1
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
2
|
Fritzen L, Wienken K, Wagner L, Kurtyka M, Vogel K, Körbelin J, Weggen S, Fricker G, Pietrzik CU. Truncated mini LRP1 transports cargo from luminal to basolateral side across the blood brain barrier. Fluids Barriers CNS 2024; 21:74. [PMID: 39289695 PMCID: PMC11409491 DOI: 10.1186/s12987-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands' route across endothelial cells in vitro. METHODS The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). RESULTS We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. CONCLUSION Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it's release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.
Collapse
Affiliation(s)
- Laura Fritzen
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| | - Katharina Wienken
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Lelia Wagner
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Magdalena Kurtyka
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | - Katharina Vogel
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jakob Körbelin
- Department for Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Hamburg, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
3
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
4
|
Yuan S, Ma T, Zhang YN, Wang N, Baloch Z, Ma K. Novel drug delivery strategies for antidepressant active ingredients from natural medicinal plants: the state of the art. J Nanobiotechnology 2023; 21:391. [PMID: 37884969 PMCID: PMC10604811 DOI: 10.1186/s12951-023-02159-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.
Collapse
Affiliation(s)
- Shun Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ting Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ya-Nan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Ning Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People's Republic of China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China.
| |
Collapse
|
5
|
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022. [DOI: 10.1002/slct.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
- Department of Chemistry Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kamalakanta Behera
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| |
Collapse
|
6
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; 17:3751-3775. [PMID: 36065287 PMCID: PMC9440714 DOI: 10.2147/ijn.s378217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/03/2023] Open
Abstract
Glioma is characterized by high mortality and low postoperative survival. Despite the availability of various therapeutic approaches and molecular typing, the treatment failure rate and the recurrence rate of glioma remain high. Given the limitations of existing therapeutic tools, nanotechnology has emerged as an alternative treatment option. Nanoparticles, such as polydopamine (PDA)-based nanoparticles, are embodied with reliable biodegradability, efficient drug loading rate, relatively low toxicity, considerable biocompatibility, excellent adhesion properties, precisely targeted delivery, and strong photothermal conversion properties. Therefore, they can further enhance the therapeutic effects in patients with glioma. Moreover, polydopamine contains pyrocatechol, amino and carboxyl groups, active double bonds, catechol, and other reactive groups that can react with biofunctional molecules containing amino, aldehyde, or sulfhydryl groups (main including, self-polymerization, non-covalent self-assembly, π-π stacking, electrostatic attraction interaction, chelation, coating and covalent co-assembly), which form a reversible dynamic covalent Schiff base bond that is extremely sensitive to pH values. Meanwhile, PDA has excellent adhesion capability that can be further functionally modified. Consequently, the aim of this review is to summarize the application of PDA-based NPs in glioma and to acquire insight into the therapeutic effect of the drug-loaded PDA-based nanocarriers (PDA NPs). A wealthy understanding and argument of these sides is anticipated to afford a better approach to develop more reasonable and valid PDA-based cancer nano-drug delivery systems. Finally, we discuss the expectation for the prospective application of PDA in this sphere and some individual viewpoints.
Collapse
Affiliation(s)
- Hao Wu
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Min Wei
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Yu Xu
- Nanotechnology, Jinling Institute of Technology, Nanjing, People’s Republic of China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xue Zhai
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Peng Su
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
7
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; Volume 17:3751-3775. [DOI: https:/doi.org/10.2147/ijn.s378217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
|
8
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
9
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
10
|
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 2020; 15:6917-6934. [PMID: 33061359 PMCID: PMC7519827 DOI: 10.2147/ijn.s264498] [Citation(s) in RCA: 761] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized small extracellular vesicles secreted by cells, carrying nucleic acids, proteins, lipids and other bioactive substances to play a role in the body's physiological and pathological processes. Compared to synthetic carriers such as liposomes and nanoparticles, the endogeneity and heterogeneity of exosomes give them extensive and unique advantages in the field of disease diagnosis and treatment. However, the storage stability, low yield, low purity, and weak targeting of exosomes limit its clinical application. For this reason, further exploration is needed to optimize the above problems and facilitate future functional studies of exosomes. In this paper, the origin, classification, preparation and characterization, storage stability and applications of exosome delivery system are summarized and discussed by searching a large number of literatures.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiayao Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiayi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanan Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
11
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|
12
|
Luo S, Du L, Cui Y. Potential Therapeutic Applications and Developments of Exosomes in Parkinson’s Disease. Mol Pharm 2020; 17:1447-1457. [DOI: 10.1021/acs.molpharmaceut.0c00195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siqi Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Nirale P, Paul A, Yadav KS. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer's, Parkinson's and Prion's. Life Sci 2020; 245:117394. [PMID: 32017870 DOI: 10.1016/j.lfs.2020.117394] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases need the drugs to be delivered right inside the brain to maximizing the therapeutic effects. This can be achieved by use of novel targeted delivery systems such as nanoemulsions. Nanoemulsions (NE) are nano-sized emulsions that are manufactured for enhancing the delivery of drugs to the targeted site and minimize adverse effects and toxic reactions. Looking into the advanced pharmaceutical applications of NE, the present review gives an insight to the understanding of the application of NE in NDs like AD, PD and Prion's disease. The review also touches upon the pathophysiology of these ND diseases to have a clear understanding of the molecular aspects of the disease. Finally, the review sets a standpoint of nanoemulsion's significance in the treatment therapy of ND besides the drawbacks associated with the current drug therapy in NDs.
Collapse
Affiliation(s)
- Prabhuti Nirale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Ankita Paul
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India.
| |
Collapse
|
14
|
Abstract
Exosomes are membrane-bound cargo measuring 30–140 nm comprised of a lipid bilayer containing various proteins, RNAs, DNAs, and bioactive lipids that can be transferred between cells. They have been shown to be produced and released by many different types of healthy and diseased cells. Exosomes are secreted by all types of cells in culture, and are also found in various body fluids including blood, saliva, urine, and breast milk. Exosomes are essential for healthy physiological as well as pathological processes. In addition to their normal function, exosomes are involved in the development and progression of various diseases, potentiating cellular stress and damage. Pathogens take advantage of exosome release from infected host cells by manipulating host-derived exosomes to evade the immune system responses. Exosomes are involved in other pathological conditions such as neurodegenerative diseases, liver diseases, heart failure, cancer, diabetes, kidney diseases, osteoporosis and atherosclerotic cardiovascular disease. Hence, we can exploit exosomes as biomarkers and vaccines and modify them rationally for therapeutic interventions including tissue engineering. Further studies on exosomes will explore their potential and provide new methodology for effective clinical diagnostics and therapeutic strategies: such uses can be called exosome theragnostics. This chapter reviews the potential theragnostic (diagnostic and therapeutic) application of exosomes in major organ systems in clinical fields.
Collapse
|
15
|
Haney MJ, Klyachko NL, Harrison EB, Zhao Y, Kabanov AV, Batrakova EV. TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. Adv Healthc Mater 2019; 8:e1801271. [PMID: 30997751 PMCID: PMC6584948 DOI: 10.1002/adhm.201801271] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are promising natural nanocarriers for delivery of various types of therapeutics. Earlier engineered EV-based formulations for neurodegenerative diseases and cancer are reported. Herein, the use of macrophage-derived EVs for brain delivery of a soluble lysosomal enzyme tripeptidyl peptidase-1, TPP1, to treat a lysosomal storage disorder, Neuronal Ceroid Lipofuscinoses 2 (CLN2) or Batten disease, is investigated. TPP1 is loaded into EVs using two methods: i) transfection of parental EV-producing macrophages with TPP1-encoding plasmid DNA (pDNA) or ii) incorporation therapeutic protein TPP1 into naive empty EVs. For the former approach, EVs released by pretransfected macrophages contain the active enzyme and TPP1-encoding pDNA. To achieve high loading efficiency by the latter approach, sonication or permeabilization of EV membranes with saponin is utilized. Both methods provide proficient incorporation of functional TPP1 into EVs (EV-TPP1). EVs significantly increase stability of TPP1 against protease degradation and provide efficient TPP1 delivery to target cells in in vitro model of CLN2. The majority of EV-TPP1 (≈70%) is delivered to target organelles, lysosomes. Finally, a robust brain accumulation of EV carriers and increased lifespan is recorded in late-infantile neuronal ceroid lipofuscinosis (LINCL) mouse model following intraperitoneal administration of EV-TPP1.
Collapse
Affiliation(s)
- Matthew J Haney
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia L Klyachko
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Deparment of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Emily B Harrison
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Deparment of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
16
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Silva GA. A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence. Front Neurosci 2018; 12:843. [PMID: 30505265 PMCID: PMC6250836 DOI: 10.3389/fnins.2018.00843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
A confluence of technological capabilities is creating an opportunity for machine learning and artificial intelligence (AI) to enable "smart" nanoengineered brain machine interfaces (BMI). This new generation of technologies will be able to communicate with the brain in ways that support contextual learning and adaptation to changing functional requirements. This applies to both invasive technologies aimed at restoring neurological function, as in the case of neural prosthesis, as well as non-invasive technologies enabled by signals such as electroencephalograph (EEG). Advances in computation, hardware, and algorithms that learn and adapt in a contextually dependent way will be able to leverage the capabilities that nanoengineering offers the design and functionality of BMI. We explore the enabling capabilities that these devices may exhibit, why they matter, and the state of the technologies necessary to build them. We also discuss a number of open technical challenges and problems that will need to be solved in order to achieve this.
Collapse
Affiliation(s)
- Gabriel A. Silva
- Departments of Bioengineering and Neurosciences, Center for Engineered Natural Intelligence, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
19
|
Lozić I, Hartz RV, Bartlett CA, Shaw JA, Archer M, Naidu PSR, Smith NM, Dunlop SA, Iyer KS, Kilburn MR, Fitzgerald M. Enabling dual cellular destinations of polymeric nanoparticles for treatment following partial injury to the central nervous system. Biomaterials 2015; 74:200-16. [PMID: 26461115 DOI: 10.1016/j.biomaterials.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Following neurotrauma, oxidative stress is spread via the astrocytic syncytium and is associated with increased aquaporin 4 (AQP4), inflammatory cell infiltration, loss of neurons and glia and functional deficits. Herein we evaluate multimodal polymeric nanoparticles functionalized with an antibody to an extracellular epitope of AQP4, for targeted delivery of an anti-oxidant as a therapeutic strategy following partial optic nerve transection. Using fluorescence microscopy, spectrophotometry, correlative nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy, in vitro and in vivo, we demonstrate that functionalized nanoparticles are coated with serum proteins such as albumin and enter both macrophages and astrocytes when administered to the site of a partial optic nerve transection in rat. Antibody functionalized nanoparticles synthesized to deliver the antioxidant resveratrol are effective in reducing oxidative damage to DNA, AQP4 immunoreactivity and preserving visual function. Non-functionalized nanoparticles evade macrophages more effectively and are found more diffusely, including in astrocytes, however they do not preserve the optic nerve from oxidative damage or functional loss following injury. Our study highlights the need to comprehensively investigate nanoparticle location, interactions and effects, both in vitro and in vivo, in order to fully understand functional outcomes.
Collapse
Affiliation(s)
- I Lozić
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - R V Hartz
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - C A Bartlett
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - J A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M Archer
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - P S R Naidu
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - N M Smith
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia; Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - S A Dunlop
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - K Swaminathan Iyer
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M R Kilburn
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - M Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia.
| |
Collapse
|
20
|
Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease. Acta Biomater 2015; 25:172-83. [PMID: 26143603 DOI: 10.1016/j.actbio.2015.06.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/17/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimer's disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. STATEMENT OF SIGNIFICANCE Alzheimer's disease (AD) is the world's most common form of dementia characterized by intracellular neurofibrillary tangles in the brain. Over the past decades, the blood-brain barrier (BBB) limits access of therapeutic or diagnostic agents into the brain, which greatly hinders the development of new drugs for treating AD. In this work, we evaluated the efficiency of B6-SA-SeNPs across BBB and investigated the interactions between B6-SA-SeNPs and amyloid-β peptide (Aβ). We confirm that B6-SA-SeNPs could provide a promising platform because of its high brain delivery efficiency, anti-amyloid properties and anti-oxidant properties, which may serve as a novel nanomedicine for the application in the treatment of brain diseases.
Collapse
|
21
|
Cytotoxic and antiangiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles. Anticancer Drugs 2015; 26:167-79. [PMID: 25243454 DOI: 10.1097/cad.0000000000000173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic because of its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated the unique PTX-RUB formulation. PTX was solubilized by RUB in water to levels of 1.6-6.3 mg/ml at 10-40% weight/volume. These nanomicellar PTX-RUB complexes were dried to a powder, which was subsequently reconstituted in physiologic solutions. After 2.5 h, 85-99% of PTX-RUB remained soluble in gastric fluid, whereas 79-96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB, with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with dimethyl sulfoxide-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 to 20 nmol/l. In addition, tubule formation and migration of human umbilical vein endothelial cells were inhibited at levels as low as 5 nmol/l. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations.
Collapse
|
22
|
Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 2015; 207:18-30. [PMID: 25836593 DOI: 10.1016/j.jconrel.2015.03.033] [Citation(s) in RCA: 1417] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/24/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
Abstract
Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson's disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100-200nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders.
Collapse
|
23
|
Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D. Nanotechnologies for the study of the central nervous system. Prog Neurobiol 2014; 123:18-36. [PMID: 25291406 DOI: 10.1016/j.pneurobio.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
Abstract
The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.
Collapse
Affiliation(s)
- A Ajetunmobi
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Prina-Mello
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland.
| | - Y Volkov
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Corvin
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland
| | - D Tropea
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland.
| |
Collapse
|
24
|
Antimisiaris S, Mourtas S, Markoutsa E, Skouras A, Papadia K. Nanoparticles for Diagnosis and/or Treatment of Alzheimer's Disease. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Martínez Vera NP, Schmidt R, Langer K, Zlatev I, Wronski R, Auer E, Havas D, Windisch M, von Briesen H, Wagner S, Stab J, Deutsch M, Pietrzik C, Fazekas F, Ropele S. Tracking of magnetite labeled nanoparticles in the rat brain using MRI. PLoS One 2014; 9:e92068. [PMID: 24633006 PMCID: PMC3954869 DOI: 10.1371/journal.pone.0092068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
This study was performed to explore the feasibility of tracing nanoparticles for drug transport in the healthy rat brain with a clinical MRI scanner. Phantom studies were performed to assess the R1 ( = 1/T1) relaxivity of different magnetically labeled nanoparticle (MLNP) formulations that were based on biodegradable human serum albumin and that were labeled with magnetite of different size. In vivo MRI measurements in 26 rats were done at 3T to study the effect and dynamics of MLNP uptake in the rat brain and body. In the brain, MLNPs induced T1 changes were quantitatively assessed by T1 relaxation time mapping in vivo and compared to post-mortem results from fluorescence imaging. Following intravenous injection of MLNPs, a visible MLNP uptake was seen in the liver and spleen while no visual effect was seen in the brain. However a histogram analysis of T1 changes in the brain demonstrated global and diffuse presence of MLNPs. The magnitude of these T1 changes scaled with post-mortem fluorescence intensity. This study demonstrates the feasibility of tracking even small amounts of magnetite labeled NPs with a sensitive histogram technique in the brain of a living rodent.
Collapse
Affiliation(s)
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Iavor Zlatev
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | | | - Ewald Auer
- JSW-Live Sciences GmbH, Grambach, Austria
| | | | | | - Hagen von Briesen
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Sylvia Wagner
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Julia Stab
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Motti Deutsch
- Physics Department, Schottenstein Center for the Research and Technology of the Cellome, Bar Ilan University, Ramat Gan, Israel
| | - Claus Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that occurs in two forms, an early-onset form that is genetically determined and a far more common late-onset form that is not. In both cases, the disease results in severe cognitive dysfunction, among other problems, and the late-onset form of the disease is now considered to be the most common cause of dementia among the elderly. While a good deal of research has been focused on elucidating the etiology of the late-onset form for more than two decades, results to date have been modest and have not yet engendered useful therapeutic strategies for cure of the disease. In this review, we discuss the prevalent ideas that have governed this research for several years, and we challenge these ideas with alternative findings suggesting a multifactorial etiology. We review promising newer ideas that may prove effective as therapeutic interventions for late-onset AD, as well as providing reliable means of earlier and more specific diagnosis of the disease process. In the discussions included here, we reference relevant clinical and basic science literature underlying research into disease etiology and pathogenesis, and we highlight current reviews on the various topics addressed.
Collapse
|
27
|
Meister S, Zlatev I, Stab J, Docter D, Baches S, Stauber RH, Deutsch M, Schmidt R, Ropele S, Windisch M, Langer K, Wagner S, von Briesen H, Weggen S, Pietrzik CU. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood-brain barrier model. Alzheimers Res Ther 2013; 5:51. [PMID: 24280275 PMCID: PMC3978673 DOI: 10.1186/alzrt225] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer's disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood-brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders. METHODS The Aβ42 lowering drug flurbiprofen was embedded in polylactide (PLA) nanoparticles by emulsification-diffusion technique and their potential as drug carriers in an in vitro BBB model was examined. First, the cytotoxic potential of the PLA-flurbiprofen nanoparticles on endothelial cells and the cellular binding and uptake by endothelial cells was studied. Furthermore, the biological activity of the nanoparticulate flurbiprofen on γ-secretase modulation as well as its in vitro release was examined. Furthermore, the protein corona of the nanoparticles was studied as well as their ability to transport flurbiprofen across an in vitro BBB model. RESULTS PLA-flurbiprofen nanoparticles were endocytosed by endothelial cells and neither affected the vitality nor barrier function of the endothelial cell monolayer. The exposure of the PLA-flurbiprofen nanoparticles to human plasma occurred in a rapid protein corona formation, resulting in their decoration with bioactive proteins, including apolipoprotein E. Furthermore, luminally administered PLA-flurbiprofen nanoparticles in contrast to free flurbiprofen were able to modulate γ-secretase activity by selectively decreasing Aβ42 levels in the abluminal compartment of the BBB model. CONCLUSIONS In this study, we were able to show that flurbiprofen can be transported by PLA nanoparticles across an in vitro BBB model and most importantly, the transported flurbiprofen modulated γ-secretase activity by selectively decreasing Aβ42 levels. These results demonstrate that the modification of drugs via embedding in nanoparticles is a promising tool to facilitate drug delivery to the brain, which enables future development for the treatment of neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Sabrina Meister
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Iavor Zlatev
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Julia Stab
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Dominic Docter
- Molecular and Cellular Oncology/Mainz Screening Center (MSC), ENT-Department, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sandra Baches
- Department of Neuropathology, Heinrich Heine University, Duesseldorf, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/Mainz Screening Center (MSC), ENT-Department, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mordechai Deutsch
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar Ilan University, Ramat gan, Israel
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Sylvia Wagner
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Hagen von Briesen
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Duesseldorf, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
28
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
29
|
Santos SD, Medronho B, Santos TD, Antunes FE. Amphiphilic Molecules in Drug Delivery Systems. DRUG DELIVERY SYSTEMS: ADVANCED TECHNOLOGIES POTENTIALLY APPLICABLE IN PERSONALISED TREATMENT 2013. [DOI: 10.1007/978-94-007-6010-3_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Bernardi A, Frozza RL, Meneghetti A, Hoppe JB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego CG. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer's disease models. Int J Nanomedicine 2012; 7:4927-42. [PMID: 23028221 PMCID: PMC3446842 DOI: 10.2147/ijn.s35333] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuroinflammation, characterized by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of Alzheimer’s disease (AD). Epidemiological studies suggesting that nonsteroidal anti-inflammatory drugs decrease the risk of developing AD have encouraged further studies elucidating the role of inflammation in AD. Nanoparticles have become an important focus of neurotherapeutic research because they are an especially effective form of drug delivery. Here, we investigate the potential protective effect of indomethacin-loaded lipid-core nanocapsules (IndOH-LNCs) against cell damage and neuroinflammation induced by amyloid beta (Aβ)1-42 in AD models. Our results show that IndOH-LNCs attenuated Aβ-induced cell death and were able to block the neuroinflammation triggered by Aβ1-42 in organotypic hippocampal cultures. Additionally, IndOH-LNC treatment was able to increase interleukin-10 release and decrease glial activation and c-jun N-terminal kinase phosphorylation. As a model of Aβ-induced neurotoxicity in vivo, animals received a single intracerebroventricular injection of Aβ1-42 (1 nmol/site), and 1 day after Aβ1-42 infusion, they were administered either free IndOH or IndOH-LNCs (1 mg/kg, intraperitoneally) for 14 days. Only the treatment with IndOH-LNCs significantly attenuated the impairment of this behavior triggered by intracerebroventricular injection of Aβ1-42. Further, treatment with IndOH-LNCs was able to block the decreased synaptophysin levels induced by Aβ1-42 and suppress glial and microglial activation. These findings might be explained by the increase of IndOH concentration in brain tissue attained using drug-loaded lipid-core NCs. All these findings support the idea that blockage of neuroinflammation triggered by Aβ is involved in the neuroprotective effects of IndOH-LNCs. These data provide strong evidence that IndOH-LNC treatment may represent a promising approach for treating AD.
Collapse
Affiliation(s)
- Andressa Bernardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gülsün T, Budak C, Vural I, Sahin S, Öner L. Preparation and characterization of nimesulide containing nanocrystal formulations. Pharm Dev Technol 2012; 18:653-9. [PMID: 22375930 DOI: 10.3109/10837450.2012.663390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to develop and characterize nanocrystal formulation containing nimesulide. Physical mixture of drug and excipient (nimesulide:pluronic F127, 1:0.5) was also prepared to compare the efficiency of formulations. The physicochemical characteristics of the formulations were determined by means of Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffractometry. Particle size, saturation solubilities as a function of pH, and permeability across Caco-2 monolayers were determined for nimesulide in powder, physical mixture, and nanocrystal formulations. In FT-IR analysis, the characteristic peaks that belong to nimesulide were seen in all formulations. X-ray diffractograms displayed that crystalline structure of nimesulide was conserved in the nanocrystal formulation. The interaction between nimesulide and pluronic F127 was demonstrated by DSC analysis. In all conditions, the average particle size of the nanocrystal formulations decreased significantly (p < 0.05) as compared with nimesulide and physical mixture. The solubility of nimesulide in nanocrystal formulation was higher than those of nimesulide in powder and physical mixture. Permeability studies revealed that nimesulide is a highly permeable compound whether in powder form or in physical mixture and nanocrystal formulation. All these results clearly demonstrate that aqueous solubility of poorly water-soluble compounds can be improved by preparing nanocrystal formulations.
Collapse
Affiliation(s)
- Tuğba Gülsün
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
32
|
Palivan CG, Fischer-Onaca O, Delcea M, Itel F, Meier W. Protein–polymer nanoreactors for medical applications. Chem Soc Rev 2012; 41:2800-23. [DOI: 10.1039/c1cs15240h] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 2011; 6:e24438. [PMID: 21949717 PMCID: PMC3176276 DOI: 10.1371/journal.pone.0024438] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/10/2011] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer), A549 (lung carcinoma) and 1321N1 (brain astrocytoma). Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types) after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.
Collapse
|
34
|
Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P, Andrieux K. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:521-40. [PMID: 21477665 DOI: 10.1016/j.nano.2011.03.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) represents the most common form of dementia worldwide, affecting more than 35 million people. Advances in nanotechnology are beginning to exert a significant impact in neurology. These approaches, which are often based on the design and engineering of a plethora of nanoparticulate entities with high specificity for brain capillary endothelial cells, are currently being applied to early AD diagnosis and treatment. In addition, nanoparticles (NPs) with high affinity for the circulating amyloid-β (Aβ) forms may induce "sink effect" and improve the AD condition. There are also developments in relation to in vitro diagnostics for AD, including ultrasensitive NP-based bio-barcodes, immunosensors, as well as scanning tunneling microscopy procedures capable of detecting Aβ(1-40) and Aβ(1-42). However, there are concerns regarding the initiation of possible NP-mediated adverse events in AD, thus demanding the use of precisely assembled nanoconstructs from biocompatible materials. Key advances and safety issues are reviewed and discussed.
Collapse
Affiliation(s)
- Davide Brambilla
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yokel RA, MacPhail RC. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 2011; 6:7. [PMID: 21418643 PMCID: PMC3071337 DOI: 10.1186/1745-6673-6-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/21/2011] [Indexed: 01/15/2023] Open
Abstract
Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations) are either developing or using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful.
Collapse
Affiliation(s)
- Robert A Yokel
- Department of Pharmaceutical Sciences, College of Pharmacy and Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536-0082, USA
| | - Robert C MacPhail
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park NC, 27711, USA
| |
Collapse
|