1
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
2
|
Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122637. [PMID: 34961108 PMCID: PMC8705937 DOI: 10.3390/plants10122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 μM (1:1). Results showed MIC and MBC values between 2.5 and 4 μM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
- Correspondence:
| | - Sara Sario
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Pedro Luz
- QRural, Polytechnic Institute of Castelo Branco, School of Agriculture, 6000-909 Castelo Branco, Portugal;
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Cátia Teixeira
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Paula Gomes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Tavares
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Caravaca-Fuentes P, Camó C, Oliveras À, Baró A, Francés J, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules 2021; 26:molecules26113426. [PMID: 34198776 PMCID: PMC8201157 DOI: 10.3390/molecules26113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 μM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.
Collapse
Affiliation(s)
- Pau Caravaca-Fuentes
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Cristina Camó
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Jesús Francés
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +34-660719646
| |
Collapse
|
4
|
Zhou L, Liu Z, Xu G, Li L, Xuan K, Xu Y, Zhang R. Expression of Melittin in Fusion with GST in Escherichia coli and Its Purification as a Pure Peptide with Good Bacteriostatic Efficacy. ACS OMEGA 2020; 5:9251-9258. [PMID: 32363276 PMCID: PMC7191569 DOI: 10.1021/acsomega.0c00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
The expression and purification of melittin (MET) in microbials are difficult because of its antibacterial activities. In this work, MET was fused with a glutathione-S-transferase (GST) tag and expressed in Escherichia coli to overcome its lethality to host cells. The fusion protein GST-MET was highly expressed and then purified by glutathione sepharose high-performance affinity chromatography, digested with prescission protease, and further purified by Superdex Peptide 10/300 GL chromatography. Finally, 3.5 mg/L recombinant melittin (rMET) with a purity of >90% was obtained; its antibacterial activities against Gram-positive Bacillus pumilus and Staphylococcus pasteuri were similar to those of commercial MET. A circular dichroism spectroscopic assay showed that the rMET peptide secondary structure was similar to those of the commercial form. To our knowledge, this is the report of the preparation of active pure rMET with no tags. The successful expression and purification of rMET will enable large-scale, industrial biosynthesis of MET.
Collapse
Affiliation(s)
- Lixian Zhou
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
| | - Zhiyong Liu
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
| | - Guanyu Xu
- Xuteli
School, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lihong Li
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
| | - Kaiang Xuan
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
| | - Yan Xu
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
| | - Rongzhen Zhang
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.
R. China
- . Tel: +86 510 85197760. Fax: +86 501 85918201
| |
Collapse
|
5
|
Tong S, Li M, Keyhani NO, Liu Y, Yuan M, Lin D, Jin D, Li X, Pei Y, Fan Y. Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. PLoS Pathog 2020; 16:e1008518. [PMID: 32324832 PMCID: PMC7200012 DOI: 10.1371/journal.ppat.1008518] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023] Open
Abstract
Competition is one of the fundamental driving forces of natural selection. Beauveria bassiana is a soil and plant phylloplane/root fungus capable of parasitizing insect hosts. Soil and plant environments are often enriched with other fungi against which B. bassiana competes for survival. Here, we report an antifungal peptide (BbAFP1), specifically expressed and localized to the conidial cell wall and is released into the surrounding microenvironment inhibiting growth of competing fungi. B. bassiana strains expressing BbAFP1, including overexpression strains, inhibited growth of Alternaria brassicae in co-cultured experiments, whereas targeted gene deletion of BbAFP1 significantly decreased (25%) this inhibitory effect. Recombinant BbAFP1 showed chitin and glucan binding abilities, and growth inhibition of a wide range of phytopathogenic fungi by disrupting membrane integrity and eliciting reactive oxygen species (ROS) production. A phenylalanine residue (F50) contributes to chitin binding and antifungal activity, but was not required for the latter. Expression of BbAFP1 in tomato resulted in transgenic plants with enhanced resistance to plant fungal pathogens. These results highlight the importance of fungal competition in shaping primitive competition strategies, with antimicrobial compounds that can be embedded in the spore cell wall to be released into the environment during the critical initial phases of germination for successful growth in its environmental niche. Furthermore, these peptides can be exploited to increase plant resistance to fungal pathogens. Microbial competition exerts powerful selective pressures for the development of defensive and offensive methods of suppressing potential competitors. One of the most vulnerable stages for any fungi is the initial germination of resting spores in potentially hostile environments. Currently, we know little about how fungi defend other microbial competitors during the beginning stage of conidial germination. Here, we report on an antifungal peptide from B. bassiana (BbAFP1) that is specifically expressed in mature aerial conidia, with the protein localized exclusively to the conidial cell wall. The “pre-loaded” BbAFP1 is released into the surrounding microenvironment where it can act to inhibit the growth of competing fungi during the initial stages of fungal germination, i.e. largely before actual germ tubes are apparent, thus conferring an advantage to B. bassiana in out-competing susceptible competitors in the microenvironment surrounding the spore. The effects of BbAFP1 on membrane integrity were characterized and a key amino acid (F50) was shown to function in chitin binding and antifungal activity. Transgenic tomato overexpressing BbAFP1 were shown to exhibit enhanced resistance to plant fungal pathogens. Our study provides new insights into the microbial competition and genes involved in this process that can be exploited to increase plant disease resistance.
Collapse
Affiliation(s)
- Sheng Tong
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Maolian Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Yu Liu
- College of Biotechnology, Southwest University, Chongqing, P. R. China
| | - Min Yuan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dongmei Lin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Khademi M, Nazarian‐Firouzabadi F, Ismaili A, Shirzadian Khorramabad R. Targeting microbial pathogens by expression of new recombinant dermaseptin peptides in tobacco. Microbiologyopen 2019; 8:e837. [PMID: 30912302 PMCID: PMC6854847 DOI: 10.1002/mbo3.837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Dermaseptin B1 (DrsB1), an antimicrobial cationic 31 amino acid peptide, is produced by Phyllomedusa bicolor. In an attempt to enhance the antimicrobial efficacy of DrsB1, the DrsB1 encoding 93 bp sequence was either fused to the N or C terminus of sequence encoding chitin-binding domain (CBD) of Avr4 gene from Cladosporium fulvum. Tobacco leaf disk explants were inoculated with Agrobacterium rhizogenes harboring pGSA/CBD-DrsB1 and pGSA/DrsB1-CBD expression vectors to produce hairy roots (HRs). Polymerase chain reaction (PCR) was employed to screen putative transgenic tobacco lines. Semi-quantitative RT-PCR and western blotting analysis indicated that the expression of recombinant genes were significantly higher, and recombinant proteins were produced in transgenic HRs. The recombinant proteins were extracted from the tobacco HRs and used against Pectobacterium carotovorum, Agrobacterium tumefaciens, Ralstonia solanacearum, and Xanthomonas campestris pathogenic bacteria and Alternaria alternata and Pythium sp. fungi. Two recombinant proteins had a statistically significant (p < 0.01) inhibitory effect on the growth and development of plant pathogens. The CBD-DrsB1 recombinant protein demonstrated a higher antibacterial effect, whereas the DrsB1-CBD recombinant protein demonstrated greater antifungal activity. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, adhered to each other, and crushed following the antimicrobial activity of the recombinant proteins. Due to the high antimicrobial activity of the recombinant proteins against plant pathogens, this strategy can be used to generate stable transgenic crop plants resistant to devastating plant pathogens.
Collapse
Affiliation(s)
- Mitra Khademi
- Agronomy and Plant Breeding Department, Faculty of AgricultureLorestan UniversityKhorramabadIran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of AgricultureLorestan UniversityKhorramabadIran
| | | |
Collapse
|
7
|
Shams MV, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol 2019; 61:241-252. [PMID: 30649664 DOI: 10.1007/s12033-019-00153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of strong antimicrobial peptides in plants is of great interest to combat a wide range of plant pathogens. To bring the Dermaseptin B1 (DrsB1) peptide to the intimate contact of the plant pathogens cell wall surface, the DrsB1 encoding sequence was fused to the C-terminal part of the two copies of the chitin-binding domain (CBD) of the Avr4 effector protein and used for Agrobacterium rhizogenes-mediated transformation. The expression of the recombinant protein in the tobacco hairy roots (HRs) was confirmed by molecular analysis. Antimicrobial activity analysis of the recombinant protein purified from the transgenic HRs showed that the (CBD)2-DrsB1 recombinant protein had a significant (p < 0.01) antimicrobial effect on the growth of different fungal and bacterial pathogens. The results of this study indicated that the recombinant protein had a higher antifungal activity against chitin-producing Alternaria alternata than Pythium spp. Scanning electron microscopy images demonstrated that the recombinant protein led to fungal hypha deformation, fragmentation, and agglutination of growing hypha, possibly by dissociating fungal cell wall components. In vitro evidences suggest that the expression of the (CBD)2-DrsB1 recombinant protein in plants by generating transgenic lines is a promising approach to produce disease-resistant plants, resistance to chitin-producing pathogenic fungi.
Collapse
Affiliation(s)
- Marzieh Varasteh Shams
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| |
Collapse
|
8
|
Gao H, Qi X, Hart DJ, Gao S, Wang H, Xu S, Zhang Y, Liu X, Liu Y, An Y. Three Novel Escherichia coli Vectors for Convenient and Efficient Molecular Biological Manipulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6123-6131. [PMID: 29798665 DOI: 10.1021/acs.jafc.8b01960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have constructed novel plasmids pANY2, pANY3, and pANY6 for flexible cloning with low false positives, efficient expression, and convenient purification of proteins. The pANY2 plasmid can be used for efficient isopropyl-β-d-thiogalactoside (IPTG) induced protein expression, while the pANY3 plasmid can be used for temperature-induced expression. The pANY6 plasmid contains a self-cleaving elastin-like protein (ELP) tag for purification of recombinant protein by simple ELP-mediated precipitation steps and removal of the ELP tag by self-cleavage. A urea-based denaturation and refolding processes for renaturation of insoluble inclusion bodies can be conveniently integrated into the ELP-mediated precipitation protocol, removing time-consuming dialysis steps. These novel vectors, together with the described strategies of gene cloning, protein expression, and purification, may have wide applications in biosciences, agricultural, food technologies, and so forth.
Collapse
Affiliation(s)
- Herui Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xianghui Qi
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS , University Grenoble Alpes , Grenoble 38044 , France
| | - Song Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Hongling Wang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Shumin Xu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifeng Zhang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xia Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifei Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yingfeng An
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| |
Collapse
|
9
|
Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, Wang XY, Short DPG, Li L, Guo W, Kong ZQ, Bao YM, Subbarao KV, Dai XF. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ Microbiol 2017; 19:1914-1932. [PMID: 28205292 DOI: 10.1111/1462-2920.13695] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.
Collapse
Affiliation(s)
- Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wen-Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin-Yan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Guo
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, United States of America
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci Rep 2016; 6:26144. [PMID: 27189192 PMCID: PMC4870575 DOI: 10.1038/srep26144] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.
Collapse
|
11
|
Shi W, Li C, Li M, Zong X, Han D, Chen Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol 2016; 100:5059-67. [PMID: 26948237 PMCID: PMC4866983 DOI: 10.1007/s00253-016-7400-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Caiyun Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Man Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Xicui Zong
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Dongju Han
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Zhang Z, Zhao J, Ding L, Zou L, Li Y, Chen G, Zhang T. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton. Sci Rep 2016; 6:20773. [PMID: 26856318 PMCID: PMC4746735 DOI: 10.1038/srep20773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lingyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Yurong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
13
|
Liu W, Zeng H, Liu Z, Yang X, Guo L, Qiu D. Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Microbiol Res 2014; 169:476-82. [PMID: 24080193 DOI: 10.1016/j.micres.2013.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/23/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022]
Abstract
In our previous study, PevD1 was characterized as a novel protein elicitor produced by Verticillium dahliae inducing hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco plants; however, the detailed mechanisms of PevD1's elicitor activity remain unclear. In this study, five mutant fragments of PevD1 were generated by polymerase chain reaction-based mutagenesis and the truncated proteins expressed in Escherichia coli were used to test their elicitor activities. Biological activity analysis showed that the N-terminal and C-terminal of PevD1 had distinct influence on HR and SAR elicitation. Fragment PevD1ΔN98, which spans the C-terminal 57 amino acids of PevD1, was critical for the induction of HR in tobacco plants. In contrast, fragment PevD1ΔC57, the N-terminal of 98 amino acids of PevD1, retained the ability to induce SAR against tobacco mosaic virus (TMV) but not induction of HR, suggesting that the induction of HR is not essential for SAR mediated by PevD1. Our results indicated that fragment PevD1ΔC57 could be a candidate peptide for plant protection against pathogens without causing negative effects.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Xiufen Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Lihua Guo
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Dewen Qiu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| |
Collapse
|
14
|
Li YR, Ma WX, Che YZ, Zou LF, Zakria M, Zou HS, Chen GY. A highly-conserved single-stranded DNA-binding protein in Xanthomonas functions as a harpin-like protein to trigger plant immunity. PLoS One 2013; 8:e56240. [PMID: 23418541 PMCID: PMC3571957 DOI: 10.1371/journal.pone.0056240] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
Harpins are produced by gram-negative phytopathogenic bacteria and typically elicit hypersensitive response (HR) in non-host plants. The characterization of harpins in Xanthomonas species is largely unexplored. Here we demonstrate that Xanthomonas produce a highly conserved single-stranded DNA-binding protein (SSB(X)) that elicits HR in tobacco as by harpin Hpa1. SSB(X), like Hpa1, is an acidic, glycine-rich, heat-stable protein that lacks cysteine residues. SSB(X)-triggered HR in tobacco, as by Hpa1, is characterized by the oxidative burst, the expression of HR markers (HIN1, HSR203J), pathogenesis-related genes, and callose deposition. Both SSB(X)- and Hpa1-induced HRs can be inhibited by general metabolism inhibitors actinomycin D, cycloheximide, and lanthanum chloride. Furthermore, those HRs activate the expression of BAK1 and BIK1 genes that are essential for induction of mitogen-activated protein kinase (MAPK) and salicylic acid pathways. Once applied to plants, SSB(X) induces resistance to the fungal pathogen Alternaria alternata and enhances plant growth. When ssb(X)was deleted in X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, the resulting ssb(Xoc)mutant was reduced in virulence and bacterial growth in planta, but retained its ability to trigger HR in tobacco. Interestingly, ssb(Xoc)contains an imperfect PIP-box (plant-inducible promoter) and the expression of ssb(Xoc)is regulated by HrpX, which belongs to the AraC family of transcriptional activators. Immunoblotting evidence showed that SSB(x) secretion requires a functional type-III secretion system as Hpa1 does. This is the first report demonstrating that Xanthomonas produce a highly-conserved SSB(X) that functions as a harpin-like protein for plant immunity.
Collapse
Affiliation(s)
- Yu-Rong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Wen-Xiu Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Yi-Zhou Che
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Li-Fang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Muhammad Zakria
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Hua-Song Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| |
Collapse
|
15
|
Senthil-Kumar M, Mysore KS. Nonhost resistance against bacterial pathogens: retrospectives and prospects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:407-27. [PMID: 23725473 DOI: 10.1146/annurev-phyto-082712-102319] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonhost resistance is a broad-spectrum plant defense that provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Upon landing on the surface of a nonhost plant species, a potential bacterial pathogen initially encounters preformed and, later, induced plant defenses. One of the initial defense responses from the plant is pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Nonhost plants also have mechanisms to detect nonhost-pathogen effectors and can trigger a defense response referred to as effector-triggered immunity (ETI). This nonhost resistance response often results in a hypersensitive response (HR) at the infection site. This review provides an overview of these plant defense strategies. We enumerate plant genes that impart nonhost resistance and the bacterial counter-defense strategies. In addition, prospects for application of nonhost resistance to achieve broad-spectrum and durable resistance in crop plants are also discussed.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA.
| | | |
Collapse
|