1
|
Miller WL, White PC. History of Adrenal Research: From Ancient Anatomy to Contemporary Molecular Biology. Endocr Rev 2023; 44:70-116. [PMID: 35947694 PMCID: PMC9835964 DOI: 10.1210/endrev/bnac019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 01/20/2023]
Abstract
The adrenal is a small, anatomically unimposing structure that escaped scientific notice until 1564 and whose existence was doubted by many until the 18th century. Adrenal functions were inferred from the adrenal insufficiency syndrome described by Addison and from the obesity and virilization that accompanied many adrenal malignancies, but early physiologists sometimes confused the roles of the cortex and medulla. Medullary epinephrine was the first hormone to be isolated (in 1901), and numerous cortical steroids were isolated between 1930 and 1949. The treatment of arthritis, Addison's disease, and congenital adrenal hyperplasia (CAH) with cortisone in the 1950s revolutionized clinical endocrinology and steroid research. Cases of CAH had been reported in the 19th century, but a defect in 21-hydroxylation in CAH was not identified until 1957. Other forms of CAH, including deficiencies of 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase, and 17α-hydroxylase were defined hormonally in the 1960s. Cytochrome P450 enzymes were described in 1962-1964, and steroid 21-hydroxylation was the first biosynthetic activity associated with a P450. Understanding of the genetic and biochemical bases of these disorders advanced rapidly from 1984 to 2004. The cloning of genes for steroidogenic enzymes and related factors revealed many mutations causing known diseases and facilitated the discovery of new disorders. Genetics and cell biology have replaced steroid chemistry as the key disciplines for understanding and teaching steroidogenesis and its disorders.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Perrin C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
3
|
Oakden W, Bock NA, Al-Ebraheem A, Farquharson MJ, Stanisz GJ. Early regional cuprizone-induced demyelination in a rat model revealed with MRI. NMR IN BIOMEDICINE 2017; 30:e3743. [PMID: 28544286 DOI: 10.1002/nbm.3743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The cuprizone model of demyelination is well established in the mouse as a tool for the study of the mechanisms of both demyelination and remyelination. It is often desirable, however, to have a larger model, such as the rat, especially for imaging-based studies, yet initial work has failed to show demyelination in cuprizone-fed rats. Several recent studies have demonstrated demyelination in the rat, but only in the corpus callosum. In this study, we acquired high-resolution, three-dimensional images of the whole brain every 2 weeks, using a T1 -weighted magnetization-prepared rapid acquisition gradient echo imaging sequence, optimized for myelin contrast, in order to assess myelination across the entire rat brain over a period of 8 weeks on a 1% cuprizone diet. We observed a consistent pattern of demyelination, beginning in the cerebellum by 4 weeks and involving more rostral regions of the brain by 8 weeks on the cuprizone diet, with validation using Luxol fast blue histology. This imaging technique permits the effects of cuprizone-induced demyelination to be followed longitudinally in a single animal, over the entire brain. In turn, this may facilitate the establishment of the cuprizone model of demyelination in the rat.
Collapse
Affiliation(s)
- Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicholas A Bock
- Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Ontario, Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
| | | | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Singh J, Khan M, Pujol A, Baarine M, Singh I. Histone deacetylase inhibitor upregulates peroxisomal fatty acid oxidation and inhibits apoptotic cell death in abcd1-deficient glial cells. PLoS One 2013; 8:e70712. [PMID: 23923017 PMCID: PMC3724778 DOI: 10.1371/journal.pone.0070712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 11/22/2022] Open
Abstract
In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mushfiquddin Khan
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, Bellvitge Institute for Biomedical Research (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mauhamad Baarine
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kochan G, Stephenson H, Breckpot K, Escors D. Human Gene Therapy with Retrovirus and Lentivirus Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [DOI: 10.1007/978-3-0348-0402-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Valadares E, Trindade A, Oliveira L, Arantes R, Daker M, Viana B, Haase V, Jardim L, Lopes G, Godard A. Novel exon nucleotide deletion causes adrenoleukodystrophy in a Brazilian family. GENETICS AND MOLECULAR RESEARCH 2011; 10:65-74. [DOI: 10.4238/vol10-1gmr975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used for three decades as therapy for lysosomal storage diseases. Stable engraftment following transplantation has the potential to provide a source of an enzyme for the life of a patient. Recombinant enzyme is available for disorders that do not have a primary neurologic component. However, for diseases affecting the central nervous system (CNS), intravenous enzyme is ineffective due to its inability to cross the blood-brain barrier. For selected lysosomal disorders, including metachromatic leukodystrophy and globoid cell leukodystrophy, disease phenotype and the extent of disease at the time of transplantation are of fundamental importance in determining outcomes. Adrenoleukodystrophy is an X-linked, peroxisomal disorder, and in approximately 40% of cases a progressive, inflammatory condition develops in the CNS. Early in the course of the disease, allogeneic transplantation can arrest the disease process in cerebral adrenoleukodystrophy, while more advanced patients do poorly. In many of these cases, the utilization of cord blood grafts allows expedient transplantation, which can be critical in achieving optimal outcomes.
Collapse
Affiliation(s)
- Paul J Orchard
- Department of Pediatrics, Division of Hematopoietic Stem Cell Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
8
|
Abstract
BACKGROUND While the adult form of adrenoleukodystrophy (ALD) has been associated with an elevated rate of affective disturbance, the myeloneuropathic form of the disease known as adrenomyeloneuropathy (AMN) has been associated with only occasional cases of major mental illness. Given that cerebral involvement occurs in up to half of AMN sufferers, we hypothesized that rates of mental illness may match those with adult ALD. OBJECTIVE To describe the psychiatric, cognitive, and disability variables in a sample of Australian AMN sufferers. METHODS Ten genetically confirmed AMN sufferers underwent diagnostic psychiatric interview (Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Axis I Disorders), rating scales of psychiatric disturbance (Brief Psychiatric Rating Scale, Hospital Anxiety and Depression Scale, Beck Depression and Anxiety Inventories, and Short-Form 36), and cognitive function (the Neuropsychiatry Unit Cognitive Assessment Tool and Mini-Mental State Examination). RESULTS While the group as a whole was generally cognitively intact, it demonstrated a higher than expected prevalence of lifetime and current major affective illness. Current symptom levels were low at the time of study participation. Psychopathology did not relate to adrenal status, nor to level of physical or functional impairment. CONCLUSION This small sample suggests that the level of psychiatric morbidity in AMN patients is elevated, and the rate of affective disturbance approaches those of adult ALD sufferers. This may reflect that AMN is not a "pure" myeloneuropathy, and that mild cerebral involvement may be associated with affective illness.
Collapse
Affiliation(s)
- Mark A Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
9
|
Powers JM, DeCiero DP, Cox C, Richfield EK, Ito M, Moser AB, Moser HW. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol 2001; 60:493-501. [PMID: 11379824 DOI: 10.1093/jnen/60.5.493] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adrenomyeloneuropathy (AMN), a disease of spinal cord, brain, adrenal, and testis, mostly affects men with spastic paraparesis or ataxia beginning in their second or third decade. The spinal cord displays bilateral, usually symmetrical, long tract degeneration particularly of the gracile tract in a "dying-back" pattern. The available data strongly indicate that the fundamental lesion in AMN is an axonopathy or neuronopathy. We compared lumbar dorsal root ganglia (DRG) from 3 AMN patients to 6 age-matched controls histologically, morphometrically, immunohistochemically, and ultrastructurally. There was no apparent neuronal loss, necrosis or apoptosis, nor obvious atrophy; nodules of Nageotte were sparse in both groups. The morphometric studies, however, did reveal neuronal atrophy with a decrease in the number of large neurons and a corresponding increase in neurons less than 2,000 microm2, especially in the 1,500-1,999 microm2 range. No consistent immunohistochemical differences were observed, and no specific cell type appeared to be lost. Many mitochondria in the AMN neurons demonstrated lipidic inclusions; this raises the possibility that, in addition to the well-known peroxisomal defect, impaired mitochondrial function may lead to a failure of ATP-dependent axoplasmic transport in AMN spinal tracts with consequent "dying-back" axonal degeneration. The observation that the DRG parent neurons of the degenerate gracile tracts in AMN undergo atrophy and do not display appreciable evidence of cell death, even at autopsy, provides a wide window of opportunity for the development of therapeutic strategies to combat or prevent this myeloneuropathy.
Collapse
Affiliation(s)
- J M Powers
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Powers JM, DeCiero DP, Ito M, Moser AB, Moser HW. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 2000; 59:89-102. [PMID: 10749098 DOI: 10.1093/jnen/59.2.89] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neuropathologic features of adrenomyeloneuropathy (AMN) are reviewed by supplementing those few previously published cases with 5 additional cases collected over the years. The endocrine involvement in AMN is briefly presented to serve as a pathogenetic backdrop and to emphasize that most of the lesions in AMN, as in adreno-leukodystrophy (ALD), are noninflammatory in the traditional sense of the word. The myeloneuropathy is emphasized, but the dysmyelinative/inflammatory demyelinative lesions also are presented. The preponderance of available data indicates that the myeloneuropathy of AMN is a central-peripheral distal (dying-back) axonopathy, as was originally proposed. The severity of the myeloneuropathy does not appear to correlate with the duration or severity of endocrine dysfunction. Microglia are the dominant participating cells in the noninflammatory myelopathy. Abnormalities in the ALD gene, which encodes a peroxisomal ABC half-transporter, do not correlate with clinical phenotypes. The relationship of the gene product, ALDP, to the peroxisomal very long chain fatty acid (VLCFA) synthetase, the activity of which is deficient in ALD/AMN, is unclear. An ALD-knockout mouse model has developed axonal degeneration, particularly in spinal cord, and is therefore more reminiscent of AMN than ALD. We continue to postulate that the fundamental defect in the myeloneuropathy of AMN is an axonal or neuronal membrane abnormality perhaps due to the incorporation of VLCFA-gangliosides, which perturbs the membrane's microenvironment and leads to dysfunction and atrophy.
Collapse
Affiliation(s)
- J M Powers
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, New York 14642, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Dys- and demyelination are the common endpoints of several inherited diseases of glial cells, which elaborate myelin and which maintain the myelin sheath very much like an "external" cellular organelle. Whereas some of the genes that are affected by mutations appear to be glial-specific, other genes are expressed in many cell types but their defect is restricted to oligodendrocytes or Schwann cells. Many of the disease genes and their encoded proteins have been studied with the help of mouse models, and a number of different molecular pathomechanisms have emerged which have been summarized in Figure 8. Some of the new concepts in the field, which have been addressed in this review, have only emerged because similar pathomechanisms were discovered for different myelin proteins. Mouse models have clearly helped to address both, the molecular pathology of myelin diseases and the normal function of myelin genes, but as discussed in this review, these questions turned out to be very different. Despite the progress in understanding the role of the abundant myelin proteins, there also remain a number of open questions that concern, among other things, the initial axon-glia recognition, the assembly process of the myelin sheath, and the long-term interaction of axons with their myelinating glia. Finally, animal models of human neurological diseases should not be restricted to the study of pathology, but they should also contribute to the development of experimental treatments. It is encouraging that a few attempts have been made.
Collapse
Affiliation(s)
- H Werner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Dysfunctional myelination or oligodendroglial abnormalities play a prominent role in a vast array of pediatric neurological diseases of genetic, inflammatory, immunological, traumatic, ischemic, developmental, metabolic, and infectious causes. Recent advances in glial cell biology have suggested that effective remyelination strategies may, indeed, be feasible. Evidence for myelin repair is accumulating in various experimental models of dysmyelinating and demyelinating disease. Attempts at remyelination have either been directed towards creating myelin de novo from exogenous sources of myelin-elaborating cells or promoting an intrinsic spontaneous remyelinating process. Ultimately, some disorders of myelin may require multiple repair strategies, not only the replacement of dysfunctional cells (oligodendroglia) but also the delivery or supplementation of gene products (i.e., growth factors, immune modulators, metabolic enzymes). Although primary oligodendrocytes or oligodendroglial precursors may be effective for glial cell replacement in certain discrete regions and circumstances and although various genetic vectors may be effective for the delivery of therapeutic molecules, multipotent neural stem cells may be most ideally suited for both gene transfer and cell replacement on transplantation into multiple regions of the central nervous system under a wide range of pathological conditions. We propose that, by virtue of their inherent biological properties, neural stem cells possess the multifaceted therapeutic capabilities that many diseases characterized by myelin dysfunction in the pediatric population may demand.
Collapse
Affiliation(s)
- L L Billinghurst
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Powers JM, Moser HW. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 1998; 8:101-20. [PMID: 9458170 PMCID: PMC8098283 DOI: 10.1111/j.1750-3639.1998.tb00139.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurological dysfunction is a prominent feature of most peroxisomal disorders. Enormous progress in defining their gene defects has been achieved. The genes and gene products, peroxins (PEX), in five of the complementation groups have been defined. These studies confirm that Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are a disease continuum. The gene defect in adreno-leukodystrophy (ALD) / adrenomyeloneuropathy (AMN) involves an integral peroxisomal membrane protein. Neuropathologic lesions are of three major classes: (i) abnormalities in neuronal migration or differentiation, (ii) defects in the formation or maintenance of central white matter, and (iii) postdevelopmental neuronal degenerations. The central white matter lesions are those of: (i) inflammatory demyelination, (ii) non-inflammatory dysmyelination, and (iii) non-specific reductions in myelin volume or staining with or without reactive astrocytosis. The neuronal degenerations are of two major types: (i) the axonopathy of AMN involving ascending and descending tracts of the spinal cord, and (ii) cerebellar atrophy in rhizomelic chondrodysplasia punctata and probably IRD. We postulate that the abnormal fatty acids in peroxisomal disorders, particularly very long chain fatty acids and phytanic acid, are incorporated into cell membranes and perturb their microenvironments resulting in dysfunction, atrophy and death of vulnerable cells. The advent of mouse models for ZS and ALD is anticipated to provide even greater pathogenetic insights into the peroxisomal disorders.
Collapse
Affiliation(s)
- J M Powers
- Department of Pathology (Neuropathology and Postmortem Medicine), University of Rochester Medical Center, NY 14642, USA.
| | | |
Collapse
|
14
|
Malm G, Ringdén O, Anvret M, von Döbeln U, Hagenfeldt L, Isberg B, Knuutila S, Nennesmo I, Winiarski J, Marcus C. Treatment of adrenoleukodystrophy with bone marrow transplantation. Acta Paediatr 1997; 86:484-92. [PMID: 9183487 DOI: 10.1111/j.1651-2227.1997.tb08918.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three children with adrenoleukodystrophy (ALD) underwent allogeneic bone marrow transplantation (BMT) between 1992 and 1993. The first boy had attention deficits, marked neuropsychological deficits and widespread demyelination in the frontal lobes on MRI before transplantation. Four years later he has mentally deteriorated and the demyelination on MRI has progressed. The second boy had no symptoms but had white matter lesions on MRI when diagnosed. He was regularly followed with MRI and neuropsychological investigations until BMT 18 months later. A progress of the lesions was noted on the initial MRI investigations, and 4 months before BMT a worsening of deficits in attention and kinaesthetic praxis could be observed. He rapidly deteriorated after the transplantation and died 18 months later. Both PCR and in situ hybridization confirmed the presence of donor cells in the brain. The third boy had no symptoms but white matter lesions on MRI when diagnosed. The neuropsychological tests remained normal but a slight progress was observed on MRI just before transplantation. This boy is still healthy 3.5 years after BMT. BMT as treatment for ALD has to be considered very early, even if a child without symptoms but signs of demyelination on MRI, if a suitable donor is available.
Collapse
Affiliation(s)
- G Malm
- Department of Paediatrics, Huddinge University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grever WE, Weidenheim KM, Tricoche M, Rashbaum WK, Lyman WD. Oligodendrocyte gene expression in the human fetal spinal cord during the second trimester of gestation. J Neurosci Res 1997; 47:332-40. [PMID: 9039655 DOI: 10.1002/(sici)1097-4547(19970201)47:3<332::aid-jnr11>3.0.co;2-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A comprehensive evaluation of myelination during normal human development is essential to understand the pathology of congenital diseases of white matter. The present study establishes quantitative values for normal oligodendrocyte-specific gene expression during the early stages of myelination in the human fetal spinal cord. Complementary techniques of Northern and immunoblotting were used to determine relative amounts of oligodendrocyte-specific mRNAs and proteins between 12 and 24 gestational weeks. Values were determined for myelin basic protein, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and proteolipid protein. The relative amount of myelin-associated glycoprotein mRNA was also estimated. To compare gene expression between glial cell types, the relative amounts of mRNA and protein were determined for glial fibrillary acidic protein (GFAP), a cell-type specific marker for astrocytes. All oligodendrocyte-specific genes expressed similar developmental kinetics. Between 12 and 15 gestational weeks, less than a five-fold increase was detected in the expression of these genes and their protein products. Between 15 and 22 gestational weeks, the relative amounts of mRNA and protein for the myelin genes increased more than 80-fold. The kinetics of GFAP expression were similar to those of the myelin-associated genes. Absolute values for the increase in mass of the human fetal spinal cord were also obtained. These results provide data that may aid in the neuropathologic assessment and characterization of myelin disorders in the preterm, neonatal, and pediatric spinal cord.
Collapse
Affiliation(s)
- W E Grever
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|