1
|
Sarkozy A, Torelli S, Mein R, Henderson M, Phadke R, Feng L, Sewry C, Ala P, Yau M, Bertoli M, Willis T, Hammans S, Manzur A, Sframeli M, Norwood F, Rakowicz W, Radunovic A, Vaidya SS, Parton M, Walker M, Marino S, Offiah C, Farrugia ME, Mamutse G, Marini-Bettolo C, Wraige E, Beeson D, Lochmüller H, Straub V, Bushby K, Barresi R, Muntoni F. Mobility shift of beta-dystroglycan as a marker of GMPPB gene-related muscular dystrophy. J Neurol Neurosurg Psychiatry 2018; 89:762-768. [PMID: 29437916 DOI: 10.1136/jnnp-2017-316956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes. METHODS We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy. RESULTS We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (β-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of β-DG. CONCLUSIONS Our data demonstrate that a change in β-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.
Collapse
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rachael Mein
- DNA Laboratory, Viapath, Guy's Hospital, London, UK
| | - Matt Henderson
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Newcastle upon Tyne, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK.,The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Yau
- DNA Laboratory, Viapath, Guy's Hospital, London, UK
| | - Marta Bertoli
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne NHS Trust, Newcastle upon Tyne, UK
| | - Tracey Willis
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Simon Hammans
- Wessex Neurological Centre, University Hospital of Southampton, Southampton, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Sframeli
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Wojtek Rakowicz
- Department of Neurology, Hampshire Hospitals NHS Foundation Trust, Royal Hampshire County Hospital, Winchester, UK
| | | | | | - Matt Parton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Mark Walker
- Department of Cellular Pathology, Southampton University Hospitals, Southampton, UK
| | - Silvia Marino
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Curtis Offiah
- Department of Radiology, Royal London Hospital, London, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Godwin Mamutse
- Department of Neurology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | - David Beeson
- Neuromuscular Disorders Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Rita Barresi
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Newcastle upon Tyne, UK.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
2
|
Hunter DD, Manglapus MK, Bachay G, Claudepierre T, Dolan MW, Gesuelli KA, Brunken WJ. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol 2017; 527:67-86. [PMID: 29023785 DOI: 10.1002/cne.24338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
The retina expresses several laminins in the outer plexiform layer (OPL), where they may provide an extracellular scaffold for synapse stabilization. Mice with a targeted deletion of the laminin β2 gene (Lamb2) exhibit retinal disruptions: photoreceptor synapses in the OPL are disorganized and the retinal physiological response is attenuated. We hypothesize that laminins are required for proper trans-synaptic alignment. To test this, we compared the distribution, expression, association and modification of several pre- and post-synaptic elements in wild-type and Lamb2-null retinae. A potential laminin receptor, integrin α3, is at the presynaptic side of the wild-type OPL. Another potential laminin receptor, dystroglycan, is at the post-synaptic side of the wild-type OPL. Integrin α3 and dystroglycan can be co-immunoprecipitated with the laminin β2 chain, demonstrating that they may bind laminins. In the absence of the laminin β2 chain, the expression of many pre-synaptic components (bassoon, kinesin, among others) is relatively undisturbed although their spatial organization and anchoring to the membrane is disrupted. In contrast, in the Lamb2-null, β-dystroglycan (β-DG) expression is altered, co-localization of β-DG with dystrophin and the glutamate receptor mGluR6 is disrupted, and the post-synaptic bipolar cell components mGluR6 and GPR179 become dissociated, suggesting that laminins mediate scaffolding of post-synaptic components. In addition, although pikachurin remains associated with β-DG, pikachurin is no longer closely associated with mGluR6 or α-DG in the Lamb2-null. These data suggest that laminins act as links among pre- and post-synaptic laminin receptors and α-DG and pikachurin in the synaptic space to maintain proper trans-synaptic alignment.
Collapse
Affiliation(s)
- Dale D Hunter
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Mary K Manglapus
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Galina Bachay
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Michael W Dolan
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Kelly-Ann Gesuelli
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - William J Brunken
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| |
Collapse
|
3
|
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1:24. [PMID: 21798100 PMCID: PMC3156647 DOI: 10.1186/2044-5040-1-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/23/2022] Open
Abstract
Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.
Collapse
Affiliation(s)
- Rita Barresi
- NCG Diagnostic & Advisory Service for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Guo LT, Moore SA, Forcales S, Engvall E, Shelton GD. Evaluation of commercial dysferlin antibodies on canine, mouse and human skeletal muscle. Neuromuscul Disord 2011; 20:820-5. [PMID: 20817457 DOI: 10.1016/j.nmd.2010.07.278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/10/2010] [Accepted: 07/27/2010] [Indexed: 11/16/2022]
Abstract
Immunostaining of muscle biopsy cryosections is a powerful tool for identifying protein deficiencies. For dysferlin, a protein associated with limb-girdle muscular dystrophy and Miyoshi myopathy, weak immunostaining of normal muscle has been a problem in reliably identifying dysferlin deficiency in human patients or dystrophic animals. Here we use skeletal muscle cryosections from dog, mouse and human to test several dysferlin antibodies under different conditions of fixation, and without fixation. NCL-Hamlet antibody (mouse monoclonal), following fixation in acetone/methanol, provided the strongest and most reliable staining in sections of human muscle as well as of dog and mouse muscle. Unlike animal tissue, unfixed human muscle also gave strong and reliable staining. NCL-Hamlet 2 gave good staining in all species. Epitomics (rabbit monoclonal) antibody gave good staining of all muscles, and did not stain muscle of dysferlin-deficient mice. However, it strongly stained muscle sarcolemma of patients with dysferlin deficiency, making the antibody less useful. Abcam antibody gave weak staining, and Santa Cruz antibodies did not immunostain muscle dysferlin in any species tested. NCL-Hamlet antibody was optimal for immunoblotting in all species. Use of select antibodies for immunostaining and immunoblotting, and optimization of immunostaining methods, should increase the sensitivity of detecting dysferlin deficiency in skeletal muscle.
Collapse
Affiliation(s)
- Ling T Guo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
5
|
Shelton GD. Routine and specialized laboratory testing for the diagnosis of neuromuscular diseases in dogs and cats. Vet Clin Pathol 2010; 39:278-95. [PMID: 20726955 DOI: 10.1111/j.1939-165x.2010.00244.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The diagnosis of neuromuscular diseases can be challenging. The first step is recognition that the disease involves the neuromuscular system (muscle, neuromuscular junction, peripheral nerve, and ventral horn cells of the spinal cord). Many neuromuscular diseases share clinical signs and cannot be distinguished based on clinical examination. Routine laboratory screening, including a CBC, biochemical profile, and urinalysis, can identify some of the most common systemic abnormalities that cause muscle weakness and myalgia, such as hypo- and hyperglycemia, electrolyte disorders, or thyroid abnormalities, and may suggest a specific diagnosis, such as diabetes mellitus, hypo- or hyperadrenocorticism, renal failure, or hypothyroidism. Increased creatine kinase activity, increased cardiac troponin I concentration, and myoglobinuria are useful in detecting skeletal and cardiac muscle damage. Identification of acetylcholine receptor antibodies is diagnostic for acquired myasthenia gravis. For primary muscle or peripheral nerve diseases, tissue biopsy is the most direct way to determine specific pathology, correctly classify the disease, and determine the course of additional laboratory testing. For example, inflammatory, necrotizing, dystrophic, metabolic, or congenital myopathies require different laboratory testing procedures for further characterization. Many neuromuscular diseases are inherited or breed-associated, and DNA-based tests may already be established or may be feasible to develop after the disorder has been accurately characterized. This review focuses on both routine and specialized laboratory testing necessary to reach a definitive diagnosis and determine an accurate prognosis for neuromuscular diseases.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Daoud F, Angeard N, Demerre B, Martie I, Benyaou R, Leturcq F, Cossée M, Deburgrave N, Saillour Y, Tuffery S, Urtizberea A, Toutain A, Echenne B, Frischman M, Mayer M, Desguerre I, Estournet B, Réveillère C, Penisson-Besnier, Cuisset JM, Kaplan JC, Héron D, Rivier F, Chelly J. Analysis of Dp71 contribution in the severity of mental retardation through comparison of Duchenne and Becker patients differing by mutation consequences on Dp71 expression. Hum Mol Genet 2009; 18:3779-94. [PMID: 19602481 DOI: 10.1093/hmg/ddp320] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The presence of variable degrees of cognitive impairment, extending from severe mental retardation to specific deficits, in patients with dystrophinopathies is a well-recognized problem. However, molecular basis underlying mental retardation and its severity remain poorly understood and still a matter of debate. Here, we report one of the largest study based on the comparison of clinical, cognitive, molecular and expression data in a large cohort of 81 patients affected with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) bearing mutations predicted to affect either all dystrophin products, including Dp71 or all dystrophin products, except Dp71. In addition to the consistent data defining molecular basis underlying mental retardation in DMD, we show that BMD patients with MR have mutations that significantly affect Dp71 expression or with mutations located in exons 75 and 76. We also show that mutations upstream to exon 62, with DMD phenotype, predicted to lead to a loss-of-function of all dystrophin products, except Dp71 isoform, are associated, predominantly, with normal or borderline cognitive performances. Altogether, these reliable phenotype-genotype correlations in combination with Dp71 mRNA and protein expression studies, strongly indicate that loss-of-function of all dystrophin products is systematically associated with severe form of MR, and Dp71 deficit is a factor that contributes in the severity of MR and may account for a shift of 2 SD downward of the intelligence quotient.
Collapse
Affiliation(s)
- Fatma Daoud
- Institut Cochin, Université Paris Descartes, INSERM, CNRS UMR, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Duchenne and Becker muscular dystrophy: contribution of a molecular and immunohistochemical analysis in diagnosis in Morocco. J Biomed Biotechnol 2009; 2009:325210. [PMID: 19461958 PMCID: PMC2683945 DOI: 10.1155/2009/325210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 12/29/2008] [Accepted: 02/24/2009] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive disorders caused by mutations of the DMD gene located at Xp21. In DMD patients, dystrophin is virtually absent; whereas BMD patients have 10% to 40% of the normal amount. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. To explain the contribution of immunohistochemical and genetic analysis in the diagnosis of these dystrophies, we present 10 cases of DMD/BMD with particular features. We have analyzed the patients with immunohistochemical staining and PCR multiplex to screen for exons deletions. Determination of the quantity and distribution of dystrophin by immunohistochemical staining can confirm the presence of dystrophinopathy and allows differentiation between DMD and BMD, but dystrophin staining is not always conclusive in BMD. Therefore, only identification involved mutation by genetic analysis can establish a correct diagnosis.
Collapse
|
8
|
Béroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, Moizard MP, Voelckel MA, Calemard LM, Boisseau P, Blayau M, Philippe C, Cossée M, Pagès M, Rivier F, Danos O, Garcia L, Claustres M. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 2007; 28:196-202. [PMID: 17041910 DOI: 10.1002/humu.20428] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Approximately two-thirds of Duchenne muscular dystrophy (DMD) patients show intragenic deletions ranging from one to several exons of the DMD gene and leading to a premature stop codon. Other deletions that maintain the translational reading frame of the gene result in the milder Becker muscular dystrophy (BMD) form of the disease. Thus the opportunity to transform a DMD phenotype into a BMD phenotype appeared as a new treatment strategy with the development of antisense oligonucleotides technology, which is able to induce an exon skipping at the pre-mRNA level in order to restore an open reading frame. Because the DMD gene contains 79 exons, thousands of potential transcripts could be produced by exon skipping and should be investigated. The conventional approach considers skipping of a single exon. Here we report the comparison of single- and multiple-exon skipping strategies based on bioinformatic analysis. By using the Universal Mutation Database (UMD)-DMD, we predict that an optimal multiexon skipping leading to the del45-55 artificial dystrophin (c.6439_8217del) could transform the DMD phenotype into the asymptomatic or mild BMD phenotype. This multiple-exon skipping could theoretically rescue up to 63% of DMD patients with a deletion, while the optimal monoskipping of exon 51 would rescue only 16% of patients.
Collapse
Affiliation(s)
- Christophe Béroud
- Laboratoire de Génétique Moléculaire, Institut Universitaire de Recherche Clinique, Unité de Formation et de Recherche Médecine Site Nord Unité Pédagogique Médicale/IURC, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:243-62. [PMID: 17064882 PMCID: PMC1894910 DOI: 10.1016/j.bbadis.2006.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Much progress has been made over the past decade elucidating the molecular basis for a variety of muscular dystrophies (MDs). Accordingly, there are examples of mouse models of MD whose disease progression has been halted in large part with the use of viral vector technology. Even so, we must acknowledge significant limitations of present vector systems that must be overcome prior to successful treatment of humans with such approaches. This review will present a variety of viral-mediated therapeutic strategies aimed at counteracting the muscle-wasting symptoms associated with muscular dystrophy. We include viral vector systems used for muscle gene transfer, with a particular emphasis on adeno-associated virus. Findings of several encouraging studies focusing on repair of the mutant dystrophin gene are also included. Lastly, we present a discussion of muscle compensatory therapeutics being considered that include pathways involved in the up-regulation of utrophin, promotion of cellular adhesion, enhancement of muscle mass, and antagonism of the inflammatory response. Considering the complexity of the muscular dystrophies, it appears likely that a multilayered approach tailored to a patient sub-group may be warranted in order to effectively contest the progression of this devastating disease.
Collapse
Affiliation(s)
- Guy L. Odom
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Paul Gregorevic
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| |
Collapse
|
10
|
Weise C, Dai F, Pröls F, Ketelsen UP, Dohrmann U, Kirsch M, Brand-Saberi B. Myogenin (Myf4) upregulation in trans-differentiating fibroblasts from a congenital myopathy with arrest of myogenesis and defects of myotube formation. ACTA ACUST UNITED AC 2006; 211:639-48. [PMID: 16977479 DOI: 10.1007/s00429-006-0117-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2006] [Indexed: 12/21/2022]
Abstract
Congenital myopathies often have an unclear aetiology. Here, we studied a novel case of a severe congenital myopathy with a failure of myotube formation. Polymerase chain reaction-based analysis was performed to characterize the expression patterns of the Desmin, p21, p57, and muscle regulatory factors (MRFs) MyoD, Myf4, Myf5 and Myf6 in differentiating skeletal muscle cells (SkMCs), normal human fibroblasts and patient-derived fibroblasts during trans-differentiation. The temporal and spatial pattern of MRFs was further characterized by immunocyto- and immunohistochemical stainings. In differentiating SkMCs, each MRF showed a characteristic expression pattern. Normal trans-differentiating fibroblasts formed myotubes and expressed all of the MRFs, which were detected. Interestingly, the patient's fibroblasts also showed some fusion events during trans-differentiation with a comparable expression profile for the MRFs, particularly, with increased expression of Myf4 and p21. Immunohistochemical analysis of normal and patient-derived skeletal musculature revealed that Myf4, which is downregulated during normal fetal development, was still present in patient-derived skeletal head muscle, which was also positive for Desmin and sarcomeric actin. The abnormal upregulation of Myf4 and p21 in the patient who suffered from a severe congenital myopathy suggests that the regulation of Myf4 and p21 gene expression during myogenesis might be of interest for further studies.
Collapse
Affiliation(s)
- Claudia Weise
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Albertstrasse 17, 79104, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The muscular dystrophies are characterised by progressive muscle weakness and wasting. Pathologically the hallmarks are muscle fibre degeneration and fibrosis. Several recessive forms of muscular dystrophy are caused by defects in proteins localised to the sarcolemma. However, it is now apparent that others are due to defects in a wide range of proteins including those which are either nuclear-related (Emery-Dreifuss type muscular dystrophies, oculopharyngeal muscular dystrophy), enzymatic (limb-girdle muscular dystrophy 2A, myotonic dystrophy) or sarcomeric (limb-girdle muscular dystrophies 1A and 2G). Although the clinical and molecular basis of these disorders is heterogeneous all display myopathic morphological features. These include variation in fibre size, an increase in internal nuclei, and some myofibrillar distortion. Degeneration and fibrosis occur, but usually not to the same extent as in muscular dystrophies associated with sarcolemmal protein defects. This review outlines the genetic basis of these "non-sarcolemmal" forms of dystrophy and discusses current ideas on their pathogenesis.
Collapse
Affiliation(s)
- S C Brown
- Dubowitz Neuromuscular Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
12
|
Abstract
The diagnostic muscle biopsy has seen the use of virtually every histologic technique in existence over the past 50 years. Since the 1960s, enzyme histochemistry has become the chief technique in evaluating muscle biopsies. However, the increasing knowledge of cellular constituents and associated connective tissue of the myofiber coupled with the increasing availability of a broad diversity of antibodies to these proteins promises to bring the diagnosis of muscle disease to the same state of dependency upon immunohistochemistry as in the contemporary pathologic diagnosis of neoplasia. Immunohistochemistry may be used for both the identification of normal antigenic constituents in skeletal muscle and their loss, accumulation, or maldistribution in corresponding myopathies, sometimes with small biopsies or lacking frozen tissue, in paraffin sections. Three broad categories of muscle diseases will be characterized in terms of diagnostic antibodies in current use: dystrophic, congenital/structural, and inflammatory myopathies.
Collapse
Affiliation(s)
- Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | | |
Collapse
|
13
|
von Fellenberg A, Lin S, Burgunder JM. Disturbed trafficking of dystrophin and associated proteins in targetoid phenomena after chronic muscle denervation. Neuropathol Appl Neurobiol 2004; 30:255-66. [PMID: 15175079 DOI: 10.1046/j.0305-1846.2004.00529.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystrophin and associated proteins form a complex with an important role at the sarcolemma. Expression of this protein complex is highly regulated during development and regeneration. In order to better understand assembling patterns of these proteins, we have studied their expression in targetoid-like phenomena found in human muscle after chronic denervation, a situation known to give rise to abnormal protein trafficking. In eight biopsies of patients with chronic denervation, mainly resulting from amyotrophic lateral sclerosis, we found a number of targetoid phenomena. Selective accumulation of a number of sarcolemmal and sarcoplasmatic proteins occurred in targetoid phenomena. The larger majority of them contained gamma-sarcoglycan (gammaSG), but none contained the developmental heavy chain myosin isoform. In a series of 166 targetoid phenomena which could be studied with 17 different antibodies recognizing sarcolemmal and cytoplasmatic proteins, a high level of colocalization of gammaSG with desmin and alpha-actinin was found. Colocalization rate was much lower with other proteins, including other members of the dystrophin-associated protein complex. These data show that selective changes in expression of otherwise closely related proteins occur during disturbed trafficking leading to target formation. Because members of the dystrophin-associated protein complex do not accumulate in a similar fashion within targets, we suggest that a complex molecular control of gene expression and trafficking of this complex is involved after chronic muscle denervation.
Collapse
Affiliation(s)
- A von Fellenberg
- Laboratory of Neuromorphology, Department of Neurology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
14
|
Love DR. Limb girdle muscular dystrophy: use of dHPLC and direct sequencing to detect sarcoglycan gene mutations in a New Zealand cohort. Clin Genet 2004. [PMID: 15032976 DOI: 10.1111/j..2004.00193.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Béroud C, Carrié A, Beldjord C, Deburgrave N, Llense S, Carelle N, Peccate C, Cuisset JM, Pandit F, Carré-Pigeon F, Mayer M, Bellance R, Récan D, Chelly J, Kaplan JC, Leturcq F. Dystrophinopathy caused by mid-intronic substitutions activating cryptic exons in the DMD gene. Neuromuscul Disord 2004; 14:10-8. [PMID: 14659407 DOI: 10.1016/s0960-8966(03)00169-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the course of a mutation search performed by muscle dystrophin transcript analysis in 72 Duchenne and Becker Muscular Dystrophies (DMD/BMD) patients without gross gene defect, we encountered four unrelated cases with additional out-of-frame sequences precisely intercalated between two intact exons of the mature muscle dystrophin mRNA. An in silico search of the whole dystrophin genomic sequence revealed that these inserts correspond to cryptic exons flanked by one strong and one weak consensus splice site and located in the mid-part of large introns (introns 60, 9, 1M, and 62, respectively). In each case we identified an intronic point mutation activating the cryptic donor or acceptor splice site. The patients exhibited a BMD/intermediate phenotype consistent with the presence of reduced amounts of normally spliced transcript and normal dystrophin. The frequency of this new type of mutation is not negligible (6% of our series of 65 patients with 'small' mutations). It would be missed if the exploration of the DMD gene is exclusively performed on exons and flanking sequences of genomic DNA.
Collapse
Affiliation(s)
- Christophe Béroud
- Institut Cochin and Laboratory of Molecular Genetics, Cochin Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
More than 30 different forms of muscular dystrophy (MD) have been molecularly characterized and can be diagnosed, but progress toward treatment has been slow. Gene replacement therapy has met with great difficulty because of the large size of the defective genes and because of difficulties in delivering a gene to all muscle groups. Cell replacement therapy has also been difficult to realize. Will it even be possible to design specific therapy protocols for all MDs? Or is a more realistic goal to treat some of the secondary manifestations that are common to several forms of MD, such as membrane instability, necrosis, and inflammation, and to promote regeneration? As reviewed here, enhanced expression of a range of proteins provides a boost for degenerating dystrophic muscle in mouse models. Expression of a mini-agrin promotes basement membrane formation instead of laminin alpha2; integrin alpha7, GalNac transferase, and ADAM12 promote cell adhesion and muscle stability in the absence of dystrophin; calpastatin prevents muscle necrosis; and nitric oxide synthase prevents inflammation. ADAM12, IGF-I, and myostatin blockade promote regeneration and reduce fibrosis. One can envision numerous other candidate booster genes which encode proteins that promote survival and/or regeneration of the compromised muscle or proteins that affect post-translational modifications of critical proteins. Finally, fibrosis, which is the curse of many human diseases, may also be attacked. Once the mechanisms of the boosters are better understood, drugs may be developed to provide the boost to muscle. Some of the experiences in models of muscular dystrophy may inspire new approaches in other genetic degenerative diseases as well.
Collapse
Affiliation(s)
- Eva Engvall
- The Burnham Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
17
|
Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, Stein J, Chan YM, Lidov HG, Bönnemann CG, von Moers A, Morris GE, den Dunnen JT, Chamberlain JS, Kunkel LM, Weinberg K. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002. [DOI: 10.1172/jci0216098] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, Stein J, Chan YM, Lidov HG, Bönnemann CG, Von Moers A, Morris GE, Den Dunnen JT, Chamberlain JS, Kunkel LM, Weinberg K. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002; 110:807-14. [PMID: 12235112 PMCID: PMC151133 DOI: 10.1172/jci16098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive muscle-wasting disorder caused by mutations in the dystrophin gene. Studies have shown that bone marrow cells transplanted into lethally irradiated mdx mice, the mouse model of DMD, can become part of skeletal muscle myofibers. Whether human marrow cells also have this ability is unknown. Here we report the analysis of muscle biopsies from a DMD patient (DMD-BMT1) who received bone marrow transplantation at age 1 year for X-linked severe combined immune deficiency and who was diagnosed with DMD at age 12 years. Analysis of muscle biopsies from DMD-BMT1 revealed the presence of donor nuclei within a small number of muscle myofibers (0.5-0.9%). The majority of the myofibers produce a truncated, in-frame isoform of dystrophin lacking exons 44 and 45 (not wild-type). The presence of bone marrow-derived donor nuclei in the muscle of this patient documents the ability of exogenous human bone marrow cells to fuse into skeletal muscle and persist up to 13 years after transplantation.
Collapse
Affiliation(s)
- Emanuela Gussoni
- Division of Genetics, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bergman RL, Inzana KD, Monroe WE, Shell LG, Liu LA, Engvall E, Shelton GD. Dystrophin-deficient muscular dystrophy in a Labrador retriever. J Am Anim Hosp Assoc 2002; 38:255-61. [PMID: 12022412 DOI: 10.5326/0380255] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sex-linked muscular dystrophy associated with dystrophin deficiency has been reported in several breeds of dogs and is best characterized in the golden retriever. In this case report, a young, male Labrador retriever with dystrophin-deficient muscular dystrophy is presented. Clinical signs included generalized weakness, lingual hypertrophy, and dysphagia. Electromyographic abnormalities including complex repetitive discharges were present. Serum creatine kinase concentration was dramatically elevated. Histopathological changes within a muscle biopsy specimen confirmed a dystrophic myopathy, and dystrophin deficiency was demonstrated by immunohistochemical staining. While X-linked muscular dystrophy has not previously been reported in the Labrador retriever, a hereditary myopathy with an autosomal recessive mode of inheritance has been characterized. A correct diagnosis and classification of these two disorders are critical for breeders and owners since both the mode of inheritance and the prognosis differ.
Collapse
Affiliation(s)
- Robert L Bergman
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
It is certain that more inherited neuromuscular disorders of dogs and cats will be identified as the ability of practicing veterinarians to recognize disorders of muscle, nerve, and neuromuscular junction improves and newer diagnostic tests become available. Two specific points are critical. Before DNA-based genetic tests and specific therapies can be developed, an accurate description of the problem, clinically and histopathologically, must be performed. This is particularly important for the accuracy of a pedigree analysis, because inclusion of dogs with unrelated problems would alter the interpretation. Second, animals with inherited breed-associated disease should not be bred for generation of companion animals.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla 92093-0612, USA.
| | | |
Collapse
|
21
|
Sewry CA, Brown SC, Mercuri E, Bonne G, Feng L, Camici G, Morris GE, Muntoni F. Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 2001; 27:281-90. [PMID: 11532159 DOI: 10.1046/j.0305-1846.2001.00323.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present our observations on the skeletal muscle pathology of nine cases from seven families of autosomal dominant Emery-Dreifuss muscular dystrophy (ADEDMD) with identified mutations in the lamin A/C gene, aged 2-35 years at the time of biopsy. The severity of pathological change was moderate and the most common features were variation in fibre size (hypertrophy and atrophy), an increase in internal nuclei and smaller diameter fibres with high oxidative enzyme activity. Only one case showed necrosis, which was present in two separate samples taken from the quadriceps and tibialis anterior, at different ages. Immunocytochemistry detected an age-related reduction of laminin beta1 on the muscle fibres in adolescent and adult cases. Antibodies to lamins A and A/C, and emerin did not reveal any detectable differences from controls. Electron microscopy of two out of three cases showed an abnormal distribution of heterochromatin in many fibre nuclei. Our results show that dystrophic changes in skeletal muscle are not a major feature of ADEDMD, and that nuclear abnormalities may be detected with electron microscopy. Immunodetection of reduced laminin beta1 may be a useful secondary marker in adults with this disorder, as immunocytochemistry of lamins is not yet of diagnostic use.
Collapse
Affiliation(s)
- C A Sewry
- Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shelton GD, Liu LA, Guo LT, Smith GK, Christiansen JS, Thomas WB, Smith MO, Kline KL, March PA, Flegel T, Engvall E. Muscular Dystrophy in female Dogs. J Vet Intern Med 2001. [DOI: 10.1111/j.1939-1676.2001.tb02317.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|