1
|
Boase NRB, Bell CA, Fletcher NL, Thurecht KJ. Multifunctional Biocompatible Hyperbranched Polymers as Molecular Imaging Agents and Theranostics. Methods Mol Biol 2025; 2902:69-106. [PMID: 40029597 DOI: 10.1007/978-1-0716-4402-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Theranostics aims to create a single entity that can detect and treat disease, as well as measure disease and therapeutic progression. This is commonly achieved by the incorporation of molecular imaging reporters, therapeutic agents, and targeting moieties into a single nanomaterial. Hyperbranched polymers have been successfully developed into theranostics owing to the high diversity of functionality that can be introduced through the distinct chemistries of their chain ends, branch points, and sidechains. In this protocol, we introduce the straightforward synthesis and characterization of biocompatible hyperbranched polymers for use as molecular imaging agents and theranostics. We detail a broad range of orthogonal chemistries that have been proven for introducing fluorophores, positron emission tomography (PET) radioisotope chelators, targeting agents, and therapeutics, at precise locations within the polymer structure. We also outline methods for using fluorescence and PET imaging for the preclinical evaluation of new hyperbranched polymer theranostics. These protocols will enable the application of these well-understood polymer materials in new disease applications and models.
Collapse
Affiliation(s)
- Nathan R B Boase
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
González-Santiago B, Vicente-Escobar JO, de la Luz-Tlapaya V, García-Gutiérrez P, García-Sánchez MÁ. Porphyrins Embedded in Translucent Polymeric Substrates: Fluorescence Preservation and Molecular Docking Studies. J Fluoresc 2024; 34:1707-1718. [PMID: 37597136 DOI: 10.1007/s10895-023-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
This research describes the functionalization of polymer-matrix-trapping porphyrins, considering that the transcendental properties of meso-substituted porphyrins, such as optical and chemical stability, combined with the strength of the polymers, can produce photoactive advanced polymeric networks. Polystyrene (PS) and O,O´-bis-(2-aminopropyl)-polyethyleneglycol-300 (2NH2peg300, APEG), or their combination, were used to confine the meso-substituted porphyrin species 5,10,15,20-tetrakis(4'-carboxy-1,1'-biphenyl-4-yl)porphyrin and 5,10,15,20-tetrakis((pyridin-4-yl)phenyl)porphyrin. The samples were characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and fluorescence spectroscopies. The absorption and emission properties of the materials were compared to those of their respective porphyrin solutions. The fluorescence was preserved in the obtained composite through a mixture of polymers, PS, and APEG, yielding translucent polymeric networks. Moreover, analysis of individual polymeric assemblies by molecular docking was performed to support the understanding of the experimental findings. This analysis corroborates that the stronger the estimated binding energies, the stronger the interactions that occur between porphyrin and the polymer via non-polar covalent bonds.
Collapse
Affiliation(s)
- Berenice González-Santiago
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, Calzada Legaria 694, Alcaldía Miguel Hidalgo, Ciudad de México, 11500, México
| | - Jonathan Osiris Vicente-Escobar
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Verónica de la Luz-Tlapaya
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Miguel Ángel García-Sánchez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México.
| |
Collapse
|
3
|
Feng W, Domeracki A, Park C, Shah S, Chhatbar PY, Pawar S, Chang C, Hsu PC, Richardson E, Hasan D, Sokhadze E, Zhang Q, Liu H. Revisiting Transcranial Light Stimulation as a Stroke Therapeutic-Hurdles and Opportunities. Transl Stroke Res 2023; 14:854-862. [PMID: 36369294 DOI: 10.1007/s12975-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared laser therapy, a special form of transcranial light therapy, has been tested as an acute stroke therapy in three large clinical trials. While the NEST trials failed to show the efficacy of light therapy in human stroke patients, there are many lingering questions and lessons that can be learned. In this review, we summarize the putative mechanism of light stimulation in the setting of stroke, highlight barriers, and challenges during the translational process, and evaluate light stimulation parameters, dosages and safety issues, choice of outcomes, effect size, and patient selection criteria. In the end, we propose potential future opportunities with transcranial light stimulation as a cerebroprotective or restorative tool for future stroke treatment.
Collapse
Affiliation(s)
- Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Alexis Domeracki
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shreyansh Shah
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Swaroop Pawar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cherylee Chang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Po-Chun Hsu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Eric Richardson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - David Hasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Quanguang Zhang
- Department Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
4
|
Li Y, Han W, Gong D, Luo T, Fan Y, Mao J, Qin W, Lin W. A self-assembled nanophotosensitizer targets lysosomes and induces lysosomal membrane permeabilization to enhance photodynamic therapy. Chem Sci 2023; 14:5106-5115. [PMID: 37206384 PMCID: PMC10189857 DOI: 10.1039/d3sc00455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
We report the self-assembly of amphiphilic BDQ photosensitizers into lysosome-targeting nanophotosensitizer BDQ-NP for highly effective photodynamic therapy (PDT). Molecular dynamics simulation, live cell imaging, and subcellular colocalization studies showed that BDQ strongly incorporated into lysosome lipid bilayers to cause continuous lysosomal membrane permeabilization. Upon light irradiation, the BDQ-NP generated a high level of reactive oxygen species to disrupt lysosomal and mitochondrial functions, leading to exceptionally high cytotoxicity. The intravenously injected BDQ-NP accumulated in tumours to achieve excellent PDT efficacy on subcutaneous colorectal and orthotopic breast tumor models without causing systemic toxicity. BDQ-NP-mediated PDT also prevented metastasis of breast tumors to the lungs. This work shows that self-assembled nanoparticles from amphiphilic and organelle-specific photosensitizers provide an excellent strategy to enhance PDT.
Collapse
Affiliation(s)
- Youyou Li
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Wenbo Han
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Deyan Gong
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Taokun Luo
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Jianming Mao
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago Chicago IL 60637 USA
| |
Collapse
|
5
|
Suhariningsih S, Astuti SD, Kusumawati HN, Mahmud AF, Septriana M, Rozykulyyeva L, Susilo Y, Syahrom A. Effect of 650 nm laser photobiomodulation therapy on the HT-7 ( shenmen) acupoint in the Mus musculus model of Parkinson's disease. Heliyon 2023; 9:e15295. [PMID: 37123890 PMCID: PMC10130853 DOI: 10.1016/j.heliyon.2023.e15295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background Parkinson's disease is one of the neurodegenerative conditions that impacts 1-2% of the world's population. The only effective therapy for this condition today is to restore the biochemical function of the diseased dopamine neurons by giving them Levodopa or L-3,4-dihydroxyphenylalanine (l-DOPA). The risk of progenitor stem cells, though, is the growth of teratomas or the uncontrolled growth of cells. As a result, an alternative or additional method is needed, such as photobiomodulation therapy using a laser diode. In this research, male mice (Mus musculus), which were used as models for Parkinson's disease in an in vivo paraquat study, to determine the optimal dose of photobiomodulation therapy and a laser diode was used as a treatment. Methods The three sample groups are Group P-L- (control group, induced by 0.9% NaCl), Group P + L- (only caused by paraquat), and Group P + L+. (Treatment group, treated by paraquat and photobiomodulation therapy with a laser diode). Photobiomodulation treatment doses of 0.14 J, 0.29 J, 0.37 J, 0.76 J, 1.14 J, and 1.52 J were used in the P+L+ subgroups (6 groups). The laser diode generated a continuous wave with a wavelength of 658 nm, a beam spot of 2.10 mm, and an output power of 15.42 mW. After treatment, the histopathology results of each sample were inspected under a microscope. Result In Parkinson's disease-affected mice, paraquat has been shown to reduce the number of neurons. According to the results of the histopathological examination, photobiomodulation therapy using a laser diode (P + L+) on the HT-7 (Shenmen) may raise the quantity of neurons and the proportion of healthy cells in the mouse brain. Conclusion The effective radiated energy of the photobiomodulation therapy using laser diode treatment on the muscle musculus cell model of Parkinson's disease is 0.76 J.
Collapse
Affiliation(s)
- Suhariningsih Suhariningsih
- Department of Physics, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115, Indonesia
- Biophysics and Medical Physics Research Group, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115, Indonesia
- Traditional Medicine Study Program, Faculty of Vocational Study, Airlangga University, Surabaya, 60286, Indonesia
| | - Suryani Dyah Astuti
- Department of Physics, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115, Indonesia
- Biophysics and Medical Physics Research Group, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115, Indonesia
- Biomedical Engineering Post Graduate Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
- Corresponding author. Airlangga University Faculty of Science and Technology, Universitas Airlangga Fakultas Sains dan Teknologi, Surabaya, East Java, 60115, Indonesia
| | - Herdiani Nur Kusumawati
- Biomedical Engineering Post Graduate Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Amalia Fitriana Mahmud
- Department of Physics, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Maya Septriana
- Traditional Medicine Study Program, Faculty of Vocational Study, Airlangga University, Surabaya, 60286, Indonesia
| | - Lale Rozykulyyeva
- Biomedical Engineering Post Graduate Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Yunus Susilo
- Faculty of Engineering, Dr Soetomo University, Surabaya, 60118, Indonesia
| | - Ardiansyah Syahrom
- Department of Applied Mechanics and Design, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| |
Collapse
|
6
|
Photodynamic Opening of the Blood-Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors. Pharmaceutics 2022; 14:pharmaceutics14122612. [PMID: 36559105 PMCID: PMC9784636 DOI: 10.3390/pharmaceutics14122612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood-brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
Collapse
|
7
|
Nizamutdinov D, Qi X, Berman MH, Dougal G, Dayawansa S, Wu E, Yi SS, Stevens AB, Huang JH. Transcranial Near Infrared Light Stimulations Improve Cognition in Patients with Dementia. Aging Dis 2021; 12:954-963. [PMID: 34221541 PMCID: PMC8219492 DOI: 10.14336/ad.2021.0229] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Dementia is a complex syndrome with various presentations depending on the underlying pathologies. Low emission of transcranial near-infrared (tNIR) light can reach human brain parenchyma and be beneficial to a number of neurological and neurodegenerative disorders. We hereby examined the safety and potential therapeutic benefits of tNIR light stimulations in the treatment of dementia. Patients of mild to moderate dementia were randomized into active and sham treatment groups at 2:1 ratio. Active treatment consisted of low power tNIR light stimulations with an active photobiomodulation for 6 min twice daily during 8 consequent weeks. Sham treatment consisted of same treatment routine with a sham device. Neuropsychological battery was obtained before and after treatment. Analysis of variance (ANOVA) was used to analyze outcomes. Sixty subjects were enrolled. Fifty-seven subjects completed the study and had not reported health or adverse side effects during or after the treatment. Three subjects dropped out from trial for health issues unrelated to use of tNIR light treatment. Treatment with active device resulted in improvements of cognitive functions and changes were: an average increase of MMSE by 4.8 points; Logical Memory Tests I and II by ~3.0 points; Trail Making Tests A and B by ~24%; Boston Naming Test by ~9%; improvement of both Auditory Verbal Learning Tests in all subtest categories and overall time of performance. Many patients reported improved sleep after ~7 days of treatment. Caregivers noted that patients had less anxiety, improved mood, energy, and positive daily routine after ~14-21 days of treatment. The tNIR light treatments demonstrated safety and positive cognitive improvements in patients with dementia. Developed treatment protocol can be conveniently used at home. This study suggests that additional dementia treatment trials are warranted with a focus on mitigating caregivers’ burden with tNIR light treatment of dementia patients.
Collapse
Affiliation(s)
- Damir Nizamutdinov
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA.,2Texas A&M University, HSC, College of Medicine, Neurosurgery, Temple, TX, USA
| | - Xiaoming Qi
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA
| | | | | | - Samantha Dayawansa
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA.,2Texas A&M University, HSC, College of Medicine, Neurosurgery, Temple, TX, USA
| | - Erxi Wu
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA.,2Texas A&M University, HSC, College of Medicine, Neurosurgery, Temple, TX, USA.,5Texas A&M University, HSC, College of Pharmacy, Department of Pharmaceutical Sciences, College Station, TX, USA.,6Department of Oncology, Dell Medical School, The University of Texas at Austin, TX, USA
| | - S Stephen Yi
- 6Department of Oncology, Dell Medical School, The University of Texas at Austin, TX, USA
| | - Alan B Stevens
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA
| | - Jason H Huang
- 1Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, Temple, TX, USA.,2Texas A&M University, HSC, College of Medicine, Neurosurgery, Temple, TX, USA
| |
Collapse
|
8
|
Tian X, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. J Biol Chem 2021; 296:100509. [PMID: 33676891 PMCID: PMC8050033 DOI: 10.1016/j.jbc.2021.100509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other site-specific recombinase systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
9
|
Mansouri V, Arjmand B, Rezaei Tavirani M, Razzaghi M, Rostami-Nejad M, Hamdieh M. Evaluation of Efficacy of Low-Level Laser Therapy. J Lasers Med Sci 2021; 11:369-380. [PMID: 33425286 DOI: 10.34172/jlms.2020.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Given the inconsistencies in the literature regarding laser performance in non-surgical treatments, this study investigated the available literature to determine the advantages and disadvantages of low-power lasers in treating non-surgical complications and diseases. Methods: Authentic information from articles was extracted and evaluated to assess low-power laser performance for non-surgical treatments. A systematic search of studies on low-level laser therapy (LLLT) for non-surgical treatments was conducted mainly in PubMed and google scholar articles. Results: Four categories of diseases, including brain-related diseases, skin-related diseases, cancers, and bone-related disorders, which were treated by LLLT were identified and introduced. The various types of LLLT regarding the studied diseases were discussed. Conclusion: Positive aspects of LLLT versus a few disadvantages of its application imply more investigation to find better and efficient new methods.
Collapse
Affiliation(s)
- Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hamdieh
- Department of Psychosomatic, Taleghani Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Mathony J, Niopek D. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion. Adv Biol (Weinh) 2020; 5:e2000181. [PMID: 33107225 DOI: 10.1002/adbi.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
Collapse
Affiliation(s)
- Jan Mathony
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany.,BZH graduate school, Heidelberg University, Im Neuheimer Feld 328, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany
| |
Collapse
|
11
|
Hipskind SG, Grover FL, Fort TR, Helffenstein D, Burke TJ, Quint SA, Bussiere G, Stone M, Hurtado T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:77-84. [PMID: 31050928 PMCID: PMC6390875 DOI: 10.1089/photob.2018.4489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective: This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. Background: Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. Materials and methods: Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). Results: Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21–21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. Conclusions: Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.
Collapse
Affiliation(s)
- S Gregory Hipskind
- 1 Brain Injury Consulting, LLC, Department of Brain Research, Addison, Texas.,2 InLight Medical, Medical Advisory Department, Addison, Texas
| | - Fred L Grover
- 3 Revolutionary MD, Department of Medical Research, Denver, Colorado
| | - T Richard Fort
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Dennis Helffenstein
- 5 Colorado Neuropsychological Associates, Testing Department, Englewood, Colorado
| | - Thomas J Burke
- 6 University of Colorado School of Medicine, Department of Physiology (Retired), Aurora, Colorado
| | - Shane A Quint
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Garrett Bussiere
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Michael Stone
- 7 Veterans Administration Hospital, Department of Radiology, Las Vegas, Nevada
| | - Timothy Hurtado
- 8 Penrose-St. Francis Health Services, Emergency Department, Colorado Springs, Colorado
| |
Collapse
|
12
|
Naeser MA, Ho MD, Martin PI, Hamblin MR, Koo BB. Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment with Red/Near-Infrared Transcranial Photobiomodulation: Case Series with Improved Naming in Aphasia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:115-131. [PMID: 31621498 DOI: 10.1089/photob.2019.4630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To examine effects of four different transcranial, red/near-infrared (NIR), light-emitting diode (tLED) protocols on naming ability in persons with aphasia (PWA) due to left hemisphere (LH) stroke. This is the first study to report beneficial effects from tLED therapy in chronic stroke, and parallel changes on functional magnetic resonance imaging (fMRI). Materials and methods: Six PWA, 2-18 years poststroke, in whom 18 tLED treatments were applied (3 × /week, 6 weeks) using LED cluster heads: 500 mW, red (633 nm) and NIR (870 nm), 22.48 cm2, 22.2 mW/cm2. Results: After Protocol A with bilateral LED placements, including midline, at scalp vertex over left and right supplementary motor areas (L and R SMAs), picture naming was not improved. P1 underwent pre-/postovert, picture-naming task-fMRI scans; P2 could not. After Protocol A, P1 showed increased activation in LH and right hemisphere, including L and R SMAs. After Protocol B with LEDs only on ipsilesional, LH side, naming ability significantly improved for P1 and P2; the fMRI scans for P1 then showed activation only on the ipsilesional LH side. After Protocol C with LED placements on ipsilesional LH side, plus one midline placement over mesial prefrontal cortex (mPFC) at front hairline, a cortical node of the default mode network (DMN), P3 and P4 had only moderate/poor response, and no increase in functional connectivity on resting-state functional-connectivity MRI. After Protocol D, however, with LED placements on ipsilesional LH side, plus over two midline nodes of DMN, mPFC, and precuneus (high parietal) simultaneously, P5 and P6 each had good response with significant increase in functional connectivity within DMN, p < 0.0005; salience network, p < 0.0005; and central executive network, p < 0.05. Conclusions: NIR photons can affect surface brain cortex areas subjacent to where LEDs are applied on the scalp. Improved naming ability was present with optimal Protocol D. Transcranial photobiomodulation may be an additional noninvasive therapy for stroke.
Collapse
Affiliation(s)
- Margaret A Naeser
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael D Ho
- VA Boston Healthcare System (12-A), Boston, Massachusetts
| | - Paula I Martin
- VA Boston Healthcare System (12-A), Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Bang-Bon Koo
- Brain-Imaging and Informatics Lab (BIL), Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Fekri A, Jahan A, Moghadam Salimi M, Oskouei AE. Short-term Effects of Transcranial Near-Infrared Photobiomodulation on Motor Performance in Healthy Human Subjects: An Experimental SingleBlind Randomized Clinical Trial. J Lasers Med Sci 2019; 10:317-323. [PMID: 31875125 DOI: 10.15171/jlms.2019.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Transcranial near-infrared photobiomodulation (NIR-PBM) is a new noninvasive procedure which transcranially applies a near-infrared wavelength to the scalp with a laser or a light-emitting diode (LED) source. Improvement in the neurological or psychological symptoms has been reported following light irradiation. However, to our knowledge, there is no study to investigate the effects of transcranial NIR-PBM on motor performance directly. Therefore, the objective of this study was to investigate the short-term effects of transcranial NIR-PBM on motor performance in healthy human subjects. Methods: In this experimental single-blind randomized clinical trial study, 56 right-handed healthy participants, whose ages ranged from 18 to 30, were randomly assigned to (1) Real transcranial NIR-PBMC3 group (n=14), (2) Sham transcranial NIR-PBMC3 group (n=14), (3) Real transcranial NIR-PBMC4 group (n=14), and (4) Sham transcranial NIR-PBMC4 group (n=14). We applied the 808 nm laser with irradiation energy density of 60 J/cm2 and power density of 200 mw/cm2 to the C3 or C4 points of the scalp. The number of finger taps as an indicator of motor performance was assessed by the finger-tapping test (FTT) before and after irradiation of transcranial NIR-PBM on the corresponding points of the scalp for 5 minutes. Results: The results showed that the number of finger taps in both right and left hands following the use of transcranial NIR-PBM in the real transcranial NIR-PBMC3 group significantly increased (P<0.05). Conclusion: We concluded that using transcranial NIR-PBM with a laser source on C3 point of the motor cortex in right-handed healthy people can increase the number of finger taps in both hands as an indicator of motor performance improvement.
Collapse
Affiliation(s)
- Atefeh Fekri
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadam Salimi
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali E Oskouei
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Salehpour F, Cassano P, Rouhi N, Hamblin MR, De Taboada L, Farajdokht F, Mahmoudi J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:581-595. [PMID: 31553265 DOI: 10.1089/photob.2019.4676] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background and objective: Photobiomodulation (PBM) therapy is a promising and noninvasive approach to stimulate neuronal function and improve brain repair. The optimization of PBM parameters is important to maximize effectiveness and tolerability. Several studies have reported on the penetration of visible-to-near-infrared (NIR) light through various animal and human tissues. Scientific findings on the penetration of PBM light vary, likely due to use of different irradiation parameters and to different characteristics of the subject such as species, age, and gender. Materials and methods: In this article, we review published data on PBM penetration through the tissues of the head in both animal and human species. The patterns of visible-to-NIR light penetration are summarized based on the following study specifications: wavelength, coherence, operation mode, beam type and size, irradiation site, species, age, and gender. Results: The average penetration of transcranial red/NIR (630-810 nm) light ranged 60-70% in C57BL/6 mouse (skull), 1-10% in BALB/c mouse (skull), 10-40% in Sprague-Dawley rats (scalp plus skull), 20% in Oryctolagus cuniculus rabbit (skull), 0.11% in pig (scalp plus skull), and 0.2-10% in humans (scalp plus skull). The observed variation in the reported values is due to the difference in factors (e.g., wavelengths, light coherence, tissue thickness, and anatomic irradiation site) used by researchers. It seems that these data challenge the applicability of the animal model data on transcranial PBM to humans. Nevertheless, two animal models seem particularly promising, as they approximate penetration in humans: (I) Penetration of 808 nm laser through the scalp plus skull was 0.11% in the pig head; (II) Penetration of 810 nm laser through intact skull was 1.75% in BALB/c mouse. Conclusions: In conclusion, it is worthwhile mentioning that since the effectiveness of brain PBM is closely dependent on the amount of light energy reaching the target neurons, further quantitative estimation of light penetration depth should be performed to validate the current findings.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Niraxx Light Therapeutics, Inc., Irvine, California
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Naser Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Fomicheva A, Zhou C, Sun QQ, Gomelsky M. Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications. ACS Synth Biol 2019; 8:1314-1324. [PMID: 31145854 DOI: 10.1021/acssynbio.8b00528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
Collapse
Affiliation(s)
- Anastasia Fomicheva
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
16
|
Chon TY, Mallory MJ, Yang J, Bublitz SE, Do A, Dorsher PT. Laser Acupuncture: A Concise Review. Med Acupunct 2019; 31:164-168. [PMID: 31297170 DOI: 10.1089/acu.2019.1343] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Laser acupuncture (LA)-the use of nonthermal, low-intensity laser irradiation to stimulate acupuncture points-has become more common among acupuncture practitioners in recent years. LA is promoted as a safer pain-free alternative to traditional acupuncture, with minimal adverse effects and greater versatility. However, little is known about the mechanism of action of LA, laser characteristics, and effectiveness of LA therapy. Objective: This concise review of LA describes basic parameters and procedures, potential mechanisms of action, and the current evidence for its clinical efficacy. The article also highlights the need for more robust research on LA that can be translated into evidence-based clinical practices. Conclusions: LA has many features that make it an attractive option as a treatment modality, including minimal sensation; short duration of treatment; and minimal risks of infection, trauma, and bleeding complications. Future studies with high-quality methodologies, ample sample sizes, and consistent and reproducible laser parameters are critically needed to increase understanding and establish potential future clinical applications.
Collapse
Affiliation(s)
- Tony Y Chon
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Molly J Mallory
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN.,Department of Pain Medicine, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, China
| | - Sara E Bublitz
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Alexander Do
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Peter T Dorsher
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
17
|
Wang S, Wu L, Zhai Y, Li X, Li B, Zhao D, Jiang H. Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J Cardiovasc Electrophysiol 2019; 30:1138-1147. [PMID: 31104349 DOI: 10.1111/jce.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1β, respectively. RESULTS Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1β, and NGF expression in the peri-infarct myocardium. CONCLUSION LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
Hipskind SG. Near Infrared Light-Emitting Diodes Do More Than You Think (re: DOI: 10.1089/photob.2018.4603). PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:126-127. [PMID: 31050925 DOI: 10.1089/photob.2019.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Gregory Hipskind
- Department of Brain Research, Brain Injury Consulting, LLC, Addison, Texas
| |
Collapse
|
19
|
Hipskind SG, Grover FL, Fort TR, Helffenstein D, Burke TJ, Quint SA, Bussiere G, Stone M, Hurtado T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Photomed Laser Surg 2018:pho.2018.4489. [PMID: 30418082 DOI: 10.1089/pho.2018.4489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. BACKGROUND Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. MATERIALS AND METHODS Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). RESULTS Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21-21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. CONCLUSIONS Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.
Collapse
Affiliation(s)
- S Gregory Hipskind
- 1 Brain Injury Consulting, LLC , Department of Brain Research, Addison, Texas
- 2 InLight Medical , Medical Advisory Department, Addison, Texas
| | - Fred L Grover
- 3 Revolutionary MD , Department of Medical Research, Denver, Colorado
| | - T Richard Fort
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Dennis Helffenstein
- 5 Colorado Neuropsychological Associates , Testing Department, Englewood, Colorado
| | - Thomas J Burke
- 6 University of Colorado School of Medicine, Department of Physiology (Retired) , Aurora, Colorado
| | - Shane A Quint
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Garrett Bussiere
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Michael Stone
- 7 Veterans Administration Hospital , Department of Radiology, Las Vegas, Nevada
| | - Timothy Hurtado
- 8 Penrose-St. Francis Health Services , Emergency Department, Colorado Springs, Colorado
| |
Collapse
|
20
|
Tan L, Li J, Liu X, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK, Pan H, Wang X, Wu S. Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near-Infrared Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801808. [PMID: 29923229 DOI: 10.1002/adma.201801808] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/12/2018] [Indexed: 05/19/2023]
Abstract
Bone-implant-associated infections are common after orthopedic surgery due to impaired host immune response around the implants. In particular, when a biofilm develops, the immune system and antibiotic treatment find it difficult to eradicate, which sometimes requires a second operation to replace the infected implants. Most strategies have been designed to prevent biofilms from forming on the surface of bone implants, but these strategies cannot eliminate the biofilm when it has been established in vivo. To address this issue, a nonsurgical, noninvasive treatment for biofilm infection must be developed. Herein, a red-phosphorus-IR780-arginine-glycine-aspartic-acid-cysteine coating on titanium bone implants is prepared. The red phosphorus has great biocompatibility and exhibits efficient photothermal ability. The temperature sensitivity of Staphylococcus aureus biofilm is enhanced in the presence of singlet oxygen (1 O2 ) produced by IR780. Without damaging the normal tissue, the biofilm can be eradicated through a safe near-infrared (808 nm) photothermal therapy at 50 °C in vitro and in vivo. This approach reaches an antibacterial efficiency of 96.2% in vivo with 10 min of irradiation at 50 °C. Meanwhile, arginine-glycine-aspartic-acid-cysteine decorated on the surface of the implant can improve the cell adhesion, proliferation, and osteogenic differentiation.
Collapse
Affiliation(s)
- Lei Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Jun Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xubo Yuan
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
21
|
Feng Z, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Wu S. Electrophoretic Deposited Stable Chitosan@MoS 2 Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704347. [PMID: 29682895 DOI: 10.1002/smll.201704347] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Indexed: 05/07/2023]
Abstract
Developing in situ disinfection methods in vivo to avoid drug-resistant bacteria and tissue toxicity is an urgent need. Here, the photodynamic and photothermal properties of the chitosan-assisted MoS2 (CS@MoS2 ) hybrid coating are simultaneously inspired to endow metallic Ti implants with excellent surface self-antibacterial capabilities. This coating, irradiated by only 660 nm visible light (VL) for 10 min, exhibits an antibacterial efficacy of 91.58% and 92.52% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The corresponding value is 64.67% and 57.44%, respectively, after irradiation by a single 808 nm near infrared light for the same amount of time. However, the combined irradiation using both lights can significantly enhance the efficiency up to 99.84% and 99.65% against E. coli and S. aureus, respectively, which can be ascribed to the synergistic effects of photodynamic and photothermal actions. The former produces single oxygen species under 660 nm VL while the latter induces a rise in temperature of implants, which can inhibit the growth of both E. coli and S. aureus. The introduction of CS can also promote the biocompatibility of implants, which provides a facile, rapid, and safe in situ bacteria-killing method in vivo without needing a second surgery.
Collapse
Affiliation(s)
- Zizhou Feng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Lei Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials, Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Dos Santos JGRP, Paiva WS, Teixeira MJ. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:139-146. [PMID: 29731669 PMCID: PMC5927185 DOI: 10.2147/mder.s155356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cost of traumatic brain injury (TBI) for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion) can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN) plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network) acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR) light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800-900 nm) and red (wavelength 600 nm) light-emitting diodes (LEDs) are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
23
|
Santos JGRPD, Zaninotto ALC, Zângaro RA, Carneiro AMC, Neville IS, de Andrade AF, Teixeira MJ, Paiva WS. Effects of transcranial LED therapy on the cognitive rehabilitation for diffuse axonal injury due to severe acute traumatic brain injury: study protocol for a randomized controlled trial. Trials 2018; 19:249. [PMID: 29690927 PMCID: PMC5916588 DOI: 10.1186/s13063-018-2632-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Photobiomodulation describes the use of red or near-infrared light to stimulate or regenerate tissue. It was discovered that near-infrared wavelengths (800-900 nm) and red (600 nm) light-emitting diodes (LED) are able to penetrate through the scalp and skull and have the potential to improve the subnormal cellular activity of compromised brain tissue. Different experimental and clinical studies were performed to test LED therapy for traumatic brain injury (TBI) with promising results. One of the proposals of this present study is to develop different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients. METHODS/DESIGN This is a double-blinded, randomized, controlled trial of patients with diffuse axonal injury (DAI) due to a severe TBI in an acute stage (less than 8 h). Thirty two patients will be randomized to active coil helmet and inactive coil (sham) groups in a 1:1 ratio. The protocol includes 18 sessions of transcranial LED stimulation (627 nm, 70 mW/cm2, 10 J/cm2) at four points of the frontal and parietal regions for 30 s each, totaling 120 s, three times per week for 6 weeks, lasting 30 min. Patients will be evaluated with the Glasgow Outcome Scale Extended (GOSE) before stimulation and 1, 3, and 6 months after the first stimulation. The study hypotheses are as follows: (1) transcranial LED therapy (TCLT) will improve the cognitive function of DAI patients and (2) TCLT will promote beneficial hemodynamic changes in cerebral circulation. DISCUSSION This study evaluates early and delayed effects of TCLT on the cognitive rehabilitation for DAI following severe acute TBI. There is a paucity of studies regarding the use of this therapy for cognitive improvement in TBI. There are some experimental studies and case series presenting interesting results for TBI cognitive improvement but no clinical trials. TRIAL REGISTRATION ClinicalTrials.gov, NCT03281759 . Registered on 13 September 2017.
Collapse
Affiliation(s)
- João Gustavo Rocha Peixoto dos Santos
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | | | - Renato Amaro Zângaro
- Center for Innovation, Technology and Education (CITÉ) SJ dos Campos, São Paulo, 12245-650 Brazil
| | | | - Iuri Santana Neville
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Almir Ferreira de Andrade
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| |
Collapse
|
24
|
Majumder M, Goswami T, Misra A. Multifunctional Magnetic Materials of Organic Origin for Biomedical Applications: A Theoretical Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201702530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manoj Majumder
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Tamal Goswami
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| | - Anirban Misra
- Department of ChemistryUniversity of North Bengal Darjeeling 734013, West Bengal India
| |
Collapse
|
25
|
Mehnati P, Khorram S, Zakerhamidi MS, Fahima F. Near-Infrared Visual Differentiation in Normal and Abnormal Breast Using Hemoglobin Concentrations. J Lasers Med Sci 2017; 9:50-57. [PMID: 29399312 DOI: 10.15171/jlms.2018.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Near-infrared (NIR) optical imaging is a non-ionizing modality that is emerging as a diagnostic/prognostic tool for breast cancer according to NIR differentiation of hemoglobin (Hb) concentration. Methods: The transmission values of LED-sourced light at 625 nm were measured by power meter to evaluate the optical properties of Hb in breast phantom containing major and minor vessels. For the simulation of blood variations in cancerous breast condition, we prepared 2 concentrations of pre-menopausal Hb and 4 concentrations of post-menopausal Hb and, for comparison with normal tissue, one concentration of Hb injected inside the phantom's vessels. Imaging procedure on the phantom was also conducted by LED source and CCD camera. The images from the experiments were compared with the results obtained from the images analyzed by MATLAB software. Finally, mammography of phantom including various concentration of Hb was prepared. Results: The transmitting intensities of NIR in blood containing 1, 2 and 4 concentrations of Hb in the major vessels were 52.83±2.85, 43.00±3.11 and 31.17±2.27 µW, respectively, and in minor vessels containing similar Hb concentrations were 73.50±2.43, 60.08±5.09 and 42.42±4.86 µW, respectively. The gray-scale levels on the major vessel were about 96, 124, 162 and on the minor vessel about 72, 100, 130 measured for 1, 2 and 4 Hb concentrations, respectively. The sensitivity and specificity of NIR imaging differentiation were 97.4% and 91.3%, respectively. Conclusion: Significant differences in transmitting intensity, optical imaging as well as software analysis of images were observed for 1, 2 and 4 concentrations of Hb in major and minor breast phantom vessels. Differentiation capability of minor vessels was higher than major vessels for Hb concentrations. Despite a good detection for location of vessels by mammography, it could not show differences between vessels with various concentrations. However, NIR optical imaging demonstrated a good image contrast for showing vessels in terms of concentration. This study recommends NIR optical imaging for prescreening breast cancer due to its potential for early diagnosis.
Collapse
Affiliation(s)
- Parinaz Mehnati
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Khorram
- Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz, Iran
| | | | - Farhood Fahima
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. JOURNAL OF BIOPHOTONICS 2017; 10:1502-1513. [PMID: 28164443 DOI: 10.1002/jbio.201600244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Sae-Won Lee
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul 137-867, Republic of Korea
| | - Byung Tae Choi
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 626-770, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
27
|
Thunshelle C, Hamblin MR. Transcranial Low-Level Laser (Light) Therapy for Brain Injury. Photomed Laser Surg 2017; 34:587-598. [PMID: 28001759 DOI: 10.1089/pho.2015.4051] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low-level laser therapy (LLLT) or photobiomodulation (PBM) is a possible treatment for brain injury, including traumatic brain injury (TBI). METHODS We review the fundamental mechanisms at the cellular and molecular level and the effects on the brain are discussed. There are several contributing processes that have been proposed to lead to the beneficial effects of PBM in treating TBI such as stimulation of neurogenesis, a decrease in inflammation, and neuroprotection. Both animal and clinical trials for ischemic stroke are outlined. A number of articles have shown how transcranial LLLT (tLLLT) is effective at increasing memory, learning, and the overall neurological performance in rodent models with TBI. RESULTS Our laboratory has conducted three different studies on the effects of tLLLT on mice with TBI. The first studied pulsed against continuous laser irradiation, finding that 10 Hz pulsed was the best. The second compared four different wavelengths, discovering only 660 and 810 nm to have any effectiveness, whereas 732 and 980 nm did not. The third looked at varying regimens of daily laser treatments (1, 3, and 14 days) and found that 14 laser applications was excessive. We also review several studies of the effects of tLLLT on neuroprogenitor cells, brain-derived neurotrophic factor and synaptogenesis, immediate early response knockout mice, and tLLLT in combination therapy with metabolic inhibitors. CONCLUSIONS Finally, some clinical studies in TBI patients are covered.
Collapse
Affiliation(s)
- Connor Thunshelle
- 1 Harvard College , Cambridge, Massachusetts.,2 Wellman Center for Photomedicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- 2 Wellman Center for Photomedicine , Massachusetts General Hospital, Boston, Massachusetts.,3 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,4 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| |
Collapse
|
28
|
Gomelsky M. Photoactivated cells link diagnosis and therapy. Sci Transl Med 2017; 9:eaan3936. [PMID: 28446687 DOI: 10.1126/scitranslmed.aan3936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
A semiautonomous system enables implanted photoactivated cells to produce glucose-lowering hormones and maintain glucose homeostasis in diabetic mice (Shao et al, this issue).
Collapse
Affiliation(s)
- Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
29
|
Laser Acupuncture Exerts Neuroprotective Effects via Regulation of Creb, Bdnf, Bcl-2, and Bax Gene Expressions in the Hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7181637. [PMID: 28408940 PMCID: PMC5376935 DOI: 10.1155/2017/7181637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Acupuncture has a positive effect on cognitive deficits. However, the effects of laser acupuncture (LA) on cognitive function and its mechanisms of action are unclear. The present study aimed to evaluate the effects of LA on middle cerebral artery occlusion- (MCAO-) induced cognitive impairment and its mechanisms of action. Transient focal cerebral ischemia was modeled in adult Sprague-Dawley rats by MCAO. After LA or manual-acupuncture (MA) treatment at the GV20 and HT7 for 2 weeks, hippocampal-dependent memory was evaluated using the Morris water maze (MWM) test. The hippocampus was dissected to analyze choline acetyltransferase (ChAT) immunoreactivity and Creb, Bdnf, Bcl-2, and Bax gene expressions. MWM test demonstrated a significant improvement in hippocampal-dependent memory in the MCAO rats after LA treatment. LA treatment significantly reversed the postischemic decrease in ChAT immunoreactivity in the hippocampal CA1 region. LA treatment significantly normalized gene expression in the hippocampus which had been altered by MCAO, especially upregulating gene expression of Creb, Bdnf, and Bcl-2 and downregulating gene expression of Bax. This study suggests that LA treatment could improve cognitive impairment in MCAO rats to enhance the cholinergic system in the hippocampal CA1 region and to exert a neuroprotective effect by regulating Creb, Bdnf, Bcl-2, and Bax gene expressions.
Collapse
|
30
|
Zhang D, Robinson K, Mihai DM, Washington I. Sequestration of ubiquitous dietary derived pigments enables mitochondrial light sensing. Sci Rep 2016; 6:34320. [PMID: 27731322 PMCID: PMC5059631 DOI: 10.1038/srep34320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
Animals alter their physiological states in response to their environment. We show that the introduction of a chlorophyll metabolite, a light-absorbing pigment widely consumed in human diets, to Caenorhabditis elegans results in animals whose fat mass can be modulated by exposure to light, despite the worm consuming the same amount of food. In the presence of the chlorophyll metabolite, exposing the worms to light increased adenosine triphosphate, reduced oxidative damage, and increased median life spans, without an effect on animal reproduction. Mice fed a dietary metabolite of chlorophyll and exposed to light, over several months, showed reductions in systemic inflammation as measured by plasma α-macroglobulin. We propose that dietary chlorophyll metabolites can enable mitochondria to use light as an environmental cue, by absorbing light and transferring the energy to mitochondrial coenzyme Q.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| |
Collapse
|
31
|
Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers Surg Med 2016; 48:695-705. [DOI: 10.1002/lsm.22542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Physics; Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Seyed Hossein Rasta
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Bioengineering; Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Physics; Tabriz University of Medical Sciences; Tabriz 51666 Iran
- School of Medical Sciences; University of Aberdeen; Aberdeen AB24 5DT United Kingdom
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Sima Salarirad
- School of Medical Sciences; University of Aberdeen; Aberdeen AB24 5DT United Kingdom
- Department of Psychiatry; Tabriz University of Medical Sciences; Tabriz 51666 Iran
| |
Collapse
|
32
|
Rajendran M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn Ther 2016; 13:175-187. [DOI: 10.1016/j.pdpdt.2015.07.177] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/28/2023]
|
33
|
König SG, Öz S, Krämer R. Zinc(ii)-induced control of the internalization of a near-infrared fluorescent probe by live cells. MOLECULAR BIOSYSTEMS 2016; 12:1114-7. [DOI: 10.1039/c6mb00105j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a NIR-fluorescent marker which is efficiently internalized by live cells in the presence exogenous zinc(II) whereas only negligible staining was detected in the absence of zinc(II).
Collapse
Affiliation(s)
- Sandra G. König
- Universität Heidelberg
- Anorganisch-Chemisches Institut
- 69120 Heidelberg
- Germany
| | - Simin Öz
- Universität Heidelberg
- Anorganisch-Chemisches Institut
- 69120 Heidelberg
- Germany
| | - Roland Krämer
- Universität Heidelberg
- Anorganisch-Chemisches Institut
- 69120 Heidelberg
- Germany
| |
Collapse
|
34
|
Meyer-Rochow VB, Hakko H, Ojamo M, Uusitalo H, Timonen M. Suicides in Visually Impaired Persons: A Nation-Wide Register-Linked Study from Finland Based on Thirty Years of Data. PLoS One 2015; 10:e0141583. [PMID: 26509899 PMCID: PMC4624868 DOI: 10.1371/journal.pone.0141583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Focusing on seasonality, gender, age, and suicide methods a Finnish nation-wide cohort-based study was carried out to compare suicide data between sighted, visually-impaired (WHO impairment level I-II, i.e., visual acuity >0.05, but <0.3) and blind (WHO impairment level III-V, i.e., visual acuity <0.05) victims. Standardized mortality ratios (SMR) of age- and gender-matched populations from official 1982-2011 national registers were used. Group differences in categorical variables were assessed with Pearson's Chi-square or Fisher's Exact test and in continuous variables with Mann-Whitney U-test. Seasonality was assessed by Chi-square for multinomials; ratio of observed to expected number of suicides was calculated with 95% confidence level. Hanging, poisoning, drowning, but rarely shooting or jumping from high places, were preferred suicide methods of the blind. Mortality was significantly increased in the visually impaired (SMR = 1.3; 95% CI 1.07-1.61), but in gender-stratified analyses the increase only affected males (1.34; 95% CI = 1.06-1.70) and not females (1.24; 95% CI 0.82-1.88). Age-stratified analyses identified blind males of working age rather than older men (as in the general population) as a high risk group that requires particular attention. The statistically significant spring suicide peak in blind subjects mirrors that of sighted victims and its possible cause in the blind is discussed.
Collapse
Affiliation(s)
| | - Helinä Hakko
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Ojamo
- Finnish Federation and Register of the Visually Impaired, Helsinki, Finland
| | - Hannu Uusitalo
- Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Markku Timonen
- Center for Life Course Epidemiology and Systems Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Paramonov VM, Mamaeva V, Sahlgren C, Rivero-Müller A. Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 2015; 6:196. [PMID: 26441653 PMCID: PMC4569861 DOI: 10.3389/fphar.2015.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, Netherlands
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Faculty of Natural Sciences and Technology, Åbo Akademi University , Turku, Finland ; Department of Biochemistry and Molecular Biology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
36
|
Litscher G, Min L, Passegger CA, Litscher D, Li M, Wang M, Ghaffari-Tabrizi-Wizsy N, Stelzer I, Feigl G, Gaischek I, Wang G, Sadjak A, Bahr F. Transcranial Yellow, Red, and Infrared Laser and LED Stimulation: Changes of Vascular Parameters in a Chick Embryo Model. ACTA ACUST UNITED AC 2015. [DOI: 10.1159/000431176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Naeser MA, Hamblin MR. Traumatic Brain Injury: A Major Medical Problem That Could Be Treated Using Transcranial, Red/Near-Infrared LED Photobiomodulation. Photomed Laser Surg 2015; 33:443-6. [PMID: 26280257 DOI: 10.1089/pho.2015.3986] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Margaret A Naeser
- 1 VA Boston Healthcare System , Boston, Massachusetts.,2 Department of Neurology, Boston University School of Medicine , Boston, Massachusetts
| | - Michael R Hamblin
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital , Boston, Massachusetts.,4 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,5 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| |
Collapse
|
38
|
Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Kilarski WW, Szewczyk G, Verheul HMW, Sarna T, van den Bergh H, Griffioen AW. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition. Cell Death Dis 2015; 6:e1641. [PMID: 25675301 PMCID: PMC4669819 DOI: 10.1038/cddis.2015.4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 11/17/2022]
Abstract
The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P<0.0001). Similar observations were made in the Colo-26 colorectal carcinoma, where light exposure of the sunitinib-treated mice inhibited tumor growth by 50% as compared with the control and by 25% as compared with sunitinib-only-treated tumors (N≥4; P=0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications.
Collapse
Affiliation(s)
- P Nowak-Sliwinska
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - A Weiss
- 1] Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland [2] Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - J R van Beijnum
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - T J Wong
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - W W Kilarski
- Institute of Bioengineering, School of Life Sciences, SV IBI LLCB, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - G Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - H M W Verheul
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - T Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - H van den Bergh
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - A W Griffioen
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015; 11:2191-208. [PMID: 26346298 PMCID: PMC4552256 DOI: 10.2147/ndt.s78182] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10-15 W, 0.45%-2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10-15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10-15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Centennial, CO, USA ; Neuro-Laser Foundation, Lakewood, CO, USA
| | | |
Collapse
|
40
|
Pollum M, Jockusch S, Crespo-Hernández CE. 2,4-Dithiothymine as a Potent UVA Chemotherapeutic Agent. J Am Chem Soc 2014; 136:17930-3. [DOI: 10.1021/ja510611j] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marvin Pollum
- Department
of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Carlos E. Crespo-Hernández
- Department
of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
41
|
Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 2014; 3:802-10. [PMID: 24926804 PMCID: PMC4277780 DOI: 10.1021/sb400182x] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Enormous
potential of cell-based therapeutics is hindered by the
lack of effective means to control genetically engineered cells in
mammalian tissues. Here, we describe a synthetic module for remote
photocontrol of engineered cells that can be adapted for such applications.
The module involves photoactivated synthesis of cyclic dimeric GMP
(c-di-GMP), a stable small molecule that is not produced by higher
eukaryotes and therefore is suitable for orthogonal regulation. The
key component of the photocontrol module is an engineered bacteriophytochrome
diguanylate cyclase, which synthesizes c-di-GMP from GTP in a light-dependent
manner. Bacteriophytochromes are particularly attractive photoreceptors
because they respond to light in the near-infrared window of the spectrum,
where absorption by mammalian tissues is minimal, and also because
their chromophore, biliverdin IXα, is naturally available in
mammalian cells. The second component of the photocontrol module,
a c-di-GMP phosphodiesterase, maintains near-zero background levels
of c-di-GMP in the absence of light, which enhances the photodynamic
range of c-di-GMP concentrations. In the E. coli model
used in this study, the intracellular c-di-GMP levels could be upregulated
by light by >50-fold. Various c-di-GMP-responsive proteins and
riboswitches
identified in bacteria can be linked downstream of the c-di-GMP-mediated
photocontrol module for orthogonal regulation of biological activities
in mammals as well as in other organisms lacking c-di-GMP signaling.
Here, we linked the photocontrol module to a gene expression output
via a c-di-GMP-responsive transcription factor and achieved a 40-fold
photoactivation of gene expression.
Collapse
Affiliation(s)
- Min-Hyung Ryu
- Department of Molecular Biology, University of Wyoming, 1000 East
University Avenue, Dept. 3944, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, 1000 East
University Avenue, Dept. 3944, Laramie, Wyoming 82071, United States
| |
Collapse
|
42
|
Abstract
Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.
Collapse
|
43
|
Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP, Baker EH. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma 2014; 31:1008-17. [PMID: 24568233 DOI: 10.1089/neu.2013.3244] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This pilot, open-protocol study examined whether scalp application of red and near-infrared (NIR) light-emitting diodes (LED) could improve cognition in patients with chronic, mild traumatic brain injury (mTBI). Application of red/NIR light improves mitochondrial function (especially in hypoxic/compromised cells) promoting increased adenosine triphosphate (ATP) important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. LED therapy is noninvasive, painless, and non-thermal (cleared by the United States Food and Drug Administration [FDA], an insignificant risk device). Eleven chronic, mTBI participants (26-62 years of age, 6 males) with nonpenetrating brain injury and persistent cognitive dysfunction were treated for 18 outpatient sessions (Monday, Wednesday, Friday, for 6 weeks), starting at 10 months to 8 years post- mTBI (motor vehicle accident [MVA] or sports-related; and one participant, improvised explosive device [IED] blast injury). Four had a history of multiple concussions. Each LED cluster head (5.35 cm diameter, 500 mW, 22.2 mW/cm(2)) was applied for 10 min to each of 11 scalp placements (13 J/cm(2)). LEDs were placed on the midline from front-to-back hairline; and bilaterally on frontal, parietal, and temporal areas. Neuropsychological testing was performed pre-LED, and at 1 week, and 1 and 2 months after the 18th treatment. A significant linear trend was observed for the effect of LED treatment over time for the Stroop test for Executive Function, Trial 3 inhibition (p=0.004); Stroop, Trial 4 inhibition switching (p=0.003); California Verbal Learning Test (CVLT)-II, Total Trials 1-5 (p=0.003); and CVLT-II, Long Delay Free Recall (p=0.006). Participants reported improved sleep, and fewer post-traumatic stress disorder (PTSD) symptoms, if present. Participants and family reported better ability to perform social, interpersonal, and occupational functions. These open-protocol data suggest that placebo-controlled studies are warranted.
Collapse
|
44
|
Almášiová V, Holovská K, Cigánková V, Račeková E, Fabianová K, Martončíková M. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:747-750. [PMID: 24839928 DOI: 10.1080/15287394.2014.890988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was conducted to investigate the influence of whole-body electromagnetic radiation (EMR) on testicular parenchyma of Wistar rats. Sexually mature rats were subjected to pulsed electromagnetic field at frequency of 2.45 GHz and mean power density 2.8 mW/cm(2) by 3-h daily applications for 3 wk. Tissue samples were obtained 3 h after the last irradiation and processed by histological techniques for light and transmission electron microscopy. Testes showed apparent degenerative changes of seminiferous epithelium. The seminiferous tubules were mostly irregular in shape, and seminiferous epithelium contained a number of empty spaces of different size. Subsequently, groups of sloughed epithelial cells were often found inside the lumina of tubules. Except for relatively unchanged Sertoli cells, some locations of basal compartment of seminiferous epithelium contained shriveled Sertoli cells with dark cytoplasm. These areas showed degenerative features including necrotizing and shriveled spermatogonia surrounded by empty irregular spaces, and undulating basement membrane. The intertubular spaces were enlarged but interstitial Leydig cells did not show any marked morphological changes. Evidence demonstrates the adverse effects of EMR on testicular parenchyma in rats.
Collapse
Affiliation(s)
- Viera Almášiová
- a Department of Anatomy, Histology and Physiology , University of Veterinary Medicine and Pharmacy , Košice , Slovak Republic
| | | | | | | | | | | |
Collapse
|
45
|
Xu C, Zhang J, Mihai DM, Washington I. Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP. J Cell Sci 2013; 127:388-99. [PMID: 24198392 DOI: 10.1242/jcs.134262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5'-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight.
Collapse
Affiliation(s)
- Chen Xu
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | | | | | | |
Collapse
|
46
|
Mobarkey N, Avital N, Heiblum R, Rozenboim I. The Effect of Parachlorophenylalanine and Active Immunization Against Vasoactive Intestinal Peptide on Reproductive Activities of Broiler Breeder Hens Photostimulated with Green Light1. Biol Reprod 2013; 88:83. [DOI: 10.1095/biolreprod.112.103697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
47
|
Baek S, Na K. Advanced photodynamic agent from chondroitin sulfate/zinc phthalocyanine conjugate. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to improve the therapeutic effect of zinc phthalocyanines (ZnPc), a photoactive nanodrug was prepared with acetylated chondroitin sulfate (AcCS), utilizing a simple chemical method. AcCS/ZnPc nanodrugs have a unimodal size distribution below 200 nm and a negative surface charge due to AcCS located on the nanodrug surface. In organic solvent such as DMSO or DMF, it has strong fluorescence intensity and generates abundant singlet oxygen. However, in aqueous solvent, AcCS/ZnPc nanodrugs developed a self-organized form which induced reducing fluorescence intensity and singlet oxygen generation. The cellular uptake of the nanodrug was determined using a cell lysis test and confocal microscopy observation. The results indicated that cellular internalization efficiency of the nanodrug was 1.7–2.1 times higher than that of free ZnPc . Also, the phototoxicity of the nanodrug was detected via MTT assay with or without light. Although free ZnPc did not exhibit cytotoxicity in both light and dark condition, the nanodrug exhibited increasing cytotoxicity after irradiation. We therefore suggest that AcCS/ZnPc nanodrugs may have promising applications as new photodynamic agents for the clinical treatment of various tumors.
Collapse
Affiliation(s)
- SongYi Baek
- Nano Biomedical Polymer Research Laboratory, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Kun Na
- Nano Biomedical Polymer Research Laboratory, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| |
Collapse
|
48
|
Steiner M, Gutbrodt K, Krall N, Neri D. Tumor-Targeting Antibody–Anticalin Fusion Proteins for in Vivo Pretargeting Applications. Bioconjug Chem 2013; 24:234-41. [DOI: 10.1021/bc300567a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Steiner
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Katrin Gutbrodt
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Nikolaus Krall
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
49
|
García-Sánchez MA, Rojas-González F, Menchaca-Campos EC, Tello-Solís SR, Quiroz-Segoviano RIY, Diaz-Alejo LA, Salas-Bañales E, Campero A. Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. Molecules 2013; 18:588-653. [PMID: 23292327 PMCID: PMC6270341 DOI: 10.3390/molecules18010588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 11/17/2022] Open
Abstract
The crossed and linked histories of tetrapyrrolic macrocycles, interwoven with new research discoveries, suggest that Nature has found in these structures a way to ensure the continuity of life. For diverse applications porphyrins or phthalocyanines must be trapped inside solid networks, but due to their nature, these compounds cannot be introduced by thermal diffusion; the sol-gel method makes possible this insertion through a soft chemical process. The methodologies for trapping or bonding macrocycles inside pristine or organo-modified silica or inside ZrO₂ xerogels were developed by using phthalocyanines and porphyrins as molecular probes. The sizes of the pores formed depend on the structure, the cation nature, and the identities and positions of peripheral substituents of the macrocycle. The interactions of the macrocyclic molecule and surface Si-OH groups inhibit the efficient displaying of the macrocycle properties and to avoid this undesirable event, strategies such as situating the macrocycle far from the pore walls or to exchange the Si-OH species by alkyl or aryl groups have been proposed. Spectroscopic properties are better preserved when long unions are established between the macrocycle and the pore walls, or when oligomeric macrocyclic species are trapped inside each pore. When macrocycles are trapped inside organo-modified silica, their properties result similar to those displayed in solution and their intensities depend on the length of the alkyl chain attached to the matrix. These results support the prospect of tuning up the pore size, surface area, and polarity inside the pore cavities in order to prepare efficient catalytic, optical, sensoring, and medical systems. The most important feature is that research would confirm again that tetrapyrrolic macrocycles can help in the development of the authentic pore engineering in materials science.
Collapse
Affiliation(s)
- Miguel A García-Sánchez
- Departamento de Quimica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, D. F. 09340, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of the Addition ofOrtho- andPara-NH2Substituted Tetraphenylporphyrins on the Structure of Nylon 66. INT J POLYM SCI 2013. [DOI: 10.1155/2013/323854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The synthetic tetrapyrrole macrocycles, such as porphyrins (H2P) and phthalocyanines (H2Pc), exhibit interesting physicochemical properties suitable to be used in modern technology. For many applications, those species should be trapped or fixed inside graphite, hydrotalcites, silica, TiO2, or polymers. Methodologies for the optimization of the properties of porphyrins, trapped or fixed inside polymers, have been barely developed. Our research works in the development of methodologies for the optimization of incorporation and display of properties of tetrapyrrole macrocycles inside inorganic, polymeric, or hybrid networks. This paper shows some results about the effect of the spatial disposition of the amine (–NH2) groups attached on the periphery of substituted tetraphenylporphyrins, on the Nylon 66 structure and on the display of the physicochemical properties of the trapped macrocycles. Nylon 66 was synthesized from adipoyl chloride and hexamethylenediamine in presence of tetraphenylporphyrins substituted with –NH2groups localized at theortho- orpara-positions of the phenyls. Cobalt complexes formation was used to quantify the amount of porphyrins in the polymer fibers. Characterization results show that the spatial position of amine groups of the porphyrins has important structural and textural effect on the Nylon 66 fibers and on the fluorescence of the porphyrins integrated into the fibers.
Collapse
|