1
|
Liang Y, Hao Y, Wu Y, Zhou Z, Li J, Sun X, Liu YN. Integrated Hydrogel Platform for Programmed Antitumor Therapy Based on Near Infrared-Triggered Hyperthermia and Vascular Disruption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21381-21390. [PMID: 31141335 DOI: 10.1021/acsami.9b05536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Complete tumor regression is a great challenge faced by single therapy of near-infrared (NIR)-triggered hyperthermia or vascular disrupting agents. An injectable nanocomposite (NC) hydrogel is rationally designed for combined anticancer therapy based on NIR-triggered hyperthermia and vascular disruption. The NC hydrogel, codelivered with Prussian blue (PB) nanoparticles and combretastatin A4 (CA4), has good shear-thinning, self-recovery, and excellent photothermal properties. Because of the remarkable tumor-site retention and sustained release of CA4 (about 10% over 12 days), the NC hydrogel has a tumor suppression rate of 99.6%. The programmed combinational therapy conveys the concept of "attack + guard", where PB-based NIR irradiation imposes intensive attack on most of cancer cells, and CA4 serves as a guard against the tumor growth by cutting off the energy supply. Moreover, the biosafety and eco-friendliness of the hydrogel platform pave the way toward clinical applications.
Collapse
|
2
|
The influence of 5-aminolevulinic photodynamic therapy on colon cancer cell interleukin secretion in hypoxia-like condition in vitro. Photodiagnosis Photodyn Ther 2018; 23:240-243. [DOI: 10.1016/j.pdpdt.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
3
|
Zhao H, Yin R, Wang Y, Lee YH, Luo T, Zhang J, Qiu H, Ambrose S, Wang L, Ren J, Yao J, Chen D, Wang Y, Liang Z, Zhen J, Wu S, Ye Z, Zeng J, Huang N, Gu Y. Modulating mitochondrial morphology enhances antitumor effect of 5-ALA-mediated photodynamic therapy both in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:81-91. [PMID: 28964889 DOI: 10.1016/j.jphotobiol.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/24/2022]
Abstract
5-aminolevulinic acid mediated PDT (5-ALA-PDT) is an approved therapeutic procedure for treating carcinomas of the cervix. However, when employed as a monotherapy, 5-ALA-PDT could not produce satisfactory results toward large and deep tumors. Therefore, developing a method to improve the efficacy of 5-ALA-PDT becomes important. In this study, we demonstrate an enhanced antitumor effect of 5-ALA-PDT by the modulation of mitochondrial morphology. The mitochondria in the cells were regulated into tubular mitochondria or fragmented mitochondria through over expression of Drp1 or Mfn2. Then these cells were treated with identical dose of 5-ALA-PDT. Our results suggest that HeLa cells predominantly containing fragmented mitochondria were more sensitive to 5-ALA-PDT than the cells predominantly containing tubular mitochondria. The morphology of mitochondria changed as the cell cycle progressed, with tubular mitochondria predominantly exhibited in the S phase and uniformly fragmented mitochondria predominantly displayed in the M phase. Paclitaxel significantly increased the population of M-phase cells, while 5-fluorouracil significantly increased the population of S-phase cells in xenograft tumors. Furthermore, low-dose paclitaxel significantly increased the antitumor effects of PDT. However, 5-fluorouracil didn't improve the antitumor effects of PDT. These results demonstrated an enhanced antitumor effect of 5-ALA-PDT from the modulation of mitochondrial morphology. We anticipate that our results will provide an insight for selecting potential chemotherapeutic agents to combine with PDT for tumor treatment.
Collapse
Affiliation(s)
- Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China; Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rong Yin
- Department of Dermatology, the Second Hospital, Shanxi Medical University, Taiyuan 030001,PR China
| | - Ying Wang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yuan-Hao Lee
- Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Ting Luo
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jiaying Zhang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Stephen Ambrose
- College of Medicine, University of South Alabama, Mobile 36688, USA
| | - Lijie Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jie Ren
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jie Yao
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Defu Chen
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yucheng Wang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhipin Liang
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jie Zhen
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Sumin Wu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zulin Ye
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jing Zeng
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Naiyan Huang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
4
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
5
|
Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:657-70. [DOI: 10.1016/j.nano.2014.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/21/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
|
6
|
Shishkova N, Kuznetsova O, Berezov T. Photodynamic Therapy in Gastroenterology. J Gastrointest Cancer 2013; 44:251-9. [DOI: 10.1007/s12029-013-9496-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular. Clin Sci (Lond) 2012; 122:449-57. [PMID: 22142330 DOI: 10.1042/cs20110412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The flavone acetic acid derivative DMXAA [5,6-dimethylXAA (xanthenone-4-acetic acid), Vadimezan, ASA404] is a drug that displayed vascular-disrupting activity and induced haemorrhagic necrosis and tumour regression in pre-clinical animal models. Both immune-mediated and non-immune-mediated effects contributed to the tumour regression. The vascular disruption was less in human tumours, with immune-mediated effects being less prominent, but nonetheless DMXAA showed promising effects in Phase II clinical trials in non-small-cell lung cancer. However, these effects were not replicated in Phase III clinical trials. It has been difficult to understand the differences between the pre-clinical findings and the later clinical trials as the molecular targets for the agent have never been clearly established. To investigate the mechanism of action, we sought to determine whether DMXAA might target protein kinases. We found that, at concentrations achieved in blood during clinical trials, DMXAA has inhibitory effects against several kinases, with most potent effects being on members of the VEGFR (vascular endothelial growth factor receptor) tyrosine kinase family. Some analogues of DMXAA were even more effective inhibitors of these kinases, in particular 2-MeXAA (2-methylXAA) and 6-MeXAA (6-methylXAA). The inhibitory effects were greatest against VEGFR2 and, consistent with this, we found that DMXAA, 2-MeXAA and 6-MeXAA were able to block angiogenesis in zebrafish embryos and also inhibit VEGFR2 signalling in HUVECs (human umbilical vein endothelial cells). Taken together, these results indicate that at least part of the effects of DMXAA are due to it acting as a multi-kinase inhibitor and that the anti-VEGFR activity in particular may contribute to the non-immune-mediated effects of DMXAA on the vasculature.
Collapse
|
8
|
Weiss A, den Bergh HV, Griffioen AW, Nowak-Sliwinska P. Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. Biochim Biophys Acta Rev Cancer 2012; 1826:53-70. [PMID: 22465396 DOI: 10.1016/j.bbcan.2012.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive form of treatment, which is clinically approved for the treatment of angiogenic disorders, including certain forms of cancer and neovascular eye diseases. Although the concept of PDT has existed for a long time now, it has never made a solid entrance into the clinical management of cancer. This is likely due to secondary tissue reactions, such as inflammation and neoangiogenesis. The recent development of clinically effective angiogenesis inhibitors has lead to the initiation of research on the combination of PDT with such angiostatic targeted therapies. Preclinical studies in this research field have shown promising results, causing a revival in the field of PDT. This review reports on the current research efforts on PDT and vascular targeted combination therapies. Different combination strategies with angiogenesis inhibition and vascular targeting approaches are discussed. In addition, the concept of increasing PDT selectivity by targeted delivery of photosensitizers is presented. Furthermore, the current insights on sequencing the therapy arms of such combinations will be discussed in light of vascular normalization induced by angiogenesis inhibition.
Collapse
Affiliation(s)
- Andrea Weiss
- Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
9
|
Anand S, Wilson C, Hasan T, Maytin EV. Vitamin D3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy. Cancer Res 2011; 71:6040-50. [PMID: 21807844 PMCID: PMC3360482 DOI: 10.1158/0008-5472.can-11-0805] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photodynamic therapy, mediated by exogenously administered aminolevulinic acid (ALA-PDT), followed by exposure to a laser or broadband light source, is a promising modality for treatment of many types of cancers; however, it remains inadequate to treat large, deep, solid tumors. In this article, we report that calcitriol, the active form of vitamin D3, can be administered before ALA as a nontoxic preconditioning regimen to markedly increase the efficacy of ALA-PDT. Using mouse models of squamous cell skin cancer for preclinical proof of concept, we showed that calcitriol, delivered topically or intraperitoneally, increased tumoral accumulation of the PDT-activated ALA product protoporphyrin-IX (PpIX) up to 10-fold, mainly by altering expression of the porphyrin-synthesis enzymes coproporphyrinogen oxidase (increased) and ferrochelatase (decreased). Calcitriol-pretreated tumors underwent enhanced apoptotic cell death after ALA-based PDT. Mechanistic studies have documented activation of the extrinsic apoptotic pathway, with specific cleavage of caspase-8 and increased production of TNF-α in tumors preconditioned by calcitriol treatment before receiving ALA-PDT. Very low doses of calcitriol (0.1-1 μg/kg body weight) were sufficient to elicit tumor-selective enhancement to ALA-PDT efficacy, rendering toxicity concerns negligible. Our findings define a simple, nontoxic, and highly effective preconditioning regimen to enhance the response of epithelial tumors to ALA-PDT, possibly broadening its clinical applications by selectively enhancing accumulation of photosensitizer PpIX together with TNF-α in tumors.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Dermatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Clara Wilson
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Edward V. Maytin
- Department of Dermatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
10
|
Jameson MB, Head M. Pharmacokinetic evaluation of vadimezan (ASA404, 5,6-dimethylxanthenone-4-acetic acid, DMXAA). Expert Opin Drug Metab Toxicol 2011; 7:1315-26. [DOI: 10.1517/17425255.2011.614389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Acute vascular disruption by 5,6-dimethylxanthenone-4-acetic Acid in an orthotopic model of human head and neck cancer. Transl Oncol 2011; 2:121-7. [PMID: 19701496 DOI: 10.1593/tlo.09103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/24/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
The sustenance of most solid tumors including head and neck cancers (HNCs) is strongly dependent on the presence of a functioning vascular network. In this study, we examined the acute effects of a tumor vascular disrupting agent (VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404), in an orthotopic model of human HNC. Noninvasive magnetic resonance imaging (MRI) was used to monitor the vascular response of orthotopic FaDu xenografts to VDA therapy. Untreated tumors showed a marked but heterogeneous pattern of enhancement after contrast agent injection on serial T1-weighted (T1W) MR images. After VDA treatment, T2W and T1W MRI revealed evidence of hemorrhaging and lack of functioning vessels (enhancement) within the tumor. Quantitative estimates of relative vascular volume also showed a significant (P < .01) reduction in DMXAA-treated tumors 24 hours after therapy compared with untreated controls. Histology and immunostaining of untreated orthotopic FaDu tumors revealed poorly differentiated squamous cell carcinoma histology with distinctly visible CD31(+) endothelial cells. In sharp contrast, minimal CD31 staining with irregular endothelial fragments and faint outlines of blood vessels were seen in DMXAA-treated tumor sections. CD31 immunostaining and histology also highlighted the selectivity of vascular damage and tissue necrosis after VDA therapy with no evidence of toxicity observed in normal salivary gland, heart, liver, and skeletal muscle tissues. Together, our results demonstrate a potent and selective vascular disruptive activity of DMXAA in an orthotopic HNC model. Further evaluation into its antitumor effects alone and in combination with other agents is warranted.
Collapse
|
12
|
Marrero A, Becker T, Sunar U, Morgan J, Bellnier D. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses. Photochem Photobiol 2011; 87:910-9. [PMID: 21575001 DOI: 10.1111/j.1751-1097.2011.00943.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications.
Collapse
Affiliation(s)
- Allison Marrero
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
13
|
Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers (Basel) 2011; 3:2597-629. [PMID: 24212824 PMCID: PMC3757433 DOI: 10.3390/cancers3022597] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors.
Collapse
|
14
|
Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011; 7:75-91. [PMID: 21162652 PMCID: PMC3060712 DOI: 10.1586/eci.10.81] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a 'danger signal' to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Javad T Hashmi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P.R China
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30, Quai Ernest-Ansermet, CH 1211 Geneva, Switzerland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Maillard P, Lupu M, Thomas CD, Mispelter J. [Towards a new treatment of retinoblastoma?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:195-202. [PMID: 20569775 DOI: 10.1016/j.pharma.2010.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is a recent approach for the treatment of small cancerous tumours, on-surface or accessible by endoscopy in which a dye (usually a tetrapyrrolic macrocycle) absorbs light and generates cytotoxic reactive oxygen species leading to cellular damage. Retinoblastoma (Rb) is a rare intraocular tumour of childhood. All the multifocal forms are hereditary and constitute a syndrome of genetic predisposition in the cancer. The current treatments with etoposide or carboplatine expose the patient to the late risk of second cancer. The use of PDT as cancer therapy is particularly attractive due to the use of few mutagenic and non-toxic photosensitizers (PS) prior light excitation and to the localized tumour illumination. The photoefficiency towards Rb of a glycoconjugated porphyrin is discussed and compared with the results obtained with a second-generation photosensitizer, the Foscan. Some in vivo results on an animal model of Rb are presented by a point of view of photoefficiency, biodistribution, pharmacokinetic and longitudinal follow-up of the PDT effect using a new non-invasive method of magnetic resonance imaging of real-time. Photodynamic treatments in association with non-invasive sodium imaging open ways for new treatment tailoring or treatment individualization of retinoblastoma in clinic.
Collapse
Affiliation(s)
- P Maillard
- UMR 176 CNRS, institut Curie, bâtiments 110-112, centre universitaire, université Paris-Sud, 91405 Orsay, France.
| | | | | | | |
Collapse
|
16
|
Bechet D, Tirand L, Faivre B, Plénat F, Bonnet C, Bastogne T, Frochot C, Guillemin F, Barberi-Heyob M. Neuropilin-1 targeting photosensitization-induced early stages of thrombosis via tissue factor release. Pharm Res 2010; 27:468-79. [PMID: 20087632 DOI: 10.1007/s11095-009-0035-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/09/2009] [Indexed: 01/13/2023]
Abstract
PURPOSE This article characterizes the vascular effects following vascular-targeted photodynamic therapy with a photosensitizer which actively targets endothelial cells. METHODS This strategy was considered by coupling a chlorin to a heptapeptide targeting neuropilin-1 in human malignant glioma-bearing nude mice. A laser Doppler microvascular perfusion monitor was used to monitor microvascular blood perfusion in tumor tissue. Endothelial cells' ultra structural integrity was observed by transmission electron microscopy. The consequences of photosensitization on tumor vessels, tissue factor expression, fibrinogen consumption, and thrombogenic effects were studied by immunohistochemical staining. RESULTS Treatment of glioma-bearing mice with the conjugate showed a statistically significant tumor growth delay. Vascular effect was characterized by a decrease in tumor tissue blood flow at about 50% baseline during treatment not related to variations in temperature. This vascular shutdown was mediated by tumor blood vessels' congestion. A pro-thrombotic behavior of targeted endothelial cells in the absence of ultra structural changes led to the induction of tissue factor expression from the earliest times post-treatment. Expression of tissue factor-initiated thrombi formation was also related to an increase in fibrinogen consumption. CONCLUSION Using a peptide-conjugated photosensitizer targeting neuropilin-1, induction of tissue factor expression immediately post-treatment, led to the establishment of thrombogenic effects within the vessel lumen.
Collapse
Affiliation(s)
- Denise Bechet
- Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, Centre Alexis Vautrin, Avenue de Bourgogne, Brabois, 54511, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 2009; 66:2275-83. [PMID: 19333552 PMCID: PMC11115708 DOI: 10.1007/s00018-009-0016-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/01/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.
Collapse
Affiliation(s)
| | - Yik Yuen Gan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616 Singapore
| | - Khee Chee Soo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, Singapore, 138667 Singapore
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, Singapore, 117543 Singapore
| |
Collapse
|