6 the flexibility of the F-G loop was reduced in the mutant. As a portion of the substrate access channel, the lower flexibility of F-G loop may reduce the ability of the substrates to enter the channel, which may be the reason for the lower enzyme activity of mutant. This study may help us to understand the impact of genetic variation on antidepressant efficacy and provide clues for developing new antidepressants.
Collapse
Affiliation(s)
- Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonglin Peng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Allopregnanolone-based treatments for postpartum depression: Why/how do they work? Neurobiol Stress 2019; 11:100198. [PMID: 31709278 PMCID: PMC6838978 DOI: 10.1016/j.ynstr.2019.100198] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Recent FDA approval of an allopregnanolone-based treatment specifically for postpartum depression, brexanolone, now commercially called Zulresso®, is an exciting development for patients and families impacted by postpartum depression and allows us to start asking questions about why and how this compound is so effective. Allopregnanolone is a neuroactive steroid, or neurosteroid, which can be synthesized from steroid hormone precursors, such as progesterone, or synthesized de novo from cholesterol. Neurosteroids are positive allosteric modulators at GABAA receptors (GABAARs), a property which is thought to mediate the therapeutic effects of these compounds. However, the durability of effect of brexanolone in clinical trials questions the mechanism of action mediating the remarkable antidepressant effects, leading us to ask why and how does this drug work. Asking why this drug is effective may provide insight into the underlying neurobiology of postpartum depression. Exploring how this drug works will potentially elucidate a novel antidepressant mechanism of action and may provide useful information for next generation drug development. In this review, we examine the clinical and preclinical evidence supporting a role for allopregnanolone in the underlying neurobiology of postpartum depression as well as foundational evidence supporting the therapeutic effects of allopregnanolone for treatment of postpartum depression.
Collapse
|
19
|
Berro LF, Rüedi-Bettschen D, Cook JE, Golani LK, Li G, Jahan R, Rashid F, Cook JM, Rowlett JK, Platt DM. GABA A Receptor Subtypes and the Abuse-Related Effects of Ethanol in Rhesus Monkeys: Experiments with Selective Positive Allosteric Modulators. Alcohol Clin Exp Res 2019; 43:791-802. [PMID: 30861153 PMCID: PMC6601614 DOI: 10.1111/acer.14000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have investigated α1GABAA and α5GABAA receptor mechanisms in the behavioral effects of ethanol (EtOH) in monkeys. However, genetic studies in humans and preclinical studies with mutant mice suggest a role for α2GABAA and/or α3GABAA receptors in the effects of EtOH. The development of novel positive allosteric modulators (PAMs) with functional selectivity (i.e., selective efficacy) at α2GABAA and α3GABAA receptors allows for probing of these subtypes in preclinical models of the discriminative stimulus and reinforcing effects of EtOH in rhesus macaques. METHODS In discrimination studies, subjects were trained to discriminate EtOH (2 g/kg, intragastrically) from water under a fixed-ratio (FR) schedule of food delivery. In oral self-administration studies, subjects were trained to self-administer EtOH (2% w/v) or sucrose (0.3 to 1% w/v) under an FR schedule of solution availability. RESULTS In discrimination studies, functionally selective PAMs at α2GABAA and α3GABAA (HZ-166) or α3GABAA (YT-III-31) receptors substituted fully (maximum percentage of EtOH-lever responding ≥80%) for the discriminative stimulus effects of EtOH without altering response rates. Full substitution for EtOH also was engendered by a nonselective PAM (triazolam), an α5GABAA -preferring PAM (QH-ii-066) and a PAM at α2GABAA , α3GABAA , and α5GABAA receptors (L-838417). A partial (MRK-696) or an α1GABAA -preferring (zolpidem) PAM only engendered partial substitution (i.e., ~50 to 60% EtOH-lever responding). In self-administration studies, pretreatments with the functionally selective PAMs at α2GABAA and α3GABAA (XHe-II-053 and HZ-166) or α3GABAA (YT-III-31 and YT-III-271) receptors increased EtOH, but not sucrose, drinking at doses that had few, or no, observable sedative-motor effects. CONCLUSIONS Our results confirm prior findings regarding the respective roles of α1GABAA and α5GABAA receptors in the discriminative stimulus effects of EtOH and, further, suggest a key facilitatory role for α3GABAA and potentially α2GABAA receptors in several abuse-related effects of EtOH in monkeys. Moreover, they reveal a potential role for these latter subtypes in EtOH's sedative effects.
Collapse
Affiliation(s)
- Lais F. Berro
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jemma E. Cook
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Lalit K. Golani
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Guanguan Li
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Rajwana Jahan
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Farjana Rashid
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James K. Rowlett
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Donna M. Platt
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
20
|
Joshi S, Kapur J. Neurosteroid regulation of GABA A receptors: A role in catamenial epilepsy. Brain Res 2019; 1703:31-40. [PMID: 29481795 PMCID: PMC6107446 DOI: 10.1016/j.brainres.2018.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/08/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The female reproductive hormones progesterone and estrogen regulate network excitability. Fluctuations in the circulating levels of these hormones during the menstrual cycle cause frequent seizures during certain phases of the cycle in women with epilepsy. This seizure exacerbation, called catamenial epilepsy, is a dominant form of drug-refractory epilepsy in women of reproductive age. Progesterone, through its neurosteroid derivative allopregnanolone, increases γ-aminobutyric acid type-A receptor (GABAR)-mediated inhibition in the brain and keeps seizures under control. Catamenial seizures are believed to be a neurosteroid withdrawal symptom, and it was hypothesized that exogenous administration of progesterone to maintain its levels high during luteal phase will treat catamenial seizures. However, in a multicenter, double-blind, phase III clinical trial, progesterone treatment did not suppress catamenial seizures. The expression of GABARs with reduced neurosteroid sensitivity in epileptic animals may explain the failure of the progesterone clinical trial. The expression of neurosteroid-sensitive δ subunit-containing GABARs is reduced, and the expression of α4γ2 subunit-containing GABARs is upregulated, which alters the inhibition of dentate granule cells in epilepsy. These changes reduce the endogenous neurosteroid control of seizures and contribute to catamenial seizures.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States.
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
21
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
22
|
Chen J, He Y, Wu Y, Zhou H, Su LD, Li WN, Olsen RW, Liang J, Zhou YD, Shen Y. Single Ethanol Withdrawal Regulates Extrasynaptic δ-GABA A Receptors Via PKCδ Activation. Front Mol Neurosci 2018; 11:141. [PMID: 29755316 PMCID: PMC5932167 DOI: 10.3389/fnmol.2018.00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
Alcohol (ethanol, EtOH) is one of the most widely abused drugs with profound effects on brain function and behavior. GABAA receptors (GABAARs) are one of the major targets for EtOH in the brain. Temporary plastic changes in GABAARs after withdrawal from a single EtOH exposure occur both in vivo and in vitro, which may be the basis for chronic EtOH addiction, tolerance and withdrawal symptoms. Extrasynaptic δ-GABAAR endocytosis is implicated in EtOH-induced GABAAR plasticity, but the mechanisms by which the relative abundance and localization of specific GABAARs are altered by EtOH exposure and withdrawal remain unclear. In this study, we investigated the mechanisms underlying rapid regulation of extrasynaptic δ-GABAAR by a single EtOH withdrawal in cultured rat hippocampal neurons. Thirty-minutes EtOH (60 mM) exposure increased extrasynaptic tonic current (Itonic) amplitude without affecting synaptic GABAAR function in neurons. In contrast, at 30 min after withdrawal, Itonic amplitude and responsiveness to acute EtOH were both reduced. Similar results occurred in neurons with okadaic acid (OA) or phorbol 12,13-dibutyrate (PDBu) exposure. Protein kinase C (PKC) inhibition prevented the reduction of Itonic amplitude and the tolerance to acute EtOH, as well as the reduction of GABAAR-δ subunit abundance induced by a single EtOH withdrawal. Moreover, EtOH withdrawal selectively increased PKCδ level, whereas PKCδ inhibition specifically rescued the EtOH-induced alterations in GABAAR-δ subunit level and δ-GABAAR function. Together, we provided strong evidence for the important roles of PKCδ in the rapid regulation of extrasynaptic δ-GABAAR induced by a single EtOH withdrawal.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang He
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wu
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Nan Li
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
24
|
Chandler CM, Overton JS, Rüedi-Bettschen D, Platt DM. GABA A Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handb Exp Pharmacol 2018; 248:3-27. [PMID: 29204713 DOI: 10.1007/164_2017_80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
25
|
Holmberg E, Sjöstedt J, Malinina E, Johansson M, Turkmen S, Ragagnin G, Lundqvist A, Löfgren M, Jaukkuri L, Bixo M, Bäckström T. Allopregnanolone involvement in feeding regulation, overeating and obesity. Front Neuroendocrinol 2018; 48:70-77. [PMID: 28694181 DOI: 10.1016/j.yfrne.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Obesity is strongly associated with ill health, primarily caused by consumption of excessive calories, and promoted (inter alia) by gamma-amino-butyric-acid (GABA) stimulating food intake by activating GABAA receptors (primarily with α3 and α2 subunits) in the hypothalamic arcuate nucleus and paraventricular nucleus. Allopregnanolone is a potent positive GABAA receptor modulating steroid (GAMS). As reviewed here, elevated allopregnanolone levels are associated with increases in food intake, preferences for energy-rich food, and obesity in humans and other mammals. In women with polycystic ovarian disease, high serum allopregnanolone concentrations are linked to uncontrolled eating, and perturbed sensitivity to allopregnanolone. Increases in weight during pregnancy also correlate with increases in allopregnanolone levels. Moreover, Prader-Willis syndrome is associated with massive overeating, absence of a GABAA receptor (with compensatory >12-, >5- and >1.5-fold increases in α4, γ2, and α1, α3 subunits), and increases in the α4, βx, δ receptor subtype, which is highly sensitive to allopregnanolone. GABA and positive GABA-A receptor modulating steroids like allopregnanolone stimulates food intake and weight gain.
Collapse
Affiliation(s)
- E Holmberg
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - J Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - E Malinina
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - M Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - S Turkmen
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - G Ragagnin
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - A Lundqvist
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - M Löfgren
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - L Jaukkuri
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - M Bixo
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden
| | - T Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
26
|
Lindemeyer AK, Shen Y, Yazdani F, Shao XM, Spigelman I, Davies DL, Olsen RW, Liang J. α2 Subunit-Containing GABA A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Mol Pharmacol 2017; 92:101-112. [PMID: 28536106 PMCID: PMC5508196 DOI: 10.1124/mol.116.107797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α1βγ2 subtype synaptic GABAARs but increased synaptic α4βγ2 subtype, and increased EtOH sensitivity of GABAAR miniature postsynaptic currents (mIPSCs) correlated with EtOH dependence. Here we demonstrate that after acute EtOH intoxication and CIE, upregulation of hippocampal α4βγ2 subtypes, as well as increased cell-surface levels of GABAAR α2 and γ1 subunits, along with increased α2β1γ1 GABAAR pentamers in hippocampal slices using cell-surface cross-linking, followed by Western blot and coimmunoprecipitation. One-dose and two-dose acute EtOH treatments produced temporal plastic changes in EtOH-induced anxiolysis or withdrawal anxiety, and the presence or absence of EtOH-sensitive synaptic currents correlated with cell surface peptide levels of both α4 and γ1(new α2) subunits. CIE increased the abundance of novel mIPSC patterns differing in activation/deactivation kinetics, charge transfer, and sensitivity to EtOH. The different mIPSC patterns in CIE could be correlated with upregulated highly EtOH-sensitive α2βγ subtypes and EtOH-sensitive α4βγ2 subtypes. Naïve α4 subunit knockout mice express EtOH-sensitive mIPSCs in hippocampal slices, correlating with upregulated GABAAR α2 (and not α4) subunits. Consistent with α2, β1, and γ1 subunits genetically linked to alcoholism in humans, our findings indicate that these new α2-containing synaptic GABAARs could mediate the maintained anxiolytic response to EtOH in dependent individuals, rat or human, contributing to elevated EtOH consumption.
Collapse
Affiliation(s)
- A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Yi Shen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Ferin Yazdani
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Xuesi M Shao
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Igor Spigelman
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Daryl L Davies
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Jing Liang
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| |
Collapse
|
27
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
28
|
Nasehi M, Roghani F, Ebrahimi-Ghiri M, Zarrindast MR. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning. Brain Res Bull 2017; 131:85-92. [DOI: 10.1016/j.brainresbull.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 12/15/2022]
|
29
|
Soloaga A, Pueta M, Cruz FB, Kembro JM, Marin RH. Chronic stress in Lizards: Studies on the Behavior and Benzodiazepine Receptors in Liolaemus koslowskyi and Cnemidophorus tergolaevigatus. ACTA ACUST UNITED AC 2017; 325:713-725. [PMID: 28198153 DOI: 10.1002/jez.2063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
Behavioral and physiological adaptive responses of animals facing chronic exposure to a single stressor may allow them to overcome its negative effects for future exposures to similar stressful situations. At chemical level, the GABAA /benzodiazepine complex is considered one of the main receptor systems involved in the modulation of stress-induced responses. Here, we describe the behavioral responses of two different lizard species, Liolaemus koslowskyi and Cnemidophorus tergolaevigatus exposed to three potential chronic stressful treatments: (a) high temperature, (b) forced swimming, and (c) simulated predator. Additionally, we aimed to determine in those lizards whether the central-type benzodiazepine receptor (CBR; an allosteric modulator site of the GABAA receptor) is related to adaptive responses to those stressful stimulations. Our results revealed that the simulated predator was the stress condition that showed the largest difference in behavioral responses between the two species, resembling previously described strategies in nature. The basal affinity of CBRs (obtained from undisturbed animals) showed differences between both species, and the simulated predator was the only stressor that altered the affinity of CBRs. L. koslowskyi CBRs showed a decreased receptor affinity, whereas C. tergolaevigatus showed an increased receptor affinity in comparison to their respective control groups. We show for the first time the effects of different types of stressors upon behavioral responses and CBR biochemical parameters in two lizard species. Our findings suggest a potential GABA/benzodiazepine role in the ability of lizards to cope with a repeated exposure to a stressful (e.g., predator) condition.
Collapse
Affiliation(s)
- Alejandra Soloaga
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica, La Rioja (CONICET), Anillaco, La Rioja, Argentina
| | - Mariana Pueta
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNComa), San Carlos de Bariloche, Río Negro, Argentina.,Departamento de Biología General, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - Félix Benjamín Cruz
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNComa), San Carlos de Bariloche, Río Negro, Argentina
| | - Jackelyn Melissa Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-FCEFyN-UNC) and Instituto de Ciencia y Tecnología de los alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raul Hector Marin
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-FCEFyN-UNC) and Instituto de Ciencia y Tecnología de los alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
30
|
Furukawa T, Shimoyama S, Miki Y, Nikaido Y, Koga K, Nakamura K, Wakabayashi K, Ueno S. Chronic diazepam administration increases the expression of Lcn2 in the CNS. Pharmacol Res Perspect 2017; 5:e00283. [PMID: 28596835 PMCID: PMC5461642 DOI: 10.1002/prp2.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shuji Shimoyama
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yasuo Miki
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kohei Koga
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazuhiko Nakamura
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan.,Department of Neuropsychiatry Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Wakabayashi
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan.,Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
31
|
Tsai T, Yuan Y, Hajela RK, Philips SW, Atchison WD. Methylmercury induces an initial increase in GABA-evoked currents in Xenopus oocytes expressing α 1 and α 6 subunit-containing GABA A receptors. Neurotoxicology 2016; 60:161-170. [PMID: 27720918 DOI: 10.1016/j.neuro.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022]
Abstract
Early onset effects of methylmercury (MeHg) on recombinant α1β2γ2S or α6β2γ2S subunit-containing GABAA receptors were examined. These are two of the most prevalent receptor types found in cerebellum-a consistent target of MeHg-induced neurotoxicity. Heterologously expressed receptors were used in order to: (1) isolate receptor-mediated events from extraneous effects of MeHg due to stimulation of the receptor secondary to increased release of GABA seen with MeHg in neurons in situ and (2) limit the phenotypes of GABAA receptors present at one time. Initial changes in IGABA in Xenopus laevis oocytes expressing either α1β2γ2S or α6β2γ2S receptors were compared during continuous bath application of MeHg. A time-dependent increase in IGABA mediated by both receptor subtypes occurred following the first 25-30min of MeHg (5μM) exposure. In α6β2γ2S containing receptors, the MeHg-induced increase in IGABA was less pronounced compared to that mediated by α1β2γ2S containing receptors, although the pattern of effects was generally similar. Washing with MeHg-free solution reversed the increase in current amplitude. Application of bicuculline at the time of peak potentiation of IGABA rapidly and completely reversed the MeHg-induced currents. Therefore these MeHg-increased inward currents are mediated specifically by the two subtypes of GABAA receptors and appear to entail direct actions of MeHg on the receptor. However bicuculline did not affect stimulation by MeHg of oocyte endogenous Cl- -mediated current, which presumably results from increased [Ca2+]i. Thus, MeHg initially potentiates IGABA in oocytes expressing either α1β2γ2S or α6β2γ2S receptors prior to its more defined later effects, suggesting that MeHg may initially interact directly with GABAA receptors in a reversible manner to cause this potentiation.
Collapse
Affiliation(s)
- Tidao Tsai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Ravindra K Hajela
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Shuan W Philips
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| |
Collapse
|
32
|
Amin N, Allebrandt KV, van der Spek A, Müller-Myhsok B, Hek K, Teder-Laving M, Hayward C, Esko T, van Mill JG, Mbarek H, Watson NF, Melville SA, Del Greco FM, Byrne EM, Oole E, Kolcic I, Chen TH, Evans DS, Coresh J, Vogelzangs N, Karjalainen J, Willemsen G, Gharib SA, Zgaga L, Mihailov E, Stone KL, Campbell H, Brouwer RWW, Demirkan A, Isaacs A, Dogas Z, Marciante KD, Campbell S, Borovecki F, Luik AI, Li M, Hottenga JJ, Huffman JE, van den Hout MCGN, Cummings SR, Aulchenko YS, Gehrman PR, Uitterlinden AG, Wichmann HE, Müller-Nurasyid M, Fehrmann RSN, Montgomery GW, Hofman A, Kao WHL, Oostra BA, Wright AF, Vink JM, Wilson JF, Pramstaller PP, Hicks AA, Polasek O, Punjabi NM, Redline S, Psaty BM, Heath AC, Merrow M, Tranah GJ, Gottlieb DJ, Boomsma DI, Martin NG, Rudan I, Tiemeier H, van IJcken WFJ, Penninx BW, Metspalu A, Meitinger T, Franke L, Roenneberg T, van Duijn CM. Genetic variants in RBFOX3 are associated with sleep latency. Eur J Hum Genet 2016; 24:1488-95. [PMID: 27142678 PMCID: PMC5027680 DOI: 10.1038/ejhg.2016.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10(-08), 6.59 × 10(-)(08) and 9.17 × 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10(-)(02), 7.0 × 10(-)(03) and 2.5 × 10(-)(03); combined meta-analysis P-values=5.5 × 10(-07), 5.4 × 10(-07) and 1.0 × 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10(-316)) and the central nervous system (P-value=7.5 × 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 × 10(-11)) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.
Collapse
Affiliation(s)
- Najaf Amin
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karla V Allebrandt
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Ashley van der Spek
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Karin Hek
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maris Teder-Laving
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Caroline Hayward
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Josine G van Mill
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Hamdi Mbarek
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Nathaniel F Watson
- Department of Neurology, University of Washington, Seattle, WA, USA
- University of Washington Medicine Sleep Center, Seattle, WA, USA
| | - Scott A Melville
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Fabiola M Del Greco
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Enda M Byrne
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Edwin Oole
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Kolcic
- School of Medicine, University of Split, Split, Croatia
| | - Ting-hsu Chen
- VA Boston Healthcare System, Boston University, Boston, MA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Josef Coresh
- Departments of Epidemiology, Biostatistics, and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Vogelzangs
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Sina A Gharib
- University of Washington Medicine Sleep Center, Seattle, WA, USA
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Lina Zgaga
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Rutger WW Brouwer
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ayse Demirkan
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Aaron Isaacs
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Zoran Dogas
- Department of Neuroscience and Sleep Medicine Centre, University of Split School of Medicine, Split, Croatia
| | - Kristin D Marciante
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Campbell
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Fran Borovecki
- Centre for Functional Genomics and Department of Neurology, Faculty of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Man Li
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Jennifer E Huffman
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | | | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Yurii S Aulchenko
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philip R Gehrman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing and National Genomics Initiative, Leiden, The Netherlands
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University and Klinikum Grosshadern, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Martina Müller-Nurasyid
- Institute of Epidemiology I, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Rudolf SN Fehrmann
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen Hong Linda Kao
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Ben A Oostra
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Alan F Wright
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Jacqueline M Vink
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - James F Wilson
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Peter P Pramstaller
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health, University of Split School of Medicine, Split, Croatia
| | - Naresh M Punjabi
- Department of Pulmonary Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital and Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Martha Merrow
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Daniel J Gottlieb
- Department of Medicine, Brigham and Women's Hospital and Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | | | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | | | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Techinsche Universität München, München, Germany
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Cornelia M van Duijn
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing and National Genomics Initiative, Leiden, The Netherlands
- Centre for Medical Systems Biology, Leiden, The Netherlands
| |
Collapse
|
33
|
Liao C, Han Q, Ma Y, Su B. Age-related gene expression change of GABAergic system in visual cortex of rhesus macaque. Gene 2016; 590:227-33. [PMID: 27196061 DOI: 10.1016/j.gene.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 01/31/2023]
Abstract
Degradation of visual function is a common phenomenon during aging and likely mediated by change in the impaired central visual pathway. Treatment with GABA or its agonist could recover the ability of visual neurons in the primary visual cortex of senescent macaques. However, little is known about how GABAergic system change is related to the aged degradation of visual function in nonhuman primate. With the use of quantitative PCR method, we measured the expression change of 24 GABA related genes in the primary visual cortex (Brodmann's 17) of different age groups. In this study, both of mRNA and protein of glutamic acid decarboxylase (GAD65) were measured by real-time RT-PCR and Western blot, respectively. Results revealed that the level of GAD65 message was not significantly altered, but the proteins were significantly decreased in the aged monkey. As GAD65 plays an important role in GABA synthesis, the down-regulation of GAD65 protein was likely the key factor leading to the observed GABA reduction in the primary visual cortex of the aged macaques. In addition, 7 of 14 GABA receptor genes were up-regulated and one GABA receptor gene was significantly reduced during aging process even after Banjamini correction for multiple comparisons (P<0.05). These results suggested that the dysregulation of GAD65 protein might contribute to some age-related neural visual dysfunctions and most of GABA receptor genes induce a clear indication of compensatory effect for the reduced GABA release in the healthy aged monkey cortex.
Collapse
Affiliation(s)
- Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Yuanye Ma
- Laboratory of the Primate Model for Brain Diseases and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
34
|
Janowitz Koch I, Clark MM, Thompson MJ, Deere-Machemer KA, Wang J, Duarte L, Gnanadesikan GE, McCoy EL, Rubbi L, Stahler DR, Pellegrini M, Ostrander EA, Wayne RK, Sinsheimer JS, vonHoldt BM. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol 2016; 25:1838-55. [PMID: 27112634 PMCID: PMC4849173 DOI: 10.1111/mec.13480] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022]
Abstract
The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species.
Collapse
Affiliation(s)
- Ilana Janowitz Koch
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Michelle M Clark
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Thompson
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48085, USA
| | - Lionel Duarte
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Eskender L McCoy
- Yale School of Management, Yale University, New Haven, CT, 06511, USA
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY, 82190, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert K Wayne
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
35
|
Zhao L, Li LI, Ma KT, Wang Y, Li J, Shi WY, Zhu HE, Zhang ZS, Si JQ. NSAIDs modulate GABA-activated currents via Ca 2+-activated Cl - channels in rat dorsal root ganglion neurons. Exp Ther Med 2016; 11:1755-1761. [PMID: 27168798 PMCID: PMC4840517 DOI: 10.3892/etm.2016.3158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate γ-aminobutyrate (GABA)-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons (DRG), was examined in the present study. During the preparation of DRG neurons harvested from Sprague-Dawley rats, the whole-cell recording technique was used to record the effect of NSAIDs on GABA-activated inward currents, and the expression levels of the TMEM16A and TMEM16B subunits were revealed. In the event that DRG neurons were pre-incubated for 20 sec with niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) prior to the administration of GABA, the GABA-induced inward currents were diminished markedly in the majority of neurons examined (96.3%). The inward currents induced by 100 µmol/l GABA were attenuated by (0±0.09%; neurons = 4), (5.32±3.51%; neurons = 6), (21.3±4.00%; neurons = 5), (33.8±5.20%; neurons = 17), (52.2±5.10%; neurons = 4) and (61.1±4.12%; neurons = 12) by 0.1, 1, 3, 10, 30 and 100 µmol/l NFA, respectively. The inward currents induced by 100 µmol/l GABA were attenuated by (13.8±6%; neurons = 6), (23.2±14.7%; neurons = 6) and (29.7±9.1%; neurons = 9) by 3, 10 and 30 µmol/l NPPB, respectively. NFA and NPPB dose-dependently inhibited GABA-activated currents with half maximal inhibitory concentration (IC50) values of 6.7 and 11 µmol/l, respectively. The inhibitory effect of 100 µmol/l NFA on the GABA-evoked inward current were also strongly inhibited by nitrendipine (NTDP; an L-type calcium channel blocker), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (a highly selective calcium chelating reagent), caffeine (a widely available Ca2+ consuming drug) and calcium-free extracellular fluid, in a concentration-dependent manner. Immunofluorescent staining indicated that TMEM16A and TMEM16B expression was widely distributed in DRG neurons. The results suggest that NSAIDs may be able to regulate Ca2+-activated chloride channels to reduce GABAA receptor-mediated inward currents in DRGs.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - L I Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - H E Zhu
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zhong-Shuang Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Physiology, School of Basic Medical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
36
|
Enduring changes in tonic GABAA receptor signaling in dentate granule cells after controlled cortical impact brain injury in mice. Exp Neurol 2016; 277:178-189. [DOI: 10.1016/j.expneurol.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
|
37
|
Li Y, Wu Y, Li R, Wang C, Jia N, Zhao C, Wen A, Xiong L. Propofol Regulates the Surface Expression of GABAA Receptors: Implications in Synaptic Inhibition. Anesth Analg 2016; 121:1176-83. [PMID: 26241086 DOI: 10.1213/ane.0000000000000884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The anesthetic propofol is thought to induce rapid hypnotic sedation by potentiating γ-aminobutyric acid receptor (GABAAR) activity. Little is known about the molecular mechanisms of propofol in modulating inhibitory synaptic transmission. We aimed to investigate the role of propofol in modulating surface expression of GABAARs. METHODS C57BL/6 mice received an intraperitoneal injection of propofol. Hippocampal pyramidal neurons were prepared from embryonic day-18 mice and were treated with propofol. Proteins on the plasma membrane were analyzed using cell surface biotinylation, immunoblotting and enzyme-linked immunosorbent assay. Electrophysiological activities were recorded from hippocampal cells in acute brain slices of mice. The interaction between GABAARs and clathrin adaptor protein 2 was assessed by immunoprecipitation. Phosphorylation of GABAARs was shown by in vitro kinase assay. RESULTS Propofol facilitated membrane accumulation of GABAARβ3 subunits. Propofol mediated phosphorylation of GABAARβ3 by protein kinase Cε which blocked the interaction between GABAARβ3 and the β-adaptin subunit of adaptor protein 2, resulting in an inhibition of the receptor endocytosis in hippocampal pyramidal neurons. Coincident with increased GABAARs surface level, propofol enhanced evoked and miniature synaptic GABA receptor currents. CONCLUSIONS This study offers new insight on the regulatory mechanism of propofol in inhibiting neuronal excitability.
Collapse
Affiliation(s)
- Yuwen Li
- From the Departments of *Pharmacy and †Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation. Genetics 2015; 202:733-50. [PMID: 26596347 DOI: 10.1534/genetics.115.178095] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
A powerful way to detect selection in a population is by modeling local allele frequency changes in a particular region of the genome under scenarios of selection and neutrality and finding which model is most compatible with the data. A previous method based on a cross-population composite likelihood ratio (XP-CLR) uses an outgroup population to detect departures from neutrality that could be compatible with hard or soft sweeps, at linked sites near a beneficial allele. However, this method is most sensitive to recent selection and may miss selective events that happened a long time ago. To overcome this, we developed an extension of XP-CLR that jointly models the behavior of a selected allele in a three-population tree. Our method - called "3-population composite likelihood ratio" (3P-CLR) - outperforms XP-CLR when testing for selection that occurred before two populations split from each other and can distinguish between those events and events that occurred specifically in each of the populations after the split. We applied our new test to population genomic data from the 1000 Genomes Project, to search for selective sweeps that occurred before the split of Yoruba and Eurasians, but after their split from Neanderthals, and that could have led to the spread of modern-human-specific phenotypes. We also searched for sweep events that occurred in East Asians, Europeans, and the ancestors of both populations, after their split from Yoruba. In both cases, we are able to confirm a number of regions identified by previous methods and find several new candidates for selection in recent and ancient times. For some of these, we also find suggestive functional mutations that may have driven the selective events.
Collapse
|
40
|
Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res 2015; 167:42-56. [PMID: 25432637 PMCID: PMC5301472 DOI: 10.1016/j.schres.2014.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015:170435. [PMID: 26413323 PMCID: PMC4568036 DOI: 10.1155/2015/170435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/27/2015] [Accepted: 08/16/2015] [Indexed: 11/22/2022] Open
Abstract
Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes.
Collapse
|
42
|
Li P, Akk G. Synaptic-type α1β2γ2L GABAA receptors produce large persistent currents in the presence of ambient GABA and anesthetic drugs. Mol Pharmacol 2015; 87:776-81. [PMID: 25667223 PMCID: PMC4407730 DOI: 10.1124/mol.114.096453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/09/2015] [Indexed: 11/22/2022] Open
Abstract
Synaptic GABAA receptors respond to synaptically released GABA and are considered to be unaffected by the low levels of ambient transmitter in the brain. We show that synaptic-type α1β2γ2L GABAA receptors expressed in HEK293 cells respond with large steady-state currents to combinations of a low concentration (0.5 μM) of GABA and clinically used GABAergic modulators propofol, etomidate, or pentobarbital or the steroid alphaxalone. At a maximally effective concentration of modulator, the current levels at the end of 2-minute applications of drug combinations were >10% of the peak response to saturating GABA. In the absence of modulators, 0.5 μM GABA generated a steady-state response of 1% of the peak response to saturating GABA. The concentration-response curves for enhancement of steady-state currents by propofol, etomidate, pentobarbital, or alphaxalone were at similar or lower drug concentrations compared with concentration-response relationships for enhancement of peak responses. We propose that modulation of tonically activated synaptic-type GABAA receptors contributes to the clinical actions of sedative drugs.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesiology (P.L., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (P.L., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
43
|
Hsieh YC, Puche AC. GABA modulation of SVZ-derived progenitor ventral cell migration. Dev Neurobiol 2014; 75:791-804. [PMID: 25421254 DOI: 10.1002/dneu.22249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022]
Abstract
The subventricular zone (SVZ) is a proliferative region that provides neurons to olfactory bulb throughout life. The new neurons undergo cell migration from SVZ and travel until they reach their final destination. We previously showed in the early postnatal mouse a ventral migratory subpopulation from SVZ targets the Islands of Calleja (ICC) in the basal forebrain. However, unlike the well-characterized rostral migratory stream, little is known about the guidance mechanisms operating in the ventrally directed migratory pathway. In this study, we examined the role of neurotransmitter γ-aminobutyric acid (GABA) in SVZ-derived progenitor ventral migration and the involvement of this neurotransmitter in the cytoarchitectual organization of dispersed cells into the tight clusters of the ICC. Our results show that the ventral SVZ cell migration rate was enhanced by GABA acting through a GABAA receptor and that GABA acts as a directional guidance cue for ventral migrating cells. Furthermore, disruption of GABA signaling inhibited the formation of Island clusters in vitro. Taken together, these data suggest that GABA is an important guidance and organizational cue for the Island of Calleja.
Collapse
Affiliation(s)
- Yi-Chun Hsieh
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Adam C Puche
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
44
|
Abstract
Topotecan is a topoisomerase 1 (TOP1) inhibitor that is used to treat various forms of cancer. We recently found that topotecan reduces the expression of multiple long genes, including many neuronal genes linked to synapses and autism. However, whether topotecan alters synaptic protein levels and synapse function is currently unknown. Here we report that in primary cortical neurons, topotecan depleted synaptic proteins that are encoded by extremely long genes, including Neurexin-1, Neuroligin-1, Cntnap2, and GABA(A)β3. Topotecan also suppressed spontaneous network activity without affecting resting membrane potential, action potential threshold, or neuron health. Topotecan strongly suppressed inhibitory neurotransmission via pre- and postsynaptic mechanisms and reduced excitatory neurotransmission. The effects on synaptic protein levels and inhibitory neurotransmission were fully reversible upon drug washout. Collectively, our findings suggest that TOP1 controls the levels of multiple synaptic proteins and is required for normal excitatory and inhibitory synaptic transmission.
Collapse
|
45
|
Farb DH, Ratner MH. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol Rev 2014; 66:1002-32. [PMID: 25237115 DOI: 10.1124/pr.114.009126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anxiety disorders are a major public health concern. Here, we examine the familiar area of anxiolysis in the context of a systems-level understanding that will hopefully lead to revealing an underlying pharmacological connectome. The introduction of benzodiazepines nearly half a century ago markedly improved the treatment of anxiety disorders. These agents reduce anxiety rapidly by allosterically enhancing the postsynaptic actions of GABA at inhibitory type A GABA receptors but side effects limit their use in chronic anxiety disorders. Selective serotonin reuptake inhibitors and serotonin/norepinephrine reuptake inhibitors have emerged as an effective first-line alternative treatment of such anxiety disorders. However, many individuals are not responsive and side effects can be limiting. Research into a relatively new class of agents known as neurosteroids has revealed novel modulatory sites and mechanisms of action that are providing insights into the pathophysiology of certain anxiety disorders, potentially bridging the gap between the GABAergic and serotonergic circuits underlying anxiety. However, translating the pharmacological activity of compounds targeted to specific receptor subtypes in rodent models of anxiety to effective therapeutics in human anxiety has not been entirely successful. Since modulating any one of several broad classes of receptor targets can produce anxiolysis, we posit that a systems-level discovery platform combined with an individualized medicine approach based on noninvasive brain imaging would substantially advance the development of more effective therapeutics.
Collapse
Affiliation(s)
- David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Marcia H Ratner
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
46
|
Zhang X, Du Z, Liu J, He J. Γ-aminobutyric acid receptors affect the progression and migration of tumor cells. J Recept Signal Transduct Res 2014; 34:431-9. [DOI: 10.3109/10799893.2013.856918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Ando N, Sugasawa Y, Inoue R, Aosaki T, Miura M, Nishimura K. Effects of the volatile anesthetic sevoflurane on tonic GABA currents in the mouse striatum during postnatal development. Eur J Neurosci 2014; 40:3147-57. [PMID: 25139222 DOI: 10.1111/ejn.12691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
Abstract
The volatile anesthetic sevoflurane, which is widely used in pediatric surgery, has proposed effects on GABAA receptor-mediated extrasynaptic tonic inhibition. In the developing striatum, medium-sized spiny projection neurons have tonic GABA currents, which function in the excitatory/inhibitory balance and maturation of striatal neural circuits. In this study, we examined the effects of sevoflurane on the tonic GABA currents of medium spiny neurons in developing striatal slices. Sevoflurane strongly increased GABAA receptor-mediated tonic conductance at postnatal days 3-35. The antagonist of the GABA transporter-1, 1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride further increased tonic GABA conductance during the application of sevoflurane, thereby increasing the total magnitude of tonic currents. Both GABA (5 μM) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride, the δ-subunit-containing GABAA receptor agonist, induced tonic GABA currents in medium spiny neurons but not in cholinergic neurons. However, sevoflurane additively potentiated the tonic GABA currents in both cells. Interestingly, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride-sensitive neurons made a large current response to sevoflurane, indicating the contribution of the δ-subunit on sevoflurane-enhanced tonic GABA currents. Our findings suggest that sevoflurane can affect the tone of tonic GABA inhibition in a developing striatal neural network.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Anesthesiology and Pain Management, Juntendo University School of Medicine, Tokyo, Japan; Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABA(A) receptors. J Neurosci 2014; 34:8300-17. [PMID: 24920633 DOI: 10.1523/jneurosci.0159-14.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas both GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) play a role in control of dorsal horn neuron excitability, their relative contribution to inhibition of small diameter primary afferent terminals remains controversial. To address this, we designed an approach for quantitative analyses of the distribution of GABA(A)R-subunits, GlyR α1-subunit and their anchoring protein, gephyrin, on terminals of rat spinal sensory afferents identified by Calcitonin-Gene-Related-Peptide (CGRP) for peptidergic terminals, and by Isolectin-B4 (IB4) for nonpeptidergic terminals. The approach was designed for light microscopy, which is compatible with the mild fixation conditions necessary for immunodetection of several of these antigens. An algorithm was designed to recognize structures with dimensions similar to those of the microscope resolution. To avoid detecting false colocalization, the latter was considered significant only if the degree of pixel overlap exceeded that expected from randomly overlapping pixels given a hypergeometric distribution. We found that both CGRP(+) and IB4(+) terminals were devoid of GlyR α1-subunit and gephyrin. The α1 GABA(A)R was also absent from these terminals. In contrast, the GABA(A)R α2/α3/α5 and β3 subunits were significantly expressed in both terminal types, as were other GABA(A)R-associated-proteins (α-Dystroglycan/Neuroligin-2/Collybistin-2). Ultrastructural immunocytochemistry confirmed the presence of GABA(A)R β3 subunits in small afferent terminals. Real-time quantitative PCR (qRT-PCR) confirmed the results of light microscopy immunochemical analysis. These results indicate that dorsal horn inhibitory synapses follow different rules of organization at presynaptic versus postsynaptic sites (nociceptive afferent terminals vs inhibitory synapses on dorsal horn neurons). The absence of gephyrin clusters from primary afferent terminals suggests a more diffuse mode of GABA(A)-mediated transmission at presynaptic than at postsynaptic sites.
Collapse
|
49
|
Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin. Eur J Pharmacol 2014; 740:570-7. [PMID: 24973695 DOI: 10.1016/j.ejphar.2014.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.
Collapse
|
50
|
Marowsky A, Vogt KE. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front Neural Circuits 2014; 8:27. [PMID: 24723854 PMCID: PMC3971179 DOI: 10.3389/fncir.2014.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5-10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|