1
|
Schäfer C, Ascui G, Ribeiro CH, López M, Prados-Rosales R, González PA, Bueno SM, Riedel CA, Baena A, Kalergis AM, Carreño LJ. Innate immune cells for immunotherapy of autoimmune and cancer disorders. Int Rev Immunol 2017; 36:315-337. [PMID: 28933579 DOI: 10.1080/08830185.2017.1365145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of the immune system has been widely targeted for the treatment of several immune-related diseases, such as autoimmune disorders and cancer, due to its crucial role in these pathologies. Current available therapies focus mainly on symptomatic treatment and are often associated with undesirable secondary effects. For several years, remission of disease and subsequently recovery of immune homeostasis has been a major goal for immunotherapy. Most current immunotherapeutic strategies are aimed to inhibit or potentiate directly the adaptive immune response by modulating antibody production and B cell memory, as well as the effector potential and memory of T cells. Although these immunomodulatory approaches have shown some success in the clinic with promising therapeutic potential, they have some limitations related to their effectiveness in disease models and clinical trials, as well as elevated costs. In the recent years, a renewed interest has emerged on targeting innate immune cells for immunotherapy, due to their high plasticity and ability to exert a potent and extremely rapid response, which can influence the outcome of the adaptive immune response. In this review, we discuss the immunomodulatory potential of several innate immune cells, as well as they use for immunotherapy, especially in autoimmunity and cancer.
Collapse
Affiliation(s)
- Carolina Schäfer
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Gabriel Ascui
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Carolina H Ribeiro
- b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mercedes López
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Rafael Prados-Rosales
- c Centro de Investigaciones Cooperativas en Biociencias (CIC bioGUNE) , Bilbao , Spain
| | - Pablo A González
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,e Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Universidad Andrés Bello , Santiago , Chile
| | - Andrés Baena
- f Departamento de Microbiología y Parasitología, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,g Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leandro J Carreño
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| |
Collapse
|
2
|
Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 2015; 125:2220-7. [PMID: 25961450 DOI: 10.1172/jci78087] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease that results from a break in immune tolerance to self-antigens, leading to multi-organ destruction. Autoantibody deposition and inflammatory cell infiltration in target organs such as kidneys and brain lead to complications of this disease. Dysregulation of cellular and humoral immune response elements, along with organ-defined molecular aberrations, form the basis of SLE pathogenesis. Aberrant T lymphocyte activation due to signaling abnormalities, linked to defective gene transcription and altered cytokine production, are important contributors to SLE pathophysiology. A better understanding of signaling and gene regulation defects in SLE T cells will lead to the identification of specific novel molecular targets and predictive biomarkers for therapy.
Collapse
|
3
|
Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME, Tsao BP, Criswell LA, Kimberly RP, Harley JB, Sivils KL, Vyse TJ, Gaffney PM, Langefeld CD, Jacob CO. GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 2014; 15:347-54. [PMID: 24871463 PMCID: PMC4156543 DOI: 10.1038/gene.2014.23] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022]
Abstract
In a Genome Wide Association Study (GWAS) of individuals of European ancestry afflicted with Systemic Lupus Erythematosus (SLE) the extensive utilization of imputation, stepwise multiple regression, lasso regularization, and increasing study power by utilizing False Discovery Rate (FDR) instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of 4 genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF, and MED1), two components of the NFκB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6), and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.
Collapse
Affiliation(s)
- D L Armstrong
- 1] The Lupus Genetic Group, Department of Medicine, University of Southern California, Los Angeles, CA, USA [2] Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA, USA
| | - R Zidovetzki
- 1] The Lupus Genetic Group, Department of Medicine, University of Southern California, Los Angeles, CA, USA [2] Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA, USA
| | - M E Alarcón-Riquelme
- 1] Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA [2] Centro de Genómica e Investigación Oncológica (GENYO), Pfizer-Universidad de Granada-Junta de Andalucia, Granada, Spain
| | - B P Tsao
- Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - L A Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J B Harley
- 1] Division of Rheumatology and The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA [2] U.S. Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - K L Sivils
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - T J Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London, London, UK
| | - P M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - C D Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, NC, USA
| | - C O Jacob
- The Lupus Genetic Group, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Modulatory function of invariant natural killer T cells in systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:478429. [PMID: 22761630 PMCID: PMC3385970 DOI: 10.1155/2012/478429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies of SLE-susceptible loci and the cellular and humoral immune responses reveal variable aberrations associated with this systemic disease. Invariant natural killer T (iNKT) cells are a unique subset of lymphocytes that control peripheral tolerance. Mounting evidence showing reductions in the proportion and activity of iNKT cells in SLE patients suggests the suppressive role of iNKT cells. Studies using murine lupus models demonstrate that iNKT cells participate in SLE progression by sensing apoptotic cells, regulating immunoglobulin production, and altering the cytokine profile upon activation. However, the dichotomy of iNKT cell actions in murine models implies complicated interactions within the body's milieu. Therefore, application of potential therapy for SLE using glycolipids to regulate iNKT cells should be undertaken cautiously.
Collapse
|
6
|
Loh C, Pau E, Lajoie G, Li TT, Baglaenko Y, Cheung YH, Chang NH, Wither JE. Epistatic suppression of fatal autoimmunity in New Zealand black bicongenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:5845-53. [PMID: 21464090 DOI: 10.4049/jimmunol.1003426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.NZBc4) exhibited a marked expansion of B1a and NKT cells in the surprising absence of autoimmunity. In this study, we sought to examine whether epistatic interactions between these two loci would affect lupus autoimmunity by generating bicongenic mice that carry both NZB chromosomal intervals. Compared with B6.NZBc1 mice, bicongenic mice demonstrated significantly decreased mortality, kidney disease, Th1-biased IgG autoantibody isotypes, and differentiation of IFN-γ-producing T cells. Furthermore, a subset of bicongenic mice exhibited a paucity of CD21(+)CD1d(+) B cells and an altered NKT cell activation profile that correlated with greater disease inhibition. Thus, NZBc4 contains suppressive epistatic modifiers that appear to inhibit the development of fatal NZBc1 autoimmunity by promoting a shift away from a proinflammatory cytokine profile, which in some mice may involve NKT cells.
Collapse
Affiliation(s)
- Christina Loh
- Arthritis Center of Excellence, Toronto Western Research Institute, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Southcombe J, Redman C, Sargent I. Peripheral blood invariant natural killer T cells throughout pregnancy and in preeclamptic women. J Reprod Immunol 2010; 87:52-9. [PMID: 20850184 PMCID: PMC2995212 DOI: 10.1016/j.jri.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 01/14/2023]
Abstract
Invariant natural killer T (iNKT) cells are implicated in the pathogenesis of several diseases. They influence both innate and adaptive immune responses through their capacity to rapidly produce large quantities of cytokines upon activation. During pregnancy maternal immunity is biased towards type 2 cytokine production to regulate type 1 cytokines that could be harmful for the developing fetus. This shift to type 2 cytokines does not occur in preeclamptic women and there is an exaggerated maternal inflammatory response which is dangerous for both mother and baby. We have therefore investigated the numbers, phenotype and functional activity of iNKT cells throughout pregnancy and in women diagnosed with preeclampsia. We demonstrate that the numbers of iNKT cells in the peripheral blood do not change between the first, second and third trimesters of pregnancy, but the cells become activated and less able to produce the type 1 cytokine IFNγ. However, iNKT cells are unchanged in preeclamptic women, when compared to normal pregnancy, suggesting that these cells are not primary players in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jennifer Southcombe
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|