1
|
Ahmed HS. Neuropharmacological effects of calycosin: a translational review of molecular mechanisms and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04154-3. [PMID: 40237798 DOI: 10.1007/s00210-025-04154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Calycosin, a naturally occurring isoflavonoid found predominantly in Astragalus membranaceus, exhibits significant therapeutic potential in various neurological conditions. Its multifaceted bioactive properties-antioxidant, anti-inflammatory, and anti-apoptotic-position it as a promising candidate for neuroprotection and neuroregeneration. This review explores calycosin's mechanisms of action, including its modulation of key signaling pathways such as HMGB1/TLR4/NF-κB (high mobility group box 1/toll-like receptor 4/nuclear factor kappa B), phosphatidylinositol-3-kinase (PI3 K)/Akt, ERK1/2 (extracellular signal-regulated kinase 1/2), and Hsp90/Akt/p38. In cerebral ischemia/reperfusion injury, calycosin reduces oxidative stress markers like ROS (reactive oxygen species) and MDA (malondialdehyde), enhances antioxidant enzymes (SOD (superoxide dismutase) and GPX (glutathione peroxidase)), and downregulates pro-inflammatory cytokines (TNF-α, IL-1β) through the HMGB1/TLR4/NF-κB pathway. It also inhibits autophagy via the STAT3/FOXO3a pathway and apoptosis by modulating Bax and Bcl-2 expression. In neuro-oncology, calycosin inhibits glioblastoma cell migration and invasion by modulating the TGF-β-mediated mesenchymal properties and suppressing the c-Met and CXCL10 signaling pathways. Additionally, it enhances the efficacy of temozolomide in glioma treatment through apoptotic pathways involving caspase-3 and caspase-9. Calycosin shows promise in Alzheimer's disease by reducing β-amyloid production and tau hyperphosphorylation via the GSK-3β pathway and improving mitochondrial function through the peroxisome proliferator-activated receptor gamma coactivator 1-Alpha (PGC-1α)/mitochondrial transcription factor A (TFAM) signaling pathway. In Parkinson's disease, calycosin mitigates oxidative stress, prevents dopaminergic neuronal death, and reduces neuroinflammation by inhibiting the TLR/NF-κB and MAPK pathways. It has also shown therapeutic potential in meningitis and even neuroprotective effects against hyperbilirubinemia-induced nerve injury. Despite these promising findings, further research, including detailed mechanistic studies and clinical trials, is needed to fully understand calycosin's therapeutic mechanisms and validate its potential in human subjects. Developing advanced delivery systems and exploring synergistic therapeutic strategies could further enhance its clinical application and effectiveness.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
2
|
Pham LC, Weller L, Gann CN, Schumacher KM, Vlassak S, Swanson T, Highsmith K, O’Brien BJ, Nash S, Aaroe A, de Groot JF, Majd NK. Prolonged complete response to adjuvant tepotinib in a patient with newly diagnosed disseminated glioblastoma harboring mesenchymal-epithelial transition fusion. Oncologist 2025; 30:oyae100. [PMID: 38815166 PMCID: PMC11783278 DOI: 10.1093/oncolo/oyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The prognosis of patients with glioblastoma (GBM) remains poor despite current treatments. Targeted therapy in GBM has been the subject of intense investigation but has not been successful in clinical trials. The reasons for the failure of targeted therapy in GBM are multifold and include a lack of patient selection in trials, the failure to identify driver mutations, and poor blood-brain barrier penetration of investigational drugs. Here, we describe a case of a durable complete response in a newly diagnosed patient with GBM with leptomeningeal dissemination and PTPRZ1-MET fusion who was treated with tepotinib, a brain-penetrant MET inhibitor. This case of successful targeted therapy in a patient with GBM demonstrates that early molecular testing, identification of driver molecular alterations, and treatment with brain-penetrant small molecule inhibitors have the potential to change the outcome in select patients with GBM.
Collapse
Affiliation(s)
- Lily C Pham
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Lauryn Weller
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Todd Swanson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kaitlin Highsmith
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara J O’Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sebnem Nash
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John F de Groot
- Department of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Ramar V, Guo S, Hudson B, Liu M. Progress in Glioma Stem Cell Research. Cancers (Basel) 2023; 16:102. [PMID: 38201528 PMCID: PMC10778204 DOI: 10.3390/cancers16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents a diverse spectrum of primary tumors notorious for their resistance to established therapeutic modalities. Despite aggressive interventions like surgery, radiation, and chemotherapy, these tumors, due to factors such as the blood-brain barrier, tumor heterogeneity, glioma stem cells (GSCs), drug efflux pumps, and DNA damage repair mechanisms, persist beyond complete isolation, resulting in dismal outcomes for glioma patients. Presently, the standard initial approach comprises surgical excision followed by concurrent chemotherapy, where temozolomide (TMZ) serves as the foremost option in managing GBM patients. Subsequent adjuvant chemotherapy follows this regimen. Emerging therapeutic approaches encompass immunotherapy, including checkpoint inhibitors, and targeted treatments, such as bevacizumab, aiming to exploit vulnerabilities within GBM cells. Nevertheless, there exists a pressing imperative to devise innovative strategies for both diagnosing and treating GBM. This review emphasizes the current knowledge of GSC biology, molecular mechanisms, and associations with various signals and/or pathways, such as the epidermal growth factor receptor, PI3K/AKT/mTOR, HGFR/c-MET, NF-κB, Wnt, Notch, and STAT3 pathways. Metabolic reprogramming in GSCs has also been reported with the prominent activation of the glycolytic pathway, comprising aldehyde dehydrogenase family genes. We also discuss potential therapeutic approaches to GSC targets and currently used inhibitors, as well as their mode of action on GSC targets.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr., New Orleans, LA 70125, USA;
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| |
Collapse
|
4
|
Saunders JT, Kumar S, Benavides-Serrato A, Holmes B, Benavides KE, Bashir MT, Nishimura RN, Gera J. Translation of circHGF RNA encodes an HGF protein variant promoting glioblastoma growth through stimulation of c-MET. J Neurooncol 2023; 163:207-218. [PMID: 37162666 DOI: 10.1007/s11060-023-04331-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION HGF/c-MET signaling is a significant driver of glioblastoma (GBM) growth and disease progression. Unfortunately, c-MET targeted therapies have been found to be largely ineffective suggesting additional redundant mechanisms of c-MET activation. METHODS Utilizing RNA-sequencing (RNA-seq) and ribosome profiling analyses of circular RNAs, circ-HGF (hsa_circ_0080914) was identified as markedly upregulated in primary GBM and found to potentially encode an HGF protein variant (C-HGF) 119 amino acids in length. This candidate HGF variant was characterized and evaluated for its ability to mediate c-MET activation and regulate PDX GBM cell growth, motility and invasive potential in vitro and tumor burden in intracranial xenografts in mice. RESULTS An internal ribosome entry site (IRES) was identified within the circ-HGF RNA which mediated translation of the cross-junctional ORF encoding C-HGF and was observed to be highly expressed in GBM relative to normal brain tissue. C-HGF was also found to be secreted from GBM cells and concentrated cell culture supernatants or recombinant C-HGF activated known signaling cascades downstream of c-MET. C-HGF was shown to interact directly with the c-MET receptor resulting in its autophosphorylation and activation in PDX GBM lines. Knockdown of C-HGF resulted in suppression of c-MET signaling and marked inhibition of cell growth, motility and invasiveness, whereas overexpression of C-HGF displayed the opposite effects. Additionally, modulation of C-HGF expression regulated tumor growth in intracranial xenografted PDX GBM models. CONCLUSIONS These results reveal an alternative mechanism of c-MET activation via a circular RNA encoded HGF protein variant which is relevant in GBM biology. Targeting C-HGF may offer a promising approach for GBM clinical management.
Collapse
Affiliation(s)
- Jacquelyn T Saunders
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Sunil Kumar
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Angelica Benavides-Serrato
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Kennedy E Benavides
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Muhammad T Bashir
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Robert N Nishimura
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Joseph Gera
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Jonnson Comprehensive Cancer Center, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Molecular Biology Institute, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
| |
Collapse
|
5
|
Chen W, Jin S, Liu Q, Wang H, Xia Y, Guo X, Guo S, Wang Y, Shi Y, Liu D, Li Y, Wang Y, Xing H, Li J, Wu J, Liang T, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Spotlights on adult patients with pediatric-type diffuse gliomas in accordance with the 2021 WHO classification of CNS tumors. Front Neurosci 2023; 17:1144559. [PMID: 37214395 PMCID: PMC10196618 DOI: 10.3389/fnins.2023.1144559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors released in 2021 formally defines pediatric-type diffuse gliomas. However, there is still little understanding of pediatric-type diffuse gliomas, and even less attention has been paid to adult patients. Therefore, this study describes the clinical radiological, survival, and molecular features of adult patients with pediatric-type glioma. Methods Adult patients who underwent surgery from January 2011 to January 2022, classified as pediatric-type glioma, were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. Results Among 596 adult patients, 20 patients with pediatric-type glioma were screened, including 6 with diffuse astrocytoma, MYB- or MYBL1-altered, 2 with diffuse midline glioma, H3 K27-altered, and 12 with diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. Pediatric high-grade glioma (pHGG) frequently showed tumor enhancement, peritumoral edema, and intratumoral necrosis. Adult patients with pHGG showed a longer life expectancy than adult patients with glioblastoma. Common molecular alterations included chromosome alterations and CDKN2A/B, PIK3CA, and PTEN, while altered KMT5B and MET were found to affect the overall survival. Conclusion Our study demonstrated adult patients with pediatric-type glioma. Notably, our research aims to expand the current understanding of adult patients with pediatric-type diffuse gliomas. Furthermore, personalized therapies consisting of targeted molecular inhibitors for MET and VEGFA may exhibit beneficial effects in the corresponding population.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ‘4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ‘4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|
6
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
7
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Molecular markers related to patient outcome in patients with IDH-mutant astrocytomas grade 2 to 4: A systematic review. Eur J Cancer 2022; 175:214-223. [PMID: 36152406 DOI: 10.1016/j.ejca.2022.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Grading and classification of IDH-mutant astrocytomas has shifted from solely histology towards histology combined with molecular diagnostics. In this systematic review, we give an overview of all currently known clinically relevant molecular markers within IDH-mutant astrocytomas grade 2 to 4. METHODS A literature search was performed in five electronic databases for English original papers on patient outcome with respect to a molecular marker as determined by DNA/RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53. RESULTS The literature search identified 4508 unique articles, published between August 2012 and December 2021, of which ultimately 44 articles were included. Numerous molecular markers from these papers were significantly correlated to patient outcome. The associations between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q, the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation burden were confirmed in multiple studies. CONCLUSIONS Multiple genetic and epigenetic markers are associated with survival in IDH-mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.
Collapse
|
9
|
Liu X, Chen Y, Geng D, Li H, Jiang T, Luo Z, Wang J, Pang Z, Zhang J. Aptamer-Modified Erythrocyte Membrane-Coated pH-Sensitive Nanoparticles for c-Met-Targeted Therapy of Glioblastoma Multiforme. MEMBRANES 2022; 12:membranes12080744. [PMID: 36005659 PMCID: PMC9415068 DOI: 10.3390/membranes12080744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Biomimetic drug delivery systems, especially red blood cell (RBC) membrane-based nanoparticle drug delivery systems (RNP), have been extensively utilized in tumor drug delivery because of their excellent biocompatibility and prolonged circulation. In this study, we developed an active targeting pH-sensitive RNP loaded with DOX by decorating an aptamer SL1 on RBC membranes (SL1-RNP-DOX) for c-Met-targeted therapy of glioblastoma multiforme (GBM). SL1 could specifically bind to c-Met, which is highly expressed in GBM U87MG cells and facilitate DOX delivery to GBM cells. In vitro studies demonstrated that U87MG cells had a higher uptake of SL1-RNP-DOX (3.25 folds) and a stronger pro-apoptosis effect than unmodified RNP-DOX. In vivo fluorescence imaging and tissue distribution further demonstrated the higher tumor distribution of SL1-RNP-DOX (2.17 folds) compared with RNP-DOX. As a result, SL1-RNP-DOX presented the best anti-GBM effect with a prolonged median survival time (23 days vs. 15.5 days) and the strongest tumor cell apoptosis in vivo among all groups. In conclusion, SL1-RNP-DOX exhibited a promising targeting delivery strategy for GBM therapy.
Collapse
Affiliation(s)
- Xianping Liu
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; (X.L.); (Y.C.); (D.G.)
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Yixin Chen
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; (X.L.); (Y.C.); (D.G.)
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; (X.L.); (Y.C.); (D.G.)
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Haichun Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (H.L.); (T.J.); (Z.L.)
| | - Ting Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (H.L.); (T.J.); (Z.L.)
| | - Zimiao Luo
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (H.L.); (T.J.); (Z.L.)
| | - Jianhong Wang
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
- Correspondence: (J.W.); (Z.P.); (J.Z.); Tel.: +8621-5288-8365 (J.Z.)
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (H.L.); (T.J.); (Z.L.)
- Correspondence: (J.W.); (Z.P.); (J.Z.); Tel.: +8621-5288-8365 (J.Z.)
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; (X.L.); (Y.C.); (D.G.)
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
- Correspondence: (J.W.); (Z.P.); (J.Z.); Tel.: +8621-5288-8365 (J.Z.)
| |
Collapse
|
10
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
11
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
13
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Identification of CRYAB + KCNN3 + SOX9 + Astrocyte-Like and EGFR + PDGFRA + OLIG1 + Oligodendrocyte-Like Tumoral Cells in Diffuse IDH1-Mutant Gliomas and Implication of NOTCH1 Signalling in Their Genesis. Cancers (Basel) 2021; 13:cancers13092107. [PMID: 33925547 PMCID: PMC8123787 DOI: 10.3390/cancers13092107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse grade II IDH-mutant gliomas are rare brain tumors mainly affecting young patients. These tumors are composed of different populations of tumoral cells. Little is known of these cells and how they are generated. These different cells may show different sensitivity to treatments, so our aim was to study them in detail by directly using patient resections. We identified two clearly distinct tumoral populations and defined reliable markers for them. We also uncovered part of the molecular mechanisms that generate them. Finally, we found that the two cell types have different electrical activity. This article provides unique data and new issues on these rare tumors, which need to be further investigated to develop innovative treatments. Abstract Diffuse grade II IDH-mutant gliomas are slow-growing brain tumors that progress into high-grade gliomas. They present intratumoral cell heterogeneity, and no reliable markers are available to distinguish the different cell subtypes. The molecular mechanisms underlying the formation of this cell diversity is also ill-defined. Here, we report that SOX9 and OLIG1 transcription factors, which specifically label astrocytes and oligodendrocytes in the normal brain, revealed the presence of two largely nonoverlapping tumoral populations in IDH1-mutant oligodendrogliomas and astrocytomas. Astrocyte-like SOX9+ cells additionally stained for APOE, CRYAB, ID4, KCNN3, while oligodendrocyte-like OLIG1+ cells stained for ASCL1, EGFR, IDH1, PDGFRA, PTPRZ1, SOX4, and SOX8. GPR17, an oligodendrocytic marker, was expressed by both cells. These two subpopulations appear to have distinct BMP, NOTCH1, and MAPK active pathways as stainings for BMP4, HEY1, HEY2, p-SMAD1/5 and p-ERK were higher in SOX9+ cells. We used primary cultures and a new cell line to explore the influence of NOTCH1 activation and BMP treatment on the IDH1-mutant glioma cell phenotype. This revealed that NOTCH1 globally reduced oligodendrocytic markers and IDH1 expression while upregulating APOE, CRYAB, HEY1/2, and an electrophysiologically-active Ca2+-activated apamin-sensitive K+ channel (KCNN3/SK3). This was accompanied by a reduction in proliferation. Similar effects of NOTCH1 activation were observed in nontumoral human oligodendrocytic cells, which additionally induced strong SOX9 expression. BMP treatment reduced OLIG1/2 expression and strongly upregulated CRYAB and NOGGIN, a negative regulator of BMP. The presence of astrocyte-like SOX9+ and oligodendrocyte-like OLIG1+ cells in grade II IDH1-mutant gliomas raises new questions about their role in the pathology.
Collapse
|
15
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
16
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
17
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
18
|
Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res 2019; 38:270. [PMID: 31221203 PMCID: PMC6585013 DOI: 10.1186/s13046-019-1269-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
19
|
Cheng F, Zhang P, Xiao Q, Li Y, Dong M, Wang H, Kuang D, He Y, Duan Q, Mao F, Wang B, Guo D. The Prognostic and Therapeutic Potential of LRIG3 and Soluble LRIG3 in Glioblastoma. Front Oncol 2019; 9:447. [PMID: 31245283 PMCID: PMC6563081 DOI: 10.3389/fonc.2019.00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a highly lethal type of primary brain tumor that exhibits unrestricted growth and aggressive invasion capabilities, leading to a dismal prognosis despite a multitude of therapies. Multiple alterations in the expression level of genes and/or proteins have been identified in glioblastomas, including the activation of oncogenes and/or silencing of tumor-suppressor genes. Nevertheless, there are still no effective targeted therapies associated with these changes. In this study, we investigated the expression of human leucine-rich repeats and immunoglobulin-like domains protein 3 (LRIG3) in human glioma specimens through immunohistochemical analysis. The results showed that LRIG3 was weakly expressed in high-grade gliomas (WHO [World Health Organization] grades III and IV) compared with that in low-grade gliomas (WHO grade II). Survival analysis of these patients with glioma indicated that LRIG3 is an important prognostic marker for better survival. Moreover, we confirmed the existence of soluble ectodomain of LRIG3 (sLRIG3) in the cell culture supernatant, serum, and in tumor cystic fluid of patients with glioma. Molecular mechanistic investigation demonstrated that both LRIG3 and sLRIG3 inhibit the growth and invasion capabilities of GL15, U87, and PriGBM cells and tumor xenografts in nude mice through regulating the MET/phosphatidylinositol 3-kinase/Akt signaling pathway. Enzyme-linked immunosorbent assay confirmed the positive correlation between serum sLRIG3 protein levels and overall survival time in patients with high-grade gliomas. Taken together, our data for the first time demonstrate the existence of sLRIG3 and that both LRIG3 and sLRIG3 are potent tumor suppressors, which could be used as prognostic markers for better overall survival and therapeutic agents for glioblastoma.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
The landscape of postsurgical recurrence patterns in diffuse low-grade gliomas. Crit Rev Oncol Hematol 2019; 138:148-155. [PMID: 31092371 DOI: 10.1016/j.critrevonc.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Early and maximal safe surgical resection optionally followed by adjuvant treatment is currently recommended in diffuse low-grade glioma (DLGG). Although this management delays malignant transformation (MT), recurrence will most often occur. Because this relapse usually arises locally, reoperation can be considered, with possible further chemotherapy/radiotherapy. However, due to a prolonged overall survival, a large spectrum of unusual recurrence patterns begins to emerge during long-term follow-up, beyond the classical slow and local tumor re-growth. We review various atypical patterns of DLGG relapse, we discuss their pathophysiological mechanisms and how to adapt the treatment(s). Those patterns include very diffuse, ipsi- or bilateral gliomatosis-like progression, multicentric recurrence with emergence of remote low-grade or high-grade glioma, leptomeningeal dissemination, acute (early or delayed) local MT or bulky relapse into the operating cavity. This landscape of recurrence patterns may allow physicians to elaborate new tailored therapeutic strategies and scientists to develop original hypotheses for basic research.
Collapse
|
21
|
Ohba S, Yamada Y, Murayama K, Sandika E, Sasaki H, Yamada S, Abe M, Hasegawa M, Hirose Y. c-Met Expression Is a Useful Marker for Prognosis Prediction in IDH-Mutant Lower-Grade Gliomas and IDH-Wildtype Glioblastomas. World Neurosurg 2019; 126:e1042-e1049. [PMID: 30878754 DOI: 10.1016/j.wneu.2019.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE c-Met has been shown to be associated with tumor growth in several human cancers. This study aims to evaluate the correlation between the c-Met expression and histopathologic/clinical characteristics. METHODS A total of 153 patients with histologically defined World Health Organization grade II-IV diffuse astrocytic and oligodendroglial tumors were analyzed. RESULTS For each histopathologic diagnosis, the number of cases and positive rate of c-Met expression are as follows: oligodendroglioma, IDH-mutant, and 1p19q codeletion (OD): 16 cases, 6.3%; anaplastic oligodendroglioma, IDH-mutant, and 1p19q codeletion (AO): 11 cases, 36.4%; diffuse astrocytoma (DA), IDH-mutant: 21 cases, 28.6%; anaplastic astrocytoma (AA), IDH- mutant: 15 cases, 20%; glioblastoma, IDH-mutant: 2, 100%, DA, IDH-wildtype: 9 cases, 33.3%; AA, IDH-wildtype: 20 cases, 30.0%; and glioblastoma, IDH-wildtype: 59 cases, 52.5%. c-Met expression was correlated with progression-free survival in oligodendroglial tumors and glioblastoma, IDH-wildtype. Furthermore, it was correlated with overall survival in AO, oligodendroglial tumors, DA, IDH-mutant, DA, IDH-wildtype, and glioblastoma, IDH-wildtype, and tend to be correlated with overall survival in IDH-mutant lower-grade astrocytic tumors. CONCLUSIONS c-Met expression was revealed to be a useful marker for prognosis prediction in IDH-mutant lower-grade gliomas and glioblastoma, IDH-wildtype, representing a new independent prognostic marker that can be easily measured.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan.
| | - Yasuhiro Yamada
- Department of Neurosurgery, Fujita Health University, Banbuntane Hotokukai Hospital, Aichi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University, Toyoake, Aichi, Japan
| | - Eriel Sandika
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Yamada
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan; Department of School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
22
|
Romo CG, Palsgrove DN, Sivakumar A, Elledge CR, Kleinberg LR, Chaichana KL, Gocke CD, Rodriguez FJ, Holdhoff M. Widely metastatic IDH1-mutant glioblastoma with oligodendroglial features and atypical molecular findings: a case report and review of current challenges in molecular diagnostics. Diagn Pathol 2019; 14:16. [PMID: 30738431 PMCID: PMC6368694 DOI: 10.1186/s13000-019-0793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 01/06/2023] Open
Abstract
Background Gliomas with 1p/19q-codeletion as well as mutation of isocitrate dehydrogenase (IDH) 1 are typically characterized as oligodendrogliomas with comparatively good response to treatment with radiation and chemotherapy. Case presentation We present the case of a 28-year-old man with an IDH1 and TP53 mutant high grade glioma with abnormalities in chromosomes 1 and 19 suggestive of anaplastic oligodendroglioma that rapidly progressed to widespread metastatic disease. Biopsy of a liver lesion confirmed metastasis of the patient’s known brain primary and chemotherapy with temozolomide was initiated. The patient’s rapidly growing tumor burden with fulminant liver failure and tumor lysis led to multisystem failure of which the patient died. Further molecular testing illustrated features more consistent with glioblastoma: multiple large chromosomal aberrations including loss of whole chromosome 1 and 2q; gain/amplification of MYCN, MET, and CDK4; loss of CDKN2A/B; and an ATRX mutation. Conclusion This case illustrates the importance of higher level molecular diagnostic testing for patients with particularly aggressive disease progression that is not concordant with standard prognoses. Additional data on cases with atypical alterations of 1p and 19q are needed to better understand the distinct biology of these cancers so that appropriate therapies can be developed. Electronic supplementary material The online version of this article (10.1186/s13000-019-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos G Romo
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA
| | - Doreen N Palsgrove
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Ananyaa Sivakumar
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA
| | - Christen R Elledge
- Department of Radiation Oncology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
23
|
Ikeda S, Schwaederle M, Mohindra M, Fontes Jardim DL, Kurzrock R. MET alterations detected in blood-derived circulating tumor DNA correlate with bone metastases and poor prognosis. J Hematol Oncol 2018; 11:76. [PMID: 29866143 PMCID: PMC5987577 DOI: 10.1186/s13045-018-0610-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background We analyzed clinical associations of MET alterations in the plasma of patients with diverse malignancies. Methods Digital sequencing of circulating tumor DNA (ctDNA) (54–70 genes) was performed in 438 patients; 263 patients also had tissue sequencing (182–315 genes). The most represented tumor types were gastrointestinal (28.1%), brain (24.9%), and lung (23.2%). Most patients (71.2%) had recurrent/metastatic disease. Results MET alterations were observed in 31 patients (7.1%) and correlated with bone metastasis (P = 0.007), with TP53 (P = 0.001) and PTEN (P = 0.003) abnormalities, and with an increased number of alterations (median, 4 vs 1, P = 0.001) (all multivariable analyses). Patients with MET alterations demonstrated a significantly shorter median time to metastasis/recurrence (1.0 vs 10.4 months, P = 0.044, multivariable) and a poorer survival (30.6 vs 58.4 months, P = 0.013, univariate only). Of the 31 patients with MET alterations, 18 also had tissue testing; only two also had tissue MET alterations (11.1%); MET alterations were detected at a lower frequency in tissue (1.14%) compared to ctDNA (7.1%), with P = 0.0002. Conclusions In conclusion, the detection of MET alterations by liquid biopsy is feasible. MET ctDNA alterations were associated with a poorer prognosis, higher numbers of genomic abnormalities, and bone metastases. The correlation with bone metastases may explain the higher frequency of MET alterations in blood ctDNA than in tissue (since bones are rarely biopsied) and the previous observations of bone-predominant responses to MET inhibitors. The high number of co-altered genes suggests that MET inhibitors may need to be combined with other agents to induce/optimize responses. Electronic supplementary material The online version of this article (10.1186/s13045-018-0610-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadakatsu Ikeda
- Department of Medicine, Center for Personalized Cancer Therapy, Division of Hematology/Oncology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, #0658, La Jolla, CA, 92093-0987, USA. .,Tokyo Medical and Dental University, Tokyo, Japan.
| | - Maria Schwaederle
- Department of Medicine, Center for Personalized Cancer Therapy, Division of Hematology/Oncology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, #0658, La Jolla, CA, 92093-0987, USA.
| | - Mandakini Mohindra
- Department of Medicine, Center for Personalized Cancer Therapy, Division of Hematology/Oncology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, #0658, La Jolla, CA, 92093-0987, USA
| | | | - Razelle Kurzrock
- Department of Medicine, Center for Personalized Cancer Therapy, Division of Hematology/Oncology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, #0658, La Jolla, CA, 92093-0987, USA.
| |
Collapse
|
24
|
van den Heuvel CNAM, Navis AC, de Bitter T, Amiri H, Verrijp K, Heerschap A, Rex K, Dussault I, Caenepeel S, Coxon A, Span PN, Wesseling P, Hendriks W, Leenders WPJ. Selective MET Kinase Inhibition in MET-Dependent Glioma Models Alters Gene Expression and Induces Tumor Plasticity. Mol Cancer Res 2017; 15:1587-1597. [PMID: 28751462 DOI: 10.1158/1541-7786.mcr-17-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
The receptor tyrosine kinase (RTK) MET represents a promising tumor target in a subset of glioblastomas. Most RTK inhibitors available in the clinic today, including those inhibiting MET, affect multiple targets simultaneously. Previously, it was demonstrated that treatment with cabozantinib (MET/VEGFR2/RET inhibitor) prolonged survival of mice carrying orthotopic patient-derived xenografts (PDX) of the MET-addicted glioblastoma model E98, yet did not prevent development of recurrent and cabozantinib-resistant tumors. To exclude VEGFR2 inhibition-inflicted blood-brain barrier normalization and diminished tumor distribution of the drug, we have now investigated the effects of the novel MET-selective inhibitor Compound A in the orthotopic E98 xenograft model. In vitro, Compound A proved a highly potent inhibitor of proliferation of MET-addicted cell lines. In line with its target selectivity, Compound A did not restore the leaky blood-brain barrier and was more effective than cabozantinib in inhibiting MET phosphorylation in vivo Compound A treatment significantly prolonged survival of mice carrying E98 tumor xenografts, but did not prevent eventual progression. Contrasting in vitro results, the Compound A-treated xenografts displayed high levels of AKT phosphorylation despite the absence of phosphorylated MET. Profiling by RNA sequencing showed that in vivo transcriptomes differed significantly from those in control xenografts.Implications: Collectively, these findings demonstrate the plasticity of paracrine growth factor receptor signaling in vivo and urge for prudency with in vitro drug-testing strategies to validate monotherapies. Mol Cancer Res; 15(11); 1587-97. ©2017 AACR.
Collapse
Affiliation(s)
| | - Anna C Navis
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tessa de Bitter
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Houshang Amiri
- Department of Radiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Kiek Verrijp
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Karen Rex
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California
| | - Isabelle Dussault
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California
| | - Sean Caenepeel
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California
| | - Angela Coxon
- Department of Oncology Research, Amgen Inc., Thousand Oaks, California
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Centre, Radiotherapy and Oncoimmunology Laboratory, Nijmegen, the Netherlands
| | - Pieter Wesseling
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Wiljan Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - William P J Leenders
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Che Mat MF, Abdul Murad NA, Ibrahim K, Mohd Mokhtar N, Wan Ngah WZ, Harun R, Jamal R. Silencing of PROS1 induces apoptosis and inhibits migration and invasion of glioblastoma multiforme cells. Int J Oncol 2016; 49:2359-2366. [PMID: 27840905 DOI: 10.3892/ijo.2016.3755] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor and most patients have poor prognosis. Despite many advances in research, there has been no significant improvement in the patient survival rate. New molecular therapies are being studied and RNA interference (RNAi) therapy is one of the promising approaches to improve prognosis and increase survival in patients with GBM. We performed a meta‑analysis of five different microarray datasets and identified 460 significantly upregulated genes in GBM. Loss‑of‑function screening of these upregulated genes using LN18 cells was performed to identify the significant target genes for glioma. Further investigations were performed using siRNA in LN18 cells and various functional assays were carried out on the selected candidate gene to understand further its role in GBM. We identified PROS1 as a candidate gene for GBM from the meta‑analysis and RNAi screening. Knockdown of PROS1 in LN18 cells significantly induced apoptosis compared to siPROS1‑untreated cells (p<0.05). Migration in cells treated with siPROS1 was reduced significantly (p<0.05) and this was confirmed with wound-healing assay. PROS1 knockdown showed substantial reduction in cell invasion up to 82% (p<0.01). In addition, inhibition of PROS1 leads to decrease in cellular proliferation by 18%. Knockdown of PROS1 in LN18 cells caused activation of both of the extrinsic and intrinsic apoptotic pathways. It caused major upregulation of FasL which is important for death receptor signaling activation and also downregulation of GAS6 and other members of TAM family of receptors. PROS1 may play an important role in the development of GBM through cellular proliferation, migration and invasion as well as apoptosis. Targeting PROS1 in GBM could be a novel therapeutic strategy in GBM treatment.
Collapse
Affiliation(s)
- Mohd Firdaus Che Mat
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kamariah Ibrahim
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Wan Zurinah Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
26
|
Buzyn A, Blay JY, Hoog-Labouret N, Jimenez M, Nowak F, Deley MCL, Pérol D, Cailliot C, Raynaud J, Vassal G. Equal access to innovative therapies and precision cancer care. Nat Rev Clin Oncol 2016; 13:385-93. [DOI: 10.1038/nrclinonc.2016.31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Senetta R, Mellai M, Manini C, Castellano I, Bertero L, Pittaro A, Schiffer D, Boldorini R, Cassoni P. Mesenchymal/radioresistant traits in granular astrocytomas: evidence from a combined clinical and molecular approach. Histopathology 2016; 69:329-37. [PMID: 26845757 DOI: 10.1111/his.12944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 01/18/2023]
Abstract
AIMS Granular-cell astrocytomas (GCAs) are morphologically characterized by a prominent component of granular periodic acid-Schiff-positive cells, and show increased aggressiveness as compared with 'ordinary' astrocytomas. The aim of this study was to investigate, in a small series of three GCAs, the expression of mesenchymal/radioresistance-associated biomarkers [such as chitinase-3-like protein 1 (YKL-40), hepatocyte growth factor receptor (c-Met), and caveolin 1 (Cav1)] that could contribute to the poor outcome associated with this glioma subgroup. METHODS AND RESULTS Our results show that GCAs, according to the new molecular glioma classifications, consistently show a prognostically negative molecular trait (IDH1wt-ATRX noloss-1p/19q nocodeletion). Furthermore, GCAs significantly differed from a control series of 33 'conventional' astrocytomas, because of diffuse and strong immunohistochemical coexpression of YKL-40, c-Met, and Cav1. CONCLUSIONS Our findings show that specific morphological traits, such as a granular-cell component, could represent useful features in guiding the search for prognostic and predictive biomarkers that could eventually be therapy-targetable (e.g. Met inhibitors aimed at reducing radioresistance).
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy.,IRCCS Candiolo, Turin, Italy
| | - Marta Mellai
- Neuro-Bio-Oncology Centre/Policlinico di Monza Foundation, Vercelli, Italy
| | - Claudia Manini
- Division of Pathology, Giovanni Bosco Hospital, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Davide Schiffer
- Neuro-Bio-Oncology Centre/Policlinico di Monza Foundation, Vercelli, Italy
| | - Renzo Boldorini
- Unit of Pathology, Department of Health Sciences, University of Eastern Piedmont 'Amedeo Avogadro', Novara, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Piao Y, Park SY, Henry V, Smith BD, Tiao N, Flynn DL, de Groot JF. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro Oncol 2016; 18:1230-41. [PMID: 26965451 DOI: 10.1093/neuonc/now030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. METHODS We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. RESULTS In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. CONCLUSIONS Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Yuji Piao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - Soon Young Park
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - Verlene Henry
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - Bryan D Smith
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - Ningyi Tiao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - Daniel L Flynn
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (Y.P., S.Y.P., N.T., J.F.d.G.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (V.H.); Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts (B.D.S., D.L.F.)
| |
Collapse
|
29
|
Kwak Y, Kim SI, Park CK, Paek SH, Lee ST, Park SH. C-MET overexpression and amplification in gliomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14932-14938. [PMID: 26823824 PMCID: PMC4713610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University HospitalSeoul, Republic of Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University HospitalSeoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University HospitalSeoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University HospitalSeoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University HospitalSeoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University HospitalSeoul, Republic of Korea
- Institute of Neuroscience, Seoul National University, College of MedicineSeoul, Republic of Korea
| |
Collapse
|
30
|
Le Rhun E, Chamberlain MC, Zairi F, Delmaire C, Idbaih A, Renaud F, Maurage CA, Grégoire V. Patterns of response to crizotinib in recurrent glioblastoma according to ALK and MET molecular profile in two patients. CNS Oncol 2015; 4:381-6. [PMID: 26498130 DOI: 10.2217/cns.15.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two patients with an unmethylated MGMT promoter and IDH1 (R132H) wild-type recurrent glioblastoma were treated with crizotinib. Prolonged stabilization of the disease (17 months) was achieved in the first case. Interestingly, anaplastic lymphoma kinase (ALK) expression and c-MET protein overexpression was observed. Conversely, no response to crizotinib was obtained in the second case with MET protein overexpression and c-MET amplification but no ALK expression or ALK gene amplification. These case studies suggest that novel targeted ALK inhibitors may provide relevant clinical benefit in selected cases in which driver mutations are demonstrable.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Neuro-Oncology, Neurosurgery Department, University Hospital - CHRU Lille, France.,Neurology, Medical Oncology Department, Oscar Lambret Center, Lille, France.,Inserm, U1192, Lille, France
| | - Marc C Chamberlain
- Neurology & Neurological Surgery, University of Washington, Fred Hutchinson Research Cancer Center, Seattle, WA 98109, USA
| | - Fahed Zairi
- Inserm, U1192, Lille, France.,Neurosurgery Department, University Hospital - CHRU Lille, France
| | | | - Ahmed Idbaih
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin; Sorbonne Universités, UPMC Univ Paris 06, UM 75.,Inserm, U 1127, CNRS, UMR 7225, ICM, F-75013 Paris, France
| | - Florence Renaud
- Neuropathology Department, University Hospital - CHRU Lille, France.,Lille University, Lille, France.,UMR-S, 1172 F-59000 Lille, France
| | - Claude Alain Maurage
- Neuropathology Department, University Hospital - CHRU Lille, France.,Lille University, Lille, France.,UMR-S, 1172 F-59000 Lille, France
| | - Valérie Grégoire
- Neuropathology Department, University Hospital - CHRU Lille, France.,Lille University, Lille, France.,UMR-S, 1172 F-59000 Lille, France
| |
Collapse
|
31
|
High levels of c-Met is associated with poor prognosis in glioblastoma. J Neurooncol 2015; 122:517-27. [PMID: 25800004 DOI: 10.1007/s11060-015-1723-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/18/2015] [Indexed: 10/23/2022]
Abstract
The tyrosine kinase receptor c-Met has been suggested to be involved in crucial parts of glioma biology like tumor stemness, growth and invasion. The aim of this study was to investigate the prognostic value of c-Met in a population-based glioma patient cohort. Tissue samples from 238 patients with WHO grade I, II, III and IV tumors were analyzed using immunohistochemical staining and advanced image analysis. Strong c-Met expression was found in tumor cells, blood vessels, and peri-necrotic areas. At the subcellular level, c-Met was identified in the cytoplasm and in the cell membrane. Measurements of high c-Met intensity correlated with high WHO grade (p = 0.006) but no association with survival was observed in patients with WHO grade II (p = 0.09) or III (p = 0.17) tumors. High expression of c-Met was associated with shorter overall survival in patients with glioblastoma multiforme (p = 0.03). However the prognostic effect of c-Met in glioblastomas was time-dependent and only observed in patients who survived more than 8.5 months, and not within the first 8.5 months after diagnosis. This was significant in multivariate analysis (HR 1.99, 95 % CI 1.29-3.08, p = 0.002) adjusted for treatment and the clinical variables age (HR 1.01, 95 % CI 0.99-1.03, p = 0.30), performance status (HR 1.34, 95 % CI 1.17-1.53, p < 0.001), and tumor crossing midline (HR 1.28, 95 % CI 0.79-2.07, p = 0.29). In conclusion, this study showed that high levels of c-Met holds unfavorable prognostic value in glioblastomas.
Collapse
|
32
|
Abstract
Glioblastomas with a proneural expression signature are characterized by frequent IDH1 mutations (i.e. genetic hallmarks of secondary glioblastomas) and PDGFRA (platelet-derived growth factor receptor-α) amplification. Mutations in IDH1/2 are frequent and early genetic events in diffuse astrocytomas (World Health Organization grade II), precursor to secondary glioblastomas, but little is known about the role and timing of PDGFRA amplification in these tumors. We assessed PDGFRA gain in 342 low-grade diffuse gliomas by quantitative polymerase chain reaction. Gain in PDGFRA was detected in 27 (16.3%) of 166 diffuse astrocytomas, significantly more frequent than in oligodendrogliomas (3 [2.6%] of 115, p < 0.0001). Analyses using previously published data from our laboratory showed an inverse correlation between PDGFRA gain and IDH1/2 mutations (p = 0.018) or 1p/19q loss (p < 0.0001). The vast majority of diffuse astrocytomas showed IDH1/2 mutations and/or PDGFRA gain (154 [93%] of 166). Mean survival of diffuse astrocytoma patients with PDGFRA gain was 8.8 ± 1.6 years, similar to that with IDH1/2 mutations (7.8 ± 0.5 years) or TP53 mutations (7.6 ± 0.6 years) but significantly longer than those with MET gain (4.4 ± 0.7 years). Dual-color fluorescence in situ hybridization in 6 diffuse astrocytomas with PDGFRA/MET co-gain identified by quantitative polymerase chain reaction revealed that PDGFRA and MET were typically amplified in different tumor cell populations. Tumor cells with coamplification were also focally observed, suggesting intratumoral heterogeneity, even in diffuse astrocytomas.
Collapse
|
33
|
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The vast majority of glioblastomas (~90%) develop rapidly de novo in elderly patients, without clinical or histologic evidence of a less malignant precursor lesion (primary glioblastomas). Secondary glioblastomas progress from low-grade diffuse astrocytoma or anaplastic astrocytoma. They manifest in younger patients, have a lesser degree of necrosis, are preferentially located in the frontal lobe, and carry a significantly better prognosis. Histologically, primary and secondary glioblastomas are largely indistinguishable, but they differ in their genetic and epigenetic profiles. Decisive genetic signposts of secondary glioblastoma are IDH1 mutations, which are absent in primary glioblastomas and which are associated with a hypermethylation phenotype. IDH1 mutations are the earliest detectable genetic alteration in precursor low-grade diffuse astrocytomas and in oligodendrogliomas, indicating that these tumors are derived from neural precursor cells that differ from those of primary glioblastomas. In this review, we summarize epidemiologic, clinical, histopathologic, genetic, and expression features of primary and secondary glioblastomas and the biologic consequences of IDH1 mutations. We conclude that this genetic alteration is a definitive diagnostic molecular marker of secondary glioblastomas and more reliable and objective than clinical criteria. Despite a similar histologic appearance, primary and secondary glioblastomas are distinct tumor entities that originate from different precursor cells and may require different therapeutic approaches.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- Molecular Pathology Section, International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|