1
|
Liu Z, Zhang S, Hu H, Wang H, Qiu Y, Dong M, Wang M, Cui Z, Cui H, Wang Y, He G. Construction of recombinant Lactococcus expressing thymosin and interferon fusion protein and its application as an immune adjuvant. Microb Cell Fact 2024; 23:40. [PMID: 38321474 PMCID: PMC10845779 DOI: 10.1186/s12934-024-02308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.
Collapse
Affiliation(s)
- Zengqi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Suhua Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Hongjiao Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - He Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yu Qiu
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Mingqi Dong
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Muping Wang
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China
| | - Ziyang Cui
- Clinical Medical College, Hebei North University, Zhangjiakou, 075000, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yunfeng Wang
- Harbin Guosheng Biotechnology Co., Ltd, Harbin, 150028, China.
| | - Gaoming He
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Matteucci C, Nepravishta R, Argaw-Denboba A, Mandaliti W, Giovinazzo A, Petrone V, Balestrieri E, Sinibaldi-Vallebona P, Pica F, Paci M, Garaci E. Thymosin α1 interacts with Galectin-1 modulating the β-galactosides affinity and inducing alteration in the biological activity. Int Immunopharmacol 2023; 118:110113. [PMID: 37028279 DOI: 10.1016/j.intimp.2023.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/09/2023]
Abstract
The study of mechanism of action of Thymosin alpha 1 (Tα1) and the basis of the pleiotropic effect in health and disease, is one of the main focus of our ongoing research. Tα1 is a thymic peptide that demonstrates a peculiar ability to restore homeostasis in different physiological and pathological conditions (i.e., infections, cancer, immunodeficiency, vaccination, and aging) acting as multitasking protein depending on the host state of inflammation or immune dysfunction. However, few are the information about mechanisms of action mediated by specific Tα1-target protein interaction that could explain its pleiotropic effect. We investigated the interaction of Tα1 with Galectin-1 (Gal-1), a protein belonging to an oligosaccharide binding protein family involved in a variety of biological and pathological processes, including immunoregulation, infections, cancer progression and aggressiveness. Using molecular and cellular methodological approaches, we demonstrated the interaction between these two proteins. Tα1 specifically inhibited the hemagglutination activity of Gal-1, the Gal-1 dependent in vitro formation of endothelial cell tubular structures, and the migration of cancer cells in wound healing assay. Physico-chemical methods revealed the details of the molecular interaction of Tα1 with Gal-1. Hence, the study allowed the identification of the not known until now specific interaction between Tα1 and Gal-1, and unraveled a novel mechanism of action of Tα1 that could support understanding of its pleiotropic activity.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy.
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; European Molecular Biology Laboratory, EMBL, Monterotondo, Rome 00015, Italy
| | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Giovinazzo
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome 00015, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy; Institute of Translational Pharmacology, National Research Council, Rome 00133, Italy
| | - Francesca Pica
- Department of Experimental Medicine, University of Tor Vergata, Rome 00133, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Enrico Garaci
- IRCCS San Raffaele and IRCCS San Raffaele, Rome 00163, Italy; Medical and Experimental BioImaging Center, MEBIC Consortium, Rome 00166, Italy
| |
Collapse
|
3
|
Thymosin Alpha 1 Restores the Immune Homeostasis in lymphocytes during Post-Acute Sequelae of SARS-CoV-2 infection. Int Immunopharmacol 2023; 118:110055. [PMID: 36989892 PMCID: PMC10030336 DOI: 10.1016/j.intimp.2023.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.
Collapse
Key Words
- post-acute sars-cov-2 symptoms
- thymosin alpha 1
- immune regulation
- anti-inflammatory response
- a-cov, acute covid-19
- aa, ambient air
- cdc, center for desease control and prevention
- em, effector memory
- tfh, follicular helper lymphocytes
- hd, healthy donors
- pasc, post-acute sequelae of sars-cov-2 infection
- pcc, post-covid conditions
- pd-1, programmed cell death-1
- ards, respiratory stress syndrome
- resp sup, respiratory support
- rpmi, roswell park memorial institute
- sev, severe acute phase of infection
- tem, terminal effector memory
- tα1, thymosin alpha 1
Collapse
|
4
|
Matteucci C, Minutolo A, Balestrieri E, Petrone V, Fanelli M, Malagnino V, Ianetta M, Giovinazzo A, Barreca F, Di Cesare S, De Marco P, Miele MT, Toschi N, Mastino A, Sinibaldi Vallebona P, Bernardini S, Rogliani P, Sarmati L, Andreoni M, Grelli S, Garaci E. Thymosin Alpha 1 Mitigates Cytokine Storm in Blood Cells From Coronavirus Disease 2019 Patients. Open Forum Infect Dis 2021; 8:ofaa588. [PMID: 33506065 PMCID: PMC7798699 DOI: 10.1093/ofid/ofaa588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in severe acute respiratory syndrome coronavirus 2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancer. METHODS In this study, we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. RESULTS Genes associated with cytokine signaling and production were upregulated in blood cells from patients with COVID-19, and the ex vivo treatment with Tα1-mitigated cytokine expression, and inhibited lymphocyte activation in a CD8+ T-cell subset specifically. CONCLUSION These data suggest the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Marco Ianetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | | | - Filippo Barreca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens’ Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Patrizia De Marco
- Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Sinibaldi Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
5
|
ThymicPeptides Reverse Immune Exhaustion in Patients with Reactivated Human Alphaherpesvirus1 Infections. Int J Mol Sci 2020; 21:ijms21072379. [PMID: 32235584 PMCID: PMC7178259 DOI: 10.3390/ijms21072379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent infection with human alphaherpesvirus 1 (HHV-1) may be associated with immune exhaustion that impairs virus elimination. Thymic peptides enhance immune function and thus could overcome immune exhaustion. In this study, we investigated whether reactivation of herpes infections was associated with immune exhaustion. Moreover, we examined the impact of treatment with thymostimulin on the expression of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on T and B lymphocytes in patients suffering from recurrent HHV-1 reactivation. We also assessed the effector function of peripheral blood mononuclear cells (PBMCs) after stimulation with thymic peptides. We enrolled 50 women with reactivated HHV-1 infections and healthy volunteers. We measured the expression of various activation and exhaustion markers on the surface of PBMCs using flow cytometry. In ex vivo experiments, we measured the secretion of inflammatory cytokines by PBMCs cultured with thymostimulin. Compared with controls, patients with reactivated HHV-1 infections had increased percentages of CD3+ co-expressing CD25, an activation marker (p < 0.001). Moreover, these patients had increased percentages of CD4+ and CD8+ cells co-expressing the inhibitory markers PD-1 and PD-L1. In cultures of PBMCs from the patients, thymostimulin increased the secretion of interferon gamma (p < 0.001) and interleukin (IL)-2 (p = 0.023), but not IL-4 or IL-10.Two-month thymostimulin therapy resulted in no reactivation of HHV-1 infection during this period and the reduction of PD-1 and PD-L1 expression on the surface of T and B lymphocytes (p < 0.001). In conclusion, reactivation of herpes infection is associated with immune exhaustion, which could be reversed by treatment with thymic peptides.
Collapse
|
6
|
Matteucci C, Argaw-Denboba A, Balestrieri E, Giovinazzo A, Miele M, D'Agostini C, Pica F, Grelli S, Paci M, Mastino A, Sinibaldi Vallebona P, Garaci E, Tomino C. Deciphering cellular biological processes to clinical application: a new perspective for Tα1 treatment targeting multiple diseases. Expert Opin Biol Ther 2018; 18:23-31. [PMID: 30063863 DOI: 10.1080/14712598.2018.1474198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thymosin alpha 1 (Tα1) is a well-recognized immune response modulator in a wide range of disorders, particularly infections and cancer. The bioinformatic analysis of public databases allows drug repositioning, predicting a new potential area of clinical intervention. We aimed to decipher the cellular network induced by Tα1 treatment to confirm present use and identify new potential clinical applications. RESEARCH DESIGN AND METHODS We used the transcriptional profile of human peripheral blood mononuclear cells treated in vitro with Tα1 to perform the enrichment network analysis by the Metascape online tools and the disease enrichment analysis by the DAVID online tool. RESULTS Networked cellular responses reflected Tα1 regulated biological processes including immune and metabolic responses, response to compounds and oxidative stress, ion homeostasis, peroxisome biogenesis and drug metabolic process. Beyond cancer and infections, the analysis evidenced the association with disorders such as kidney chronic failure, diabetes, cardiovascular, chronic respiratory, neuropsychiatric, neurodegenerative and autoimmune diseases. CONCLUSIONS In addition to the known ability to promote immune response pathways, the network enrichment analysis demonstrated that Tα1 regulates cellular metabolic processes and oxidative stress response. Notable, the analysis highlighted the association with several diseases, suggesting new translational implication of Tα1 treatment in pathological conditions unexpected until now.
Collapse
Affiliation(s)
- Claudia Matteucci
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Ayele Argaw-Denboba
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Emanuela Balestrieri
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Alessandro Giovinazzo
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Martino Miele
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Cartesio D'Agostini
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Francesca Pica
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Sandro Grelli
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Maurizio Paci
- b Department of Chemical Sciences and Technologies , University of Rome "Tor Vergata" , Rome , Italy
| | - Antonio Mastino
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
- d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | - Paola Sinibaldi Vallebona
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
- d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | | | - Carlo Tomino
- e Università San Raffaele Pisana , Roma , Italy
- f IRCSS San Raffaele Pisana , Scientific Institute for Research, Hospitalization and Health Care , Roma , Italy
| |
Collapse
|
7
|
Naylor PH, Mutchnick MG. Immunotherapy for hepatitis B in the direct acting antiviral era: Reevaluating the thymosin α1 efficacy trials in the light of a combination therapy approach. J Viral Hepat 2018; 25:4-9. [PMID: 29052304 DOI: 10.1111/jvh.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) causes both acute and chronic hepatitis and infects large numbers of individuals worldwide. Unfortunately, prediction of typical clinical outcome is problematic and there is considerable variability in the frequency, duration and severity of disease progression. The mainstay of HBV treatment is directed towards the suppression of HBV replication by nucleos(t)ide analogs (NUCs). The use of immunomodulators such as α-Interferon and thymosin α1 can, in select patients, results in elimination of both HBsAg and HBeAg. Given the observation that viral clearance is most effective in the presence of a strong immune response, this review summarizes data suggesting that the use of a combination of an immune modulator such as Tα1 with a highly effective NUC may result in a more successful therapeutic approach in patients with chronic hepatitis B (CHB). Results from small studies using combination Tα1 and NUCs are encouraging, and ongoing clinical trials combining entecavir with Tα1 are anticipated to provide important data assessing the use of a combination of Tα1 with a NUC to achieve resolution of CHB.
Collapse
Affiliation(s)
- P H Naylor
- Department of Internal Medicine/Gastroenterology, Wayne State University School of Medicine, Harper University Hospital, Detroit, MI, USA
| | - M G Mutchnick
- Department of Internal Medicine/Gastroenterology, Wayne State University School of Medicine, Harper University Hospital, Detroit, MI, USA
| |
Collapse
|
8
|
Giacomini E, Rizzo F, Etna MP, Cruciani M, Mechelli R, Buscarinu MC, Pica F, D’Agostini C, Salvetti M, Coccia EM, Severa M. Thymosin-α1 expands deficient IL-10-producing regulatory B cell subsets in relapsing–remitting multiple sclerosis patients. Mult Scler 2017; 24:127-139. [DOI: 10.1177/1352458517695892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: B cells are key pathogenic effectors in multiple sclerosis (MS) and several therapies have been designed to restrain B cell abnormalities by directly targeting this lymphocyte population. Objectives: Moving from our data showing a Toll-like receptor (TLR)7-driven dysregulation of B cell response in relapsing–remitting multiple sclerosis (RRMS) and having found a low serum level of Thymosin-α1 (Tα1) in patients, we investigated whether the addition of this molecule to peripheral blood mononuclear cells (PBMCs) would influence the expansion of regulatory B cell subsets, known to dampen autoimmune inflammation. Methods: Serum Tα1 level was measured by enzyme immunoassay. Cytokine expression was evaluated by Cytometric Bead Array (CBA), enzyme-linked immunosorbent assay (ELISA), and real-time reverse transcription polymerase chain reaction (RT-PCR). B cell subsets were analyzed by flow cytometry. Results: Tα1 pre-treatment induces an anti-inflammatory status in TLR7-stimulated RRMS PBMC cultures, reducing the secretion of pro-inflammatory interleukin (IL)-6, IL-8, and IL-1β while significantly increasing the regulatory IL-10 and IL-35. Indeed, Tα1 treatment enhanced expansion of CD19+CD24+CD38hi transitional-immature and CD24low/negCD38hi plasmablast-like regulatory B cell subsets, which likely inhibit both interferon (IFN)-γ and IL-17 production. Conclusion:: Our study reveals a deficient ability of B cells from MS patients to differentiate into regulatory subsets and unveils a novel anti-inflammatory and repurposing potential for Tα1 in MS targeting B cell response.
Collapse
Affiliation(s)
- Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Rosella Mechelli
- Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Francesca Pica
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Cartesio D’Agostini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy/Clinical Microbiology Laboratories, Tor Vergata Hospital, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Matteucci C, Grelli S, Balestrieri E, Minutolo A, Argaw-Denboba A, Macchi B, Sinibaldi-Vallebona P, Perno CF, Mastino A, Garaci E. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol 2017; 12:141-155. [PMID: 28106477 DOI: 10.2217/fmb-2016-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In spite of the consistent benefits for HIV-1 infected patients undergoing antiretroviral therapy, a complete immune reconstitution is usually not achieved. Actually, antiretroviral therapy may be frequently accompanied by immunological unresponsiveness, persistent inflammatory conditions and inefficient cytotoxic T-cell response. Thymosin alpha 1 is a thymic peptide that demonstrates a peculiar ability to restore immune system homeostasis in different physiological and pathological conditions (i.e., infections, cancer, immunodeficiency, vaccination and aging) acting as multitasking protein depending on the host state of inflammation or immune dysfunction. This review reports the present knowledge on the in vitro and in vivo studies concerning the use of thymosin alpha 1 in HIV-1 infection. Recent findings and future perspectives of therapeutic intervention are discussed.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Beatrice Macchi
- Department of System Medicine, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy.,Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Enrico Garaci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,IRCSS San Raffaele Pisana, Scientific Institute for Research, Hospitalization & Health Care, Via di Val Cannuta, 247, Roma 00166, Italy
| |
Collapse
|
10
|
Camprubí-Rimblas M, Peri F, McKnight Á, Matteucci C, Guillamat-Prats R. The EuroSciCon's 2015 Innate Immunity Summit. Future Virol 2016. [DOI: 10.2217/fvl-2016-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EuroSciCon's 2015 Innate Immunity Summit, London, UK, 17–19 November 2015 A first line of defense against viral infection is prompted by the innate immune system. Viruses activate both extracellular and intracellular events that lead to a war between the virus and the host. In addition to vaccines which induce adaptive T- and B-cell response in readiness for infection, other therapies that potentiate the host immune response are in development, such as those that induce an increase in restriction factor activity or diminish inflammation through Toll-like receptors’ antagonists. Other modulators of immune response, such as thymosin α-1, contribute to the inhibition of HIV-1 and human T lymphotropic virus 1 infection. Understanding the mechanisms by which the innate immune response combats pathogen invasion will enable the generation of novel therapeutic strategies to cure viral infection.
Collapse
Affiliation(s)
| | - Francesco Peri
- Department of Biotechnology & Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Áine McKnight
- Centre for Immunology & Infectious Disease, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Claudia Matteucci
- Department of Experimental Medicine & Surgery, University of Rome ‘Tor Vergata’, Via Montpellier, 100133 Rome, Italy
| | - Raquel Guillamat-Prats
- Fundació Parc Taulí, Parc Taulí, Sabadell, Spain
- CIBERES Enfermedades Respiratorias, Parc Taulí, Sabadell, Spain
| |
Collapse
|
11
|
Liu F, Wang HM, Wang T, Zhang YM, Zhu X. The efficacy of thymosin α1 as immunomodulatory treatment for sepsis: a systematic review of randomized controlled trials. BMC Infect Dis 2016; 16:488. [PMID: 27633969 PMCID: PMC5025565 DOI: 10.1186/s12879-016-1823-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thymosin α1 (Tα1) as immunomodulatory treatment is supposed to be beneficial for the sepsis patients by regulating T cell subsets and inflammatory mediators. However, limited by the small sample size and the poor study design, the persuasive power of the single clinical studies is weak. This meta-analysis aimed to investigate the impact of Tα1 on the sepsis patients. METHODS We searched for the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CBM, VIP, CNKI, WANFANG, Igaku Chuo Zasshi (ICHUSHI) and Korean literature databases reporting the effects of Tα1 on outcomes in sepsis patients. RESULTS Among 444 related articles, 19 randomized controlled trials (RCTs) met our inclusion criteria. Mortality events were reported in 10 RCTs included 530 patients, and the meta-analysis showed significant decrease in Tα1 group compared with control group (RR 0.59, 95 % CI 0.45 to 0.77, p = 0.0001). The subgroup analysis showed no difference between the two dosages (RR 0.59, 95 % CI 0.43 to 0.81; RR 0.59, 95 % CI 0.35 to 0.98, respectively). In 9 RCTs, with a total of 489 patients, Tα1 administered once per day decrease APACHE II score significantly (SMD -0.80, 95 % CI -1.14 to -0.47, p < 0.0001) while Tα1 twice per day showed no effect (SMD 0.30, 95 % CI-0.10 to 0.70, p = 0.14). However, the length of ICU stay, the incidence of multiple organ failure (MOF) and duration of mechanical ventilation were not significantly affected by Tα1 treatment (SMD -0.52, 95 % CI -1.06 to 0.11, p = 0.06; SMD -0.49, 95 % CI -1.09 to 0.11, p = 0.11; SMD -0.37, 95 % CI -0.90 to 0.17, p = 0.17, respectively). As to the immunological indicators, the level of HLA-DR were increased by Tα1 (SMD 1.23, 95 % CI 0.28 to 2.18, p = 0.01) according to the pooled analysis of 8 studies involving 721 patients. Lymphocyte subsets CD3, CD4 and cytokines IL-6, IL-10 and TNF-α were also beneficially affected by Tα1 treatment. CONCLUSIONS Tα1 may be beneficial to sepsis patients in reducing mortality and modulating inflammation reactions. However, the quality of evidence supporting the effectiveness is low considering the small sample sizes and inadequate adherence to standardized reporting guidelines for RCTs among the included studies.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Hong-Mei Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.,Department of Pharmacy, Yanqing Teaching Hospital of Capital Medical University/Yanqing County Hospital, Beijing, 102100, China
| | - Tiansheng Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Mei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
12
|
Liang YR, Guo Z, Jiang JH, Xiang BD, Li LQ. Thymosin α1 therapy subsequent to radical hepatectomy in patients with hepatitis B virus-associated hepatocellular carcinoma: A retrospective controlled study. Oncol Lett 2016; 12:3513-3518. [PMID: 27900029 DOI: 10.3892/ol.2016.5121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/09/2016] [Indexed: 01/27/2023] Open
Abstract
The clinical efficacy of thymosin α1 (Tα1) therapy in patients with hepatocellular carcinoma (HCC) subsequent to radical hepatectomy is unclear. In the present study, the impact of Tα1 therapy on outcomes in HCC patients after radical hepatectomy was retrospectively evaluated. Medical records were retrospectively reviewed for 146 patients with hepatitis B virus (HBV)-associated HCC who were treated by radical hepatectomy and subsequently with Tα1 therapy, as well as for 412 control patients with HBV-associated HCC treated by radical hepatectomy. Propensity score matching was used to minimize confounding variables due to baseline differences. Liver function, recurrence-free survival and overall survival rates were compared between the two groups. Serum markers of liver function were significantly improved in the Tα1 group compared with the control group. The 1-, 2- and 3-year overall survival rates were 87.2, 82.0 and 68.4% in the Tα1 group and 78.2, 64.2 and 49.7% in the control group (P=0.011). The 1-, 2- and 3-year recurrence-free survival rates were 79.7, 70.8 and 67.3% in the Tα1 group and 69.9, 61.5 and 51.6% in the control group (P=0.019). The results suggested that post-hepatectomy Tα1 therapy improves liver function and significantly prolong recurrence-free and overall survival in patients with HBV-associated HCC.
Collapse
Affiliation(s)
- Yong-Rong Liang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Department of Hepatobiliary Surgery, Qinzhou First People's Hospital, Qinzhou, Guangxi 535001, P.R. China
| | - Zhe Guo
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Jing-Hang Jiang
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
13
|
Matteucci C, Minutolo A, Pollicita M, Balestrieri E, Grelli S, D’Ettorre G, Vullo V, Bucci I, Luchini A, Aquaro S, Sinibaldi-Vallebona P, Macchi B, Perno CF, Mastino A, Garaci E. Thymosin α 1 potentiates the release by CD8 +cells of soluble factors able to inhibit HIV-1 and human T lymphotropic virus 1 infection in vitro. Expert Opin Biol Ther 2015; 15:83-100. [DOI: 10.1517/14712598.2015.1021677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Garaci E, Pica F, Matteucci C, Gaziano R, D'Agostini C, Miele MT, Camerini R, Palamara AT, Favalli C, Mastino A, Serafino A, Sinibaldi Vallebona P. Historical review on thymosin α1 in oncology: preclinical and clinical experiences. Expert Opin Biol Ther 2015; 15 Suppl 1:S31-S39. [PMID: 26096345 DOI: 10.1517/14712598.2015.1017466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Thymosin α1 (Tα1) is a naturally occurring polypeptide that regulates immune cell development and function, and is also capable of interacting with multiple target cells with relevant biological effects. The rationale of Tα1 use in cancer treatment stems from the consideration that tumor progression is favored by a failure of the immune response and in turn induces immune suppression. This paper will review the historical background of Tα1 use in oncology, aiming to highlight the importance of Tα1 as an immunotherapeutic tool to be used in combination with chemotherapy, a concept that is not yet fully established in clinic. AREAS COVERED The efficacy and safety of combining Tα1 with chemotherapy and cytokines were first evaluated in murine tumor models, providing essential information about effects, mechanisms of action, doses and treatment protocols. The therapeutic potential of the chemo-immunotherapy protocol on metastatic melanoma and lung cancer has been confirmed in controlled clinical trials. Critical for the efficacy of the chemo-immunotherapy protocol is the dual action of Tα1 on immune effector and tumor cells. EXPERT OPINION On the basis of the preclinical and clinical results available, the use of the chemo-immunotherapy protocol, in which the role of Tα1 is central, is strongly recommended.
Collapse
Affiliation(s)
- Enrico Garaci
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery , Rome , Italy +39 6 7259 6462 ; +39 6 7259 6550 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Garaci E, Pica F, Serafino A, Balestrieri E, Matteucci C, Moroni G, Sorrentino R, Zonfrillo M, Pierimarchi P, Sinibaldi-Vallebona P. Thymosin α1 and cancer: action on immune effector and tumor target cells. Ann N Y Acad Sci 2013; 1269:26-33. [PMID: 23045967 DOI: 10.1111/j.1749-6632.2012.06697.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Since it was first identified, thymosin alpha 1 (Tα1) has been characterized to have pleiotropic effects on several pathological conditions, in particular as a modulator of immune response and inflammation. Several properties exerted by Tα1 may be attributable to a direct action on lymphoid cells. Tα1 has been shown to exert an immune modulatory activity on both T cell and natural killer cell maturation and to have an effect on functions of mature lymphocytes, including stimulating cytokine production and cytotoxic T lymphocyte-mediated cytotoxic responses. In previous studies we have shown that Tα1 increases the expression of major histocompatibility complex class I surface molecules in murine and human tumor cell lines and in primary cultures of human macrophages. In the present paper, we describe preliminary data indicating that Tα1 is also capable of increasing the expression of tumor antigens in both experimental and human tumor cell lines. This effect, which is exerted at the level of the target tumor cells, represents an additional factor increasing the antitumor activity of Tα1.
Collapse
Affiliation(s)
- Enrico Garaci
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|