1
|
Trevisani M, Berselli A, Alberini G, Centonze E, Vercellino S, Cartocci V, Millo E, Ciobanu DZ, Braccia C, Armirotti A, Pisani F, Zara F, Castagnola V, Maragliano L, Benfenati F. A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro. SCIENCE ADVANCES 2025; 11:eadq2616. [PMID: 39792664 PMCID: PMC11721574 DOI: 10.1126/sciadv.adq2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases. Here, we designed and tested short BBB-active peptides, derived from the CLDN5 extracellular domains and the CLDN5-binding domain of Clostridium perfringens enterotoxin, using a robust workflow of structural modeling and in vitro validation techniques. Computational analysis at the atom level based on solubility and affinity to CLDN5 identified a CLDN5-derived peptide not reported previously called f1-C5C2, which was soluble in biological media, displayed efficient binding to CLDN5, and transiently increased BBB permeability. The peptidomimetic strategy described here may have potential applications in the pharmacological treatment of brain diseases.
Collapse
Affiliation(s)
- Martina Trevisani
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Eleonora Centonze
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Veronica Cartocci
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Pisani
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, 16132 Genova, Italy
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16147 Genova, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| |
Collapse
|
2
|
Li Z, Dang Q, Liu C, Liu Y, Wang C, Zhao F, Wang Q, Min W. Caveolin Regulates the Transport Mechanism of the Walnut-Derived Peptide EVSGPGYSPN to Penetrate the Blood-Brain Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19786-19799. [PMID: 39187786 DOI: 10.1021/acs.jafc.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Bioactive peptides, derived from short protein fragments, are recognized for their neuroprotective properties and potential therapeutic applications in treating central nervous system (CNS) diseases. However, a significant challenge for these peptides is their ability to penetrate the blood-brain barrier (BBB). EVSGPGYSPN (EV-10) peptide, a walnut-derived peptide, has demonstrated promising neuroprotective effects in vivo. This study aimed to investigate the transportability of EV-10 across the BBB, explore its capacity to penetrate this barrier, and elucidate the regulatory mechanisms underlying peptide-induced cellular internalization and transport pathways within the BBB. The results indicated that at a concentration of 100 μM and osmotic time of 4 h, the apparent permeability coefficient of EV-10 was Papp = 8.52166 ± 0.58 × 10-6 cm/s. The penetration efficiency of EV-10 was influenced by time, concentration, and temperature. Utilizing Western blot analysis, immunofluorescence, and flow cytometry, in conjunction with the caveolin (Cav)-specific inhibitor M-β-CD, we confirmed that EV-10 undergoes transcellular transport through a Cav-dependent endocytosis pathway. Notably, the tight junction proteins ZO-1, occludin, and claudin-5 were not disrupted by EV-10. Throughout its transport, EV-10 was localized within the mitochondria, Golgi apparatus, endoplasmic reticulum, lysosomes, endosomes, and cell membranes. Moreover, Cav-1 overexpression facilitated the release of EV-10 from lysosomes. Evidence of EV-10 accumulation was observed in mouse brains using brain slice scans. This study is the first to demonstrate that Cav-1 can facilitate the targeted delivery of walnut-derived peptide to the brain, laying a foundation for the development of functional foods aimed at CNS disease intervention.
Collapse
Affiliation(s)
- Zehui Li
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P. R. China
| | - Yan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Chongchong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Fanrui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Qianqian Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| |
Collapse
|
3
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|
4
|
Kamase K, Taguchi M, Ikari A, Endo S, Matsunaga T. 9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology 2021; 461:152896. [PMID: 34391839 DOI: 10.1016/j.tox.2021.152896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chronic exposure to diesel exhaust particle (DEP) is considered to provoke dysfunction of the blood-brain barrier, but the detailed molecular mechanism remains unclear. In this study, we investigated the toxic effects of five DEP components against human vascular cells and found that, among them, 9,10-phenanthrenequinone (9,10-PQ), a major tricyclic quinone in DEP, most potently elicits the cellular toxicities. Additionally, treatment with 9,10-PQ at its cytolethal concentrations (more than 2 μM) facilitated the production of reactive oxygen species (ROS), caspase activation, and DNA fragmentation in human brain microvascular endothelial (HBME) cells, inferring that high concentrations of 9,10-PQ elicit the cell apoptosis through the ROS-dependent mechanism. Measurement of trans-endothelial electrical resistance and paracellular permeability showed that treatment with sublethal concentrations (less than 1 μM) of 9,10-PQ elevates permeability across HBME cell monolayer. Immunofluorescence observation and Western blotting analysis also revealed that the 9,10-PQ treatment remarkably down-regulated the intercellular localization and expression of claudin-5 (CLDN5), a tight junctional protein that plays a key role in function of the blood-brain barrier, and the down-regulation was markedly recovered by pretreatment with a proteasome inhibitor Z-Leu-Leu-Leu-CHO. This result may indicate that sublethal concentrations of 9,10-PQ facilitate the dysfunction of the endothelial cell barrier through lowering in the expression and proteasomal proteolysis of CLDN5. The treatment with 9,10-PQ promoted nitric oxide (NO) production presumably through the induction of inducible NO synthase. In addition, the 9,10-PQ-mediated down-regulation of CLDN5 was ameliorated and deteriorated by pretreating with a scavenger and donor, respectively, of NO. Similarly to the 9,10-PQ treatment, treatment with a donor of peroxynitrite, a highly reactive oxidant formed by the reaction of NO and superoxide anion, resulted in the marked reduction of CLDN5 expression and elevation of 26S proteasome-based proteolytic activities. Thus, it is suggested that the formation of NO and peroxynitrite participates in the mechanism of brain endothelial cell barrier dysfunction elicited by 9,10-PQ.
Collapse
Affiliation(s)
- Kyoko Kamase
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| |
Collapse
|
5
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Kyuno D, Bauer N, Schnölzer M, Provaznik J, Ryschich E, Hackert T, Zöller M. Distinct Origin of Claudin7 in Early Tumor Endosomes Affects Exosome Assembly. Int J Biol Sci 2019; 15:2224-2239. [PMID: 31592143 PMCID: PMC6775303 DOI: 10.7150/ijbs.35347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
Microvesicles are the body's most powerful intercellular communication system and cancer-initiating cell microvesicles (CIC-TEX) reprogram Non-CIC towards fortified malignancy. Claudin7, a CIC-biomarker in gastrointestinal tumors, is recovered in TEX. Recent evidence suggesting individual cells delivering distinct microvesicles became of particular interest for claudin7, which is part of tight junctions (TJ) and glycolipid-enriched membrane domains (GEM), GEM-located claudin7 is palmitoylated. This offered the unique possibility of exploring the contribution of a CIC marker and its origin from distinct membrane domains on CIC-TEX biogenesis and activities. Proteome and miRNA analysis of wild-type, claudin7-knockdown and a rescue with claudin7 harboring a mutated palmitoylation site (mP) of a rat pancreatic and a human colon cancer line uncovered significant, only partly overlapping contributions of palmitoylated and non-palmitoylated claudin7 to TEX composition. Palmitoylated claudin7 facilitates GEM-integrated plasma membrane and associated signaling molecule recruitment; non-palmitoylated claudin7 supports recruitment of trafficking components, proteins engaged in fatty acid metabolism and TJ proteins into TEX. Claudin7mP also assists TEX recovery of selected miRNA. Thus, distinctly located claudin7 affects CIC-TEX composition and TJ-derived cld7 might play a unique role in equipping CIC-TEX with transporters and lipid metabolism-regulating molecules, awareness of distinct TEX populations being crucial facing therapeutic translation.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany.,Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Nathalie Bauer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | | | | | - Eduard Ryschich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | - Margot Zöller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| |
Collapse
|
7
|
Brewer MG, Anderson EA, Pandya RP, De Benedetto A, Yoshida T, Hilimire TA, Martinez-Sobrido L, Beck LA, Miller BL. Peptides Derived from the Tight Junction Protein CLDN1 Disrupt the Skin Barrier and Promote Responsiveness to an Epicutaneous Vaccine. J Invest Dermatol 2019; 140:361-369.e3. [PMID: 31381894 DOI: 10.1016/j.jid.2019.06.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022]
Abstract
Keratinocytes express many pattern recognition receptors that enhance the skin's adaptive immune response to epicutaneous antigens. We have shown that these pattern recognition receptors are expressed below tight junctions (TJ), strongly implicating TJ disruption as a critical step in antigen responsiveness. To disrupt TJs, we designed peptides inspired by the first extracellular loop of the TJ transmembrane protein CLDN1. These peptides transiently disrupted TJs in the human lung epithelial cell line 16HBE and delayed TJ formation in primary human keratinocytes. Building on these observations, we tested whether vaccinating mice with an epicutaneous influenza patch containing TJ-disrupting peptides was an effective strategy to elicit an immunogenic response. Application of a TJ-disrupting peptide patch resulted in barrier disruption as measured by increased transepithelial water loss. We observed a significant increase in antigen-specific antibodies when we applied patches with TJ-disrupting peptide plus antigen (influenza hemagglutinin) in either a patch-prime or a patch-boost model. Collectively, these observations demonstrate that our designed peptides perturb TJs in human lung as well as human and murine skin epithelium, enabling epicutaneous vaccine delivery. We anticipate that this approach could obviate currently used needle-based vaccination methods that require administration by health care workers and biohazard waste removal.
Collapse
Affiliation(s)
- Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Elizabeth A Anderson
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Radha P Pandya
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas A Hilimire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA.
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
8
|
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 2019; 76:1987-2002. [PMID: 30734065 PMCID: PMC11105330 DOI: 10.1007/s00018-019-03030-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.
Collapse
Affiliation(s)
- Philipp Berndt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Jimmi Cording
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Olga Breitkreuz-Korff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - André Rex
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Valentina Rausch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Rosel Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Richter
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
9
|
Dithmer S, Staat C, Müller C, Ku MC, Pohlmann A, Niendorf T, Gehne N, Fallier-Becker P, Kittel Á, Walter FR, Veszelka S, Deli MA, Blasig R, Haseloff RF, Blasig IE, Winkler L. Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. Ann N Y Acad Sci 2017; 1397:169-184. [DOI: 10.1111/nyas.13359] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sophie Dithmer
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Christian Staat
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Carolin Müller
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility; Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Experimental and Clinical Research Center; Charite and Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Nora Gehne
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology; University of Tuebingen; Tuebingen Germany
| | - Ágnes Kittel
- Institute of Experimental Medicine; Hungarian Academy of Sciences; Budapest Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Maria A. Deli
- Institute of Biophysics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - Rosel Blasig
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| | | | | | - Lars Winkler
- Leibniz Institut für Molekulare Pharmakologie; Berlin Germany
| |
Collapse
|
10
|
Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain. J Pharm Sci 2016; 105:797-807. [PMID: 26869430 DOI: 10.1016/s0022-3549(15)00188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (<1 h). Both HAV4 and cHAVc3 peptides also enhanced the in vivo brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide.
Collapse
|
11
|
Ronaghan NJ, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, Désilets A, Leduc R, Turner JR, MacNaughton WK. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol 2016; 311:G466-79. [PMID: 27492333 PMCID: PMC5076006 DOI: 10.1152/ajpgi.00441.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
Abstract
Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.
Collapse
Affiliation(s)
- Natalie J. Ronaghan
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Judie Shang
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Vadim Iablokov
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Raza Zaheer
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Pina Colarusso
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Sébastien Dion
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Antoine Désilets
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Richard Leduc
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Jerrold R. Turner
- 3Departments of Pathology and Medicine (GI), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wallace K. MacNaughton
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
12
|
Kiptoo P, Calcagno AM, Siahaan TJ. Physiological, Biochemical, and Chemical Barriers to Oral Drug Delivery. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Yang S, Krug SM, Heitmann J, Hu L, Reinhold AK, Sauer S, Bosten J, Sommer C, Fromm M, Brack A, Rittner HL. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 2016; 82:20-33. [DOI: 10.1016/j.biomaterials.2015.11.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
|
14
|
Ikari A, Taga S, Watanabe R, Sato T, Shimobaba S, Sonoki H, Endo S, Matsunaga T, Sakai H, Yamaguchi M, Yamazaki Y, Sugatani J. Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2326-36. [PMID: 26163137 DOI: 10.1016/j.bbamem.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 01/03/2023]
Abstract
Claudins are tight junctional proteins and comprise a family of over 20 members. Abnormal expression of claudins is reported to be involved in tumor progression. Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases cell proliferation, whereas it is not expressed in normal tissues. Claudin-2-targeting molecules such as peptides and small molecules may be novel anti-cancer drugs. The short peptide with the sequence DFYSP, which mimics the second extracellular loop of claudin-2, decreased claudin-2 content in the cytoplasmic fraction of A549 cells. In contrast, it did not affect the content in the nuclear fraction. The decrease in claudin-2 content was inhibited by chloroquine (CQ), a lysosomal inhibitor, but not by MG-132, a proteasome inhibitor. In the presence of DFYSP peptide and CQ, claudin-2 was co-localized with LAMP-1, a lysosomal marker. The DFYSP peptide-induced decrease in claudin-2 content was inhibited by monodancylcadaverine (MDC), an inhibitor of clathrin-dependent endocytosis. DFYSP peptide increased lysosome content and cathepsin B release, and induced cellular injury, which were inhibited by MDC. Cellular injury induced by DFYSP peptide was inhibited by necrostatin-1, an inhibitor of necrotic cell death, but not by Z-VAD-FMK, an inhibitor of apoptotic cell death. Our data indicate that DFYSP peptide increases the accumulation of the peptide and claudin-2 into the lysosome, resulting in lysosomal damage. Claudin-2 may be a new target for lung cancer therapy.
Collapse
Affiliation(s)
- Akira Ikari
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan.
| | - Saeko Taga
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Ryo Watanabe
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tomonari Sato
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Shun Shimobaba
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Hiroyuki Sonoki
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Satoshi Endo
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Toshiyuki Matsunaga
- The Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | - Hideki Sakai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | - Junko Sugatani
- School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
15
|
Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 2015; 5:1143-63. [PMID: 25418271 DOI: 10.4155/tde.14.67] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including blocking the efflux pumps to improve transcellular delivery, and modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers, are still in the investigational stage.
Collapse
|
16
|
Dabrowski S, Staat C, Zwanziger D, Sauer RS, Bellmann C, Günther R, Krause E, Haseloff RF, Rittner H, Blasig IE. Redox-sensitive structure and function of the first extracellular loop of the cell-cell contact protein claudin-1: lessons from molecular structure to animals. Antioxid Redox Signal 2015; 22:1-14. [PMID: 24988310 PMCID: PMC4270150 DOI: 10.1089/ars.2013.5706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED The paracellular cleft within epithelia/endothelia is sealed by tight junction (TJ) proteins. Their extracellular loops (ECLs) are assumed to control paracellular permeability and are targets of pathogenes. We demonstrated that claudin-1 is crucial for paracellular tightening. Its ECL1 is essential for the sealing and contains two cysteines conserved throughout all claudins. AIMS We prove the hypothesis that this cysteine motif forms a redox-sensitive intramolecular disulfide bridge and, hence, the claudin-1-ECL1 constitutes a functional structure which is associated to ECLs of this and other TJ proteins. RESULTS The structure and function of claudin-1-ECL1 was elucidated by investigating sequences of this ECL as synthetic peptides, C1C2, and as recombinant proteins, and exhibited a β-sheet binding surface flanked by an α-helix. These sequences bound to different claudins, their ECL1, and peptides with nanomolar binding constants. C-terminally truncated C1C2 (-4aaC) opened cellular barriers and the perineurium. Recombinant ECL1 formed oligomers, and bound to claudin-1 expressing cells. Oligomerization and claudin association were abolished by reducing agents, indicating intraloop disulfide bridging and redox sensitivity. INNOVATION The structural and functional model based on our in vitro and in vivo investigations suggested that claudin-1-ECL1 constitutes a functional and ECL-binding β-sheet, stabilized by a shielded and redox-sensitive disulfide bond. CONCLUSION Since the β-sheet represents a consensus sequence of claudins and further junctional proteins, a general structural feature is implied. Therefore, our model is of general relevance for the TJ assembly in normal and pathological conditions. C1C2-4aaC is a new drug enhancer that is used to improve pharmacological treatment through tissue barriers.
Collapse
Affiliation(s)
- Sebastian Dabrowski
- 1 Department of Molecular Cell Physiology, Leibniz-Institut für Molekulare Pharmakologie , Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sauer RS, Krug SM, Hackel D, Staat C, Konasin N, Yang S, Niedermirtl B, Bosten J, Günther R, Dabrowski S, Doppler K, Sommer C, Blasig IE, Brack A, Rittner HL. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood–nerve–barrier permeability. J Control Release 2014; 185:88-98. [DOI: 10.1016/j.jconrel.2014.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
|
18
|
Ubiquitin E3 ligase A20 is required in degradation of microbial superantigens in vascular endothelial cells. Cell Biochem Biophys 2014; 66:649-55. [PMID: 23306968 DOI: 10.1007/s12013-012-9509-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The endothelial cells and tight junctions or adherens junctions form the endothelial barrier on the inner surface of the blood vessels. How the endothelial barrier degrades the endocytic microbial products, such as Staphylococcal enterotoxin B (SEB), is not fully understood yet. Ubiquitination is involved in protein degradation. This study aims to investigate the role of ubiquitin E3 ligase A20 (A20) in the degradation of endocytic SEB in endothelial cells. The human microvascular endothelial cell line, Hmvec, was cultured to monolayers in the inserts of transwells. SEB was added to the apical chambers to observe the endocytosis and degradation of SEB in Hmvecs. The fusion of endosome/lysosome was observed by immune staining. After exposed to SEB for 30 min, SEB was detected in Hmvecs. SEB could attach to the surface of Hmvecs and endocytosed into the cytoplasm of Hmvecs. The endocytosed SEB was degraded in the Hmvecs, which was transported to the transwell basal chambers in A20-deficient Hmvec monolayers. The SEB-carrying endosomes fused to the lysosomes in Hmvecs; the fusion of endosome/lysosome was disturbed in A20-deficient Hmvecs. In conclusion, A20 plays an important role in the degradation of the endocytic microbial product, SEB, in cardiac endothelial cells.
Collapse
|
19
|
Ding L, Lu Z, Lu Q, Chen YH. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res 2013; 5:367-375. [PMID: 24232410 PMCID: PMC3825674 DOI: 10.2147/cmar.s38294] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tight junctions, or zonula occludens, are the most apical component of the junctional complex and provide one form of cell-cell adhesion in epithelial and endothelial cells. Nearly 90% of malignant tumors are derived from the epithelium. Loss of cell-cell adhesion is one of the steps in the progression of cancer to metastasis. At least three main tight junction family proteins have been discovered: occludin, claudin, and junctional adhesion molecule (JAM). Claudins are the most important structural and functional components of tight junction integral membrane proteins, with at least 24 members in mammals. They are crucial for the paracellular flux of ions and small molecules. Overexpression or downregulation of claudins is frequently observed in epithelial-derived cancers. However, molecular mechanisms by which claudins affect tumorigenesis remain largely unknown. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies, including pancreatic, colonic, lung, ovarian, thyroid, prostate, esophageal, and breast cancers. In this review, we will give the readers an overall picture of the changes in claudin expression observed in various cancers and their mechanisms of regulation. Downregulation of claudins contributes to epithelial transformation by increasing the paracellular permeability of nutrients and growth factors to cancerous cells. In the cases of upregulation of claudin expression, the barrier function of the cancerous epithelia changes, as they often display a disorganized arrangement of tight junction strands with increased permeability to paracellular markers. Finally, we will summarize the literature suggesting that claudins may become useful biomarkers for cancer detection and diagnosis as well as possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
| | - Zhe Lu
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
- Department of Basic Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Qun Lu
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
- Leo W. Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
- Leo W. Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
20
|
Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, Blasig IE. Sodium Caprate Transiently Opens Claudin-5-Containing Barriers at Tight Junctions of Epithelial and Endothelial Cells. Mol Pharm 2012; 9:2523-33. [DOI: 10.1021/mp3001414] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- G. Del Vecchio
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - C. Tscheik
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - K. Tenz
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - H. C. Helms
- Department of Pharmacy, Faculty
of Medicines and Health, University of Copenhagen, Copenhagen, Denmark
| | - L. Winkler
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - R. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| | - I. E. Blasig
- Leibniz-Institut für
Molekulare Pharmakologie, FMP, 13125 Berlin, Germany
| |
Collapse
|
21
|
Zwanziger D, Hackel D, Staat C, Böcker A, Brack A, Beyermann M, Rittner H, Blasig IE. A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 2012; 9:1785-94. [PMID: 22524793 DOI: 10.1021/mp3000937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The paracellular flux of solutes through tissue barriers is limited by transmembrane tight junction proteins. Within the family of tight junction proteins, claudin-1 seems to be a key protein for tightness formation and integrity. In the peripheral nervous system, the nerve fibers are surrounded with a barrier formed by the perineurium which expresses claudin-1. To enhance the access of hydrophilic pharmaceutical agents via the paracellular route, a claudin-1 specific modulator was developed. For this purpose, we designed and investigated the claudin-1 derived peptide C1C2. It transiently increased the paracellular permeability for ions and high and low molecular weight compounds through a cellular barrier model. Structural studies revealed a β-sheet potential for the functionality of the peptide. Perineurial injection of C1C2 in rats facilitated the effect of hydrophilic antinociceptive agents and raised mechanical nociceptive thresholds. The mechanism is related to the internalization of C1C2 and to a vesicle-like distribution within the cells. The peptide mainly colocalized with intracellular claudin-1. C1C2 decreased membrane-localized claudin-1 of cells in culture and in vivo in the perineurium of rats after perineurial injection. In conclusion, a novel tool was developed to improve the delivery of pharmaceutical agents through the perineurial barrier by transient modulation of claudin-1.
Collapse
Affiliation(s)
- Denise Zwanziger
- Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|