1
|
Lee C, Song JH, Cha YE, Chang DK, Kim YH, Hong SN. Intestinal Epithelial Responses to IL-17 in Adult Stem Cell-derived Human Intestinal Organoids. J Crohns Colitis 2022; 16:1911-1923. [PMID: 35927216 DOI: 10.1093/ecco-jcc/jjac101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Th17 cells and their signature cytokine, interleukin-17A [IL-17], are considered as the main pathogenic factors in inflammatory bowel diseases [IBDs]. However, IL-17 neutralising antibodies, a theoretically curative medication for IBDs, paradoxically aggravated intestinal inflammation. The mechanisms by which IL-17 mediates the protective and pathological effects of IL-17 remain unclear in the intestinal epithelium. METHODS The intestinal epithelial responses induced by IL-17 were evaluated using the human small intestinal organoid [enteroid] model. RESULTS Organoid-forming efficiency, cell viability, and proliferation of enteroids were decreased in proportion to IL-17 concentration. The IL-17 induced cytotoxicity was predominantly mediated by pyroptosis with activation of CASP1 and cleavage of GSDMD. Bulk RNA-sequencing revealed the enrichment of secretion signalling in IL-17 treated enteroids, leading to mucin exocytosis. Among its components, PIGR was up-regulated significantly as the concentration of IL-17 increased, resulting in IgA transcytosis. Mucin exocytosis and IgA transcytosis have a protective role against enteric pathogens. Single-cell RNA sequencing identified that CASP1-mediated pyroptosis occurred actively in intestinal stem cells [ISCs] and enterocytes. IL-17 neutralising antibody completely restored IL-17 induced cytotoxicity, but suppressed mucin secretion and IgA transcytosis. Pyroptosis inhibition using CASP1 inhibitors significantly improved IL-17 induced cytotoxicity without diminishing its beneficial effects. CONCLUSIONS IL-17 induces the pyroptosis of ISCs and enterocytes, as well as mucin secretion of goblet cells and IgA transcytosis of epithelial cells. Paradoxical gastrointestinal effects of IL-17 neutralising antibodies may be associated with inhibition of mucin secretion and IgA transcytosis. The inhibition of pyroptosis using CASP1 inhibitors prevents IL-17 induced cytotoxicity without compromising its beneficial effects.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeo-Eun Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Lee C, An M, Joung JG, Park WY, Chang DK, Kim YH, Hong SN. TNFα Induces LGR5+ Stem Cell Dysfunction In Patients With Crohn's Disease. Cell Mol Gastroenterol Hepatol 2022; 13:789-808. [PMID: 34700029 PMCID: PMC8783132 DOI: 10.1016/j.jcmgh.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor alpha (TNFα) is considered a major tissue damage-promoting effector in Crohn's disease (CD) pathogenesis. Patient-derived intestinal organoid (enteroid) recapitulates the disease-specific characteristics of the intestinal epithelium. This study aimed to evaluate the intestinal epithelial responses to TNFα in enteroids derived from healthy controls and compare them with those of CD patient-derived enteroids. METHODS Human enteroids derived from patients with CD and controls were treated with TNFα (30 ng/mL), and cell viability and gene expression patterns were evaluated. RESULTS TNFα induced MLKL-mediated necroptotic cell death, which was more pronounced in CD patient-derived enteroids than in control enteroids. Immunohistochemistry and RNA sequencing revealed that treatment with TNFα caused expansion of the intestinal stem cell (ISC) populations. However, expanded ISC subpopulations differed in control and CD patient-derived enteroids, with LGR5+ active ISCs in control enteroids and reserve ISCs, such as BMI1+ cells, in CD patient-derived enteroids. In single-cell RNA sequencing, LGR5+ ISC-enriched cell cluster showed strong expression of TNFRSF1B (TNFR2) and cyclooxygenase-prostaglandin E2 (PGE2) activation. In TNFα-treated CD patient-derived enteroids, exogenous PGE2 (10 nmol/L) induced the expansion of the LGR5+ ISC population and improved organoid-forming efficiency, viability, and wound healing. CONCLUSIONS TNFα increases necroptosis of differentiated cells and induces the expansion of LGR5+ ISCs. In CD patient-derived enteroids, TNFα causes LGR5+ stem cell dysfunction (expansion failure), and exogenous PGE2 treatment restored the functions of LGR5+ stem cells. Therefore, PGE2 can be used to promote mucosal healing in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Minae An
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea; Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
3
|
Lee C, Hong SN, Kim ER, Chang DK, Kim YH. Epithelial Regeneration Ability of Crohn's Disease Assessed Using Patient-Derived Intestinal Organoids. Int J Mol Sci 2021; 22:ijms22116013. [PMID: 34199463 PMCID: PMC8199630 DOI: 10.3390/ijms22116013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
Little is known about the ability for epithelial regeneration and wound healing in patients with inflammatory bowel diseases. We evaluated the epithelial proliferation and wound healing ability of patients with Crohn's disease (CD) using patient-derived intestinal organoids. Human intestinal organoids were constructed in a three-dimensional intestinal crypt culture of enteroscopic biopsy samples from controls and CD patients. The organoid-forming efficiency of ileal crypts derived from CD patients was reduced compared with those from control subjects (p < 0.001). Long-term cultured organoids (≥6 passages) derived from controls and CD patients showed an indistinguishable microscopic appearance and culturing behavior. Under TNFα-enriched conditions (30 ng/mL), the organoid reconstitution rate and cell viability of CD patient-derived organoids were significantly lower than those of the control organoids (p < 0.05 for each). The number of EdU+ cells was significantly lower in TNFα-treated organoids derived from CD patients than in TNFα-treated control organoids (p < 0.05). In a wound healing assay, the unhealed area in TNFα-treated CD patient-derived organoids was significantly larger than that of TNFα-treated control organoids (p < 0.001). The wound healing ability of CD patient-derived organoids is reduced in TNFα-enriched conditions, due to reduced cell proliferation. Epithelial regeneration ability may be impaired in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Sung-Noh Hong
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: or ; Tel.: +82-2-3410-3409; Fax: +82-2-3410-6983
| | - Eun-Ran Kim
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| | - Dong-Kyung Chang
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| | - Young-Ho Kim
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| |
Collapse
|
4
|
Bokelmann M, Edenborough K, Hetzelt N, Kreher P, Lander A, Nitsche A, Vogel U, Feldmann H, Couacy-Hymann E, Kurth A. Utility of primary cells to examine NPC1 receptor expression in Mops condylurus, a potential Ebola virus reservoir. PLoS Negl Trop Dis 2020; 14:e0007952. [PMID: 31961874 PMCID: PMC6994141 DOI: 10.1371/journal.pntd.0007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/31/2020] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
The significance of the integral membrane protein Niemann-Pick C1 (NPC1) in the ebolavirus entry process has been determined using various cell lines derived from humans, non-human primates and fruit bats. Fruit bats have long been purported as the potential reservoir host for ebolaviruses, however several studies provide evidence that Mops condylurus, an insectivorous microbat, is also an ebolavirus reservoir. NPC1 receptor expression in the context of ebolavirus replication in microbat cells remains unstudied. In order to study Ebola virus (EBOV) cellular entry and replication in M. condylurus, we derived primary and immortalized cell cultures from 12 different organs. The NPC1 receptor expression was characterized by confocal microscopy and flow cytometry comparing the expression levels of M. condylurus primary and immortalized cells, HeLa cells, human embryonic kidney cells and cells from a European microbat species. EBOV replication kinetics was studied for four representative cell cultures using qRT-PCR. The aim was to elucidate the suitability of primary and immortalized cells from different tissues for studying NPC1 receptor expression levels and their potential influence on EBOV replication. The NPC1 receptor expression level in M. condylurus primary cells differed depending on the organ they were derived from and was for most cell types significantly lower than in human cell lines. Immortalized cells showed for most cell types higher expression levels than their corresponding primary cells. Concluding from our infection experiments with EBOV we suggest a potential correlation between NPC1 receptor expression level and virus replication rate in vitro. Although there have been Ebola virus (EBOV) outbreaks for more than 40 years, the animal natural reservoir that maintains this virus in nature has not been identified. Viruses and their respective reservoirs coevolve over millions of years, often without causing diseases in the reservoir itself. Upon entering a new host, infection can have devastating consequences, as in the case of EBOV. To gain entry into cells prior to replication, all ebolaviruses utilize the cellular receptor Niemann-Pick C1 (NPC1). In this study the authors focus their work on the Angolan free-tailed bat (Mops condylurus) as a potential reservoir for EBOV. Cells from various organs of this bat were isolated in culture and tested for the presence of NPC1. Most bat cell types had a lower amount of NPC1 compared to the tested human cells. These bat cells were also less efficiently infected by EBOV, indicating adaptation to EBOV. These results suggest low levels of virus replication in the respective tissues of M. condylurus and might be indicative of a virus-natural reservoir relationship.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kathryn Edenborough
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nicole Hetzelt
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Petra Kreher
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | | | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
6
|
Chander AC, Manak MS, Varsanik JS, Hogan BJ, Mouraviev V, Zappala SM, Sant GR, Albala DM. Rapid and Short-term Extracellular Matrix-mediated In Vitro Culturing of Tumor and Nontumor Human Primary Prostate Cells From Fresh Radical Prostatectomy Tissue. Urology 2017; 105:91-100. [PMID: 28365358 DOI: 10.1016/j.urology.2017.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To culture prostate cells from fresh biopsy core samples from radical prostatectomy (RP) tissue. Further, given the genetic heterogeneity of prostate cells, the ability to culture single cells from primary prostate tissue may be of importance toward enabling single-cell characterization of primary prostate tissue via molecular and cellular phenotypic biomarkers. METHODS A total of 260 consecutive tissue samples from RPs were collected between October 2014 and January 2016, transported at 4°C in serum-free media to an off-site central laboratory, dissociated, and cultured. A culture protocol, including a proprietary extracellular matrix formulation (ECMf), was developed that supports rapid and short-term single-cell culture of primary human prostate cells derived from fresh RP samples. RESULTS A total of 251 samples, derived from RP samples, yielded primary human tumor and nontumor prostate cells. Cultured cells on ECMf exhibit (1) survival after transport from the operating room to the off-site centralized laboratory, (2) robust (>80%) adhesion and survival, and (3) expression of different cell-type-specific markers. Cells derived from samples of increasing Gleason score exhibited a greater number of focal adhesions and more focal adhesion activation as measured by phospho-focal adhesion kinase (Y397) immunofluorescence when patient-derived cells were cultured on ECMf. Increased Ki67 immunofluorescence levels were observed in cells derived from cancerous RP tissue when compared to noncancerous RP tissue. CONCLUSION By utilizing a unique and defined extracellular matrix protein formulation, tumor and nontumor cells derived from primary human prostate tissue can be rapidly cultured and analyzed within 72 hours after harvesting from RP tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen M Zappala
- Department of Urology, Tufts University School of Medicine, Boston; Andover Urology, Andover, MA
| | - Grannum R Sant
- Department of Urology, Tufts University School of Medicine, Boston
| | | |
Collapse
|
7
|
Cunnea P, Stronach EA. Modeling platinum sensitive and resistant high-grade serous ovarian cancer: development and applications of experimental systems. Front Oncol 2014; 4:81. [PMID: 24860781 PMCID: PMC4029026 DOI: 10.3389/fonc.2014.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/29/2022] Open
Abstract
High-grade serous ovarian cancer remains the most common sub-type of ovarian cancer and, characterized by high degrees of genomic instability and heterogeneity, is typified by a transition from early response to acquired resistance to platinum-based chemotherapy. Conventional models for the study of ovarian cancer have been largely limited to a set of relatively poorly characterized immortalized cell lines and recent studies have called into question the validity of some of these as reliable models. Here, we review new approaches and models systems that take into account advances in our understanding of ovarian cancer biology and advances in the technology available for their generation and study. We discuss primary cell models, 2D, 3D, and organotypic models, and “paired” sample approaches that capture the evolution of chemotherapy failure within single cases. We also overview new methods for non-invasive collection of representative tumor material from blood samples. Adoption of such methods and models will improve the quality and clinical relevance of ovarian cancer research.
Collapse
Affiliation(s)
- Paula Cunnea
- Molecular Therapeutics Laboratory, Ovarian Cancer Action Research Centre, Institute of Reproductive and Developmental Biology, Department of Cancer and Surgery , Imperial College London, London , UK
| | - Euan A Stronach
- Molecular Therapeutics Laboratory, Ovarian Cancer Action Research Centre, Institute of Reproductive and Developmental Biology, Department of Cancer and Surgery , Imperial College London, London , UK
| |
Collapse
|
8
|
Amos PJ, Cagavi Bozkulak E, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2011; 195:26-40. [PMID: 21996576 PMCID: PMC3257814 DOI: 10.1159/000331390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells.
Collapse
Affiliation(s)
| | | | - Yibing Qyang
- Section of Cardiology, Department of Internal Medicine, Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, Conn., USA
| |
Collapse
|
9
|
Wu YM, Kao CY, Huang YJ, Yu IS, Lee HS, Lai HS, Lee PH, Lin CN, Lin SW. Genetic modification of donor hepatocytes improves therapeutic efficacy for hemophilia B in mice. Cell Transplant 2010; 19:1169-80. [PMID: 20412633 DOI: 10.3727/096368910x503398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hepatocyte transplantation (Tx) holds promise for curing genetic liver diseases. However, a limited number of donor hepatocytes can be transplanted into the host liver. Recipient preconditioning and donor cell engineering are under investigation to improve cell engraftment. In theory, genetically engineered cells secreting therapeutic proteins with superior function could compensate for poor engraftment efficiency. We have generated a bioengineered human coagulation factor IX (FIX) with augmented specific activity (named FIX-Triple). The aim of this study was to evaluate therapeutic efficacy of cell therapy using hemophilia B (HB) as a disease model by transplanting FIX-Triple-secreting hepatocytes. The donor hepatocytes were isolated from FIX-Triple knock-in (KI) or FIX-WT (wild-type) KI mice and transplanted intrasplenically into FIX knock-out (KO) mice. FIX-Triple KI recipients exhibited fourfold higher plasma FIX clotting activity than FIX-WT KI recipients. By repeated Txs, the clotting activity of FIX-Triple KI recipients even increased to more than 10% of normal mouse plasma. The engraftment and FIX production efficiencies of transplanted cells were equivalent between the FIX-WT KI and FIX-Triple KI donors. A hemostatic function assay showed that FIX-Triple KI recipients with repeated Txs had more enhanced clot kinetics and a greater maximum rate of thrombus generation than those with a single Tx. Moreover, FIX inhibitors in these recipients rarely developed. In conclusion, hepatocyte Tx with genetically engineered donor cells is an effective therapeutic strategy for HB.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Attard G, Rizzo S, Ledaki I, Clark J, Reid AHM, Thompson A, Khoo V, de Bono JS, Cooper CS, Hudson DL. A novel, spontaneously immortalized, human prostate cancer cell line, Bob, offers a unique model for pre-clinical prostate cancer studies. Prostate 2009; 69:1507-20. [PMID: 19544327 DOI: 10.1002/pros.20997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION New in vitro models of castration-resistant prostate cancer (CRPC) are urgently required. METHODS Trans-rectal needle biopsies (TRBP) of the prostate were performed for research purposes on progressing CRPC patients who had not received prior treatment to the prostate. Biopsies were immediately digested with collagenase and plated onto collagen-coated flasks with a feeder layer of 3T6 cells and cultured in cytokine-supplemented keratinocyte serum-free medium. RESULTS Biopsies from 25 patients were collected and one of these, following an initial period of crisis, spontaneously immortalized. A series of cell lines called Bob were then established from a clone that survived CD133-selection followed by 4 weeks under adhesion-independent conditions in methylcellulose. Gains and losses previously described in clinical prostate tumors, most notably loss of 8(p) and gain of 8(q), were identified on comparative genomic hybridization and long-term growth in culture, survival in methylcellulose and invasion through matrigel confirmed the malignant phenotype of Bob. Furthermore, Bob expressed high levels of p53 and markers of early differentiation, including K8, prostatic acid phosphatase and prostate stem cell antigen. There was, however, no in vivo growth and ERG and ETV1 were not rearranged. Growth in serum permitted some differentiation. CONCLUSION This is the first spontaneously immortalized prostate cancer cell line to be established from a TRBP of a patient with CRPC. Bob is a novel pre-clinical model for functional studies in CRPC and especially for studying the CRPC "basal" phenotype.
Collapse
|
11
|
Porter PC, Clark DR, McDaniel LD, McGregor WG, States JC. Telomerase-immortalized human fibroblasts retain UV-induced mutagenesis and p53-mediated DNA damage responses. DNA Repair (Amst) 2006; 5:61-70. [PMID: 16140041 DOI: 10.1016/j.dnarep.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 12/23/2022]
Abstract
Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.
Collapse
Affiliation(s)
- Paul C Porter
- Department of Pharmacology & Toxicology, University of Louisville, 570 South Preston Street, Rm221, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
12
|
Costa UM, Reischak D, da Silva J, Ravazzolo AP. Establishment and partial characterization of an ovine synovial membrane cell line obtained by transformation with Simian Virus 40 T antigen. J Virol Methods 2005; 128:72-8. [PMID: 15904982 DOI: 10.1016/j.jviromet.2005.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
The small ruminant lentiviruses, namely caprine arthritis encephalitis virus (CAEV) and Maedi Visna virus (MVV) are grown currently in secondary synovial membrane cells. Primary and secondary cell cultures are sometimes difficult to obtain and support a low number of passages and, therefore, permissive cell lines are needed. A transformed cell line was obtained by transfection of ovine synovial membrane secondary cell culture with a plasmid containing the SV40 large T antigen gene. The transformed cell culture described in this paper showed a higher growth rate and a more homogenous population of fibroblast-like cells when compared to the original ovine synovial membrane secondary cell cultures. Karyotype analysis has indicated the induction of many random chromosome changes, leading to a decrease in chromosome number. The SV40 DNA was detected in the nucleus and in the cytoplasm of transformed cells. The putative expression of large T antigen was presumed by the detection of the corresponding mRNA by PCR. Finally, the transformed ovine synovial membrane cells were shown to be permissive to small ruminant lentiviruses, and these are suggested as a cell line for in vitro isolation and propagation of these viruses.
Collapse
Affiliation(s)
- U M Costa
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
13
|
Barshes NR, Gay AN, Williams B, Patel AJ, Awad SS. Support for the Acutely Failing Liver: A Comprehensive Review of Historic and Contemporary Strategies. J Am Coll Surg 2005; 201:458-76. [PMID: 16125082 DOI: 10.1016/j.jamcollsurg.2005.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/23/2005] [Accepted: 04/11/2005] [Indexed: 12/16/2022]
Affiliation(s)
- Neal R Barshes
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
14
|
Béjar J, Porta J, Borrego JJ, Alvarez MC. The piscine SAF-1 cell line: genetic stability and labeling. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:389-95. [PMID: 15976938 DOI: 10.1007/s10126-004-4083-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 11/18/2004] [Indexed: 05/03/2023]
Abstract
Fish cell lines are increasingly important research tools. The SAF-1 cell line, fibroblast-like culture derived from the marine fish gilthead seabream (Sparus aurata), has proved useful in many applications, especially in viral research. For cell lines intended as in vitro models, characterization of their properties and authentication are essential for deeper understanding of their performance and thus more precise experimental design and applicability. In this study we characterized the SAF-1 cell line in terms of genetic stability through time and genetic labeling. Methods for determining stability include telomerase activity, karyotyping, mapping of ribosomal RNA regions, and DNA content. For genetic labeling 12 microsatellite loci were used. The results indicate that telomerase has been activated in the course of SAF-1 development, and the highest levels of telomerase activity correlate with an increase in cell proliferation, thus supporting a permanent cell line. This stability is in agreement with the normal situation presented by the cytogenetic traits and DNA content values, and the genotypic profile allows SAF-1 authentication at the single individual level. This study increases the value of SAF-1 as an in vitro system, which is now one of the few well-characterized cell lines from a marine fish.
Collapse
Affiliation(s)
- Julia Béjar
- Department of Genetics, Faculty of Sciences, University of Málaga, 29071, Málaga, Spain.
| | | | | | | |
Collapse
|
15
|
Karpinets TV, Foy BD. Tumorigenesis: the adaptation of mammalian cells to sustained stress environment by epigenetic alterations and succeeding matched mutations. Carcinogenesis 2005; 26:1323-34. [PMID: 15802302 DOI: 10.1093/carcin/bgi079] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate that during tumorigenic transformations, cells may generate mutations by themselves as a result of error-prone cell division with participation of error-prone polymerases and aberrant mitosis. These mechanisms may be activated in cells by continuing proliferative and survival signaling in a sustained stress environment (SSE). The paper hypothesizes that long-term exposure to this signaling epigenetically reprograms the genome of some cells and, in addition, leads to their senescence. The epigenetic reprogramming results in: (i) hypermethylation of tumor-suppressor genes involved in the onset of cell-cycle arrest, apoptosis and DNA repair; (ii) hypomethylation of proto-oncogenes associated with persistent proliferative activity; and (iii) the global demethylation of the genome and activation of DNA repeats. These epigenetic changes in the proliferating cells associate with their replicative senescence and allow the reprogrammed senescent cells to overcome the cell-cycle arrest and to activate error-prone replications. It is hypothesized that the generation of mutations in the error-prone replications of the epigenetically reprogrammed cells is not random. The mutations match epigenetic alterations in the cellular genome, namely gain of function mutations in the case of hypomethylation and loss of functions in the case of hypermethylation. In addition, continuing proliferation of the cells imposed by signaling in SSE speeds up the natural selection of the mutant cells favoring the survival of the cells with mutations that are beneficial in the environment. In this way, a stress-induced replication of the cells epigenetically reprograms their genome for quick adaptation to stressful environments providing an increased rate of mutations, epigenetic tags to beneficial mutations and quick selection process. In combination, these processes drive the origin of the transformed mammalian cells, cancer development and progression. Support from genomic, biochemical and medical studies for the proposed hypothesis, and its implementations are discussed.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Plant Sciences, University of Tennessee, 2431 Center Drive Knoxville, TN 37996-4500, USA.
| | | |
Collapse
|
16
|
Yang Z, Lau R, Marcadier JL, Chitayat D, Pearson CE. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am J Hum Genet 2003; 73:1092-105. [PMID: 14574643 PMCID: PMC1180489 DOI: 10.1086/379523] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 08/26/2003] [Indexed: 11/03/2022] Open
Abstract
Gene-specific CTG/CAG repeat expansion is associated with at least 14 human diseases, including myotonic dystrophy type 1 (DM1). Most of our understanding of trinucleotide instability is from nonhuman models, which have presented mixed results, supporting replication errors or processes independent of cell division as causes. Nevertheless, the mechanism occurring at the disease loci in patient cells is poorly understood. Using primary fibroblasts derived from a fetus with DM1, we have shown that spontaneous expansion of the diseased (CTG)(216) allele occurred in proliferating cells but not in quiescent cells. Expansions were "synchronous," with mutation frequencies approaching 100%. Furthermore, cells were treated with agents known to alter DNA synthesis but not to directly damage DNA. Inhibiting replication initiation with mimosine had no effect upon instability. Inhibiting both leading- and lagging-strand synthesis with aphidicolin or blocking only lagging strand synthesis with emetine significantly enhanced CTG expansions. It was striking that only the expanded DM1 allele was altered, leaving the normal allele, (CTG)(12), and other repeat loci unaffected. Standard and small-pool polymerase chain reaction revealed that inhibitors enhanced the magnitude of short expansions in most cells threefold, whereas 11%-25% of cells experienced gains of 122-170 repeats, to sizes of (CTG)(338)-(CTG)(386). Similar results were observed for an adult DM1 cell line. Our results support a role for the perturbation of replication fork dynamics in DM1 CTG expansions within patient fibroblasts. This is the first report that repeat-length alterations specific to a disease allele can be modulated by exogenously added compounds.
Collapse
Affiliation(s)
- Zhi Yang
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, and University Health Network, Toronto
| | - Rachel Lau
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, and University Health Network, Toronto
| | - Julien L. Marcadier
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, and University Health Network, Toronto
| | - David Chitayat
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, and University Health Network, Toronto
| | - Christopher E. Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, and University Health Network, Toronto
| |
Collapse
|