1
|
Middleton MA, Larsen DA, Tatara CP, Berejikian BA, Pasley CR, Dickey JT, Swanson P. Age at release affects developmental physiology and sex-specific phenotypic diversity of hatchery steelhead trout (Oncorhynchus mykiss). PLoS One 2025; 20:e0315016. [PMID: 39946334 PMCID: PMC11825032 DOI: 10.1371/journal.pone.0315016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/20/2024] [Indexed: 02/16/2025] Open
Abstract
Most steelhead trout hatcheries increase growth rate during rearing to produce and release yearling smolts for harvest augmentation, but natural steelhead exhibit variable age of smoltification, so this common rearing practice may not be ideal for programs focused on recovering imperiled wild stocks; therefore, it is important to investigate and compare alternative hatchery rearing methods that promote life history diversity. Over six consecutive years, the Winthrop National Fish Hatchery on the Methow River, WA reared and released paired groups of age-1 (S1) and age-2 (S2) steelhead smolts. To understand how the two rearing methods affected developmental ontogeny and life-history, fish were sampled prior to hatchery release for factors associated with smoltification (size, gill Na+/K+ ATPase activity, and a qualitative smolt phenotype) and sexual maturation (sex, pituitary and testis mRNA transcripts, gonadosomatic index, and plasma 11-ketotestosterone). Our objectives were to quantify levels of smoltification and male maturation during hatchery rearing, combine metrics to estimate residualism (failure to migrate upon release), and compare the treatments by sex. Overall, S2 rearing produced 7.8% more smolts and 44-fold (4.4 vs. 0.1%) more precociously mature males than S1 rearing. Conversely, S1 rearing produced 31.6% more residuals than S2 rearing. While the proportion of total male residuals was comparable between treatments, the S1 treatment produced approximately five-fold more female residuals (20.6 vs. 4.2%). Because residuals contribute minimally to adult returns and the number of returning adult females is critical to the success of salmonid supplementation efforts, developing rearing techniques that maximize migration in females is a management priority. Physiological assessments are useful for characterizing and quantifying the effects and risks of different hatchery rearing regimes on steelhead life-history, in addition to providing sex-specific guidance to inform and optimize conservation management goals in supplementation programs.
Collapse
Affiliation(s)
- Mollie A. Middleton
- School of Aquatic and Fisheries Science, University of Washington, Seattle, Washington, United States of America
| | - Donald A. Larsen
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Christopher P. Tatara
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Port Orchard, Washington, United States of America
| | - Barry A. Berejikian
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Port Orchard, Washington, United States of America
| | - Chris R. Pasley
- Winthrop National Fish Hatchery, United States Fish and Wildlife Service, Winthrop, Washington, United States of America
| | - Jon T. Dickey
- School of Aquatic and Fisheries Science, University of Washington, Seattle, Washington, United States of America
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Goetz LC, Nuetzel H, Vendrami DLJ, Beulke AK, Anderson EC, Garza JC, Pearse DE. Genetic parentage reveals the (un)natural history of Central Valley hatchery steelhead. Evol Appl 2024; 17:e13681. [PMID: 38516205 PMCID: PMC10956469 DOI: 10.1111/eva.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Populations composed of individuals descended from multiple distinct genetic lineages often feature significant differences in phenotypic frequencies. We considered hatchery production of steelhead, the migratory anadromous form of the salmonid species Oncorhynchus mykiss, and investigated how differences among genetic lineages and environmental variation impacted life history traits. We genotyped 23,670 steelhead returning to the four California Central Valley hatcheries over 9 years from 2011 to 2019, confidently assigning parentage to 13,576 individuals to determine age and date of spawning and rates of iteroparity and repeat spawning within each year. We found steelhead from different genetic lineages showed significant differences in adult life history traits despite inhabiting similar environments. Differences between coastal and Central Valley steelhead lineages contributed to significant differences in age at return, timing of spawning, and rates of iteroparity among programs. In addition, adaptive genomic variation associated with life history development in this species varied among hatchery programs and was associated with the age of steelhead spawners only in the coastal lineage population. Environmental variation likely contributed to variations in phenotypic patterns observed over time, as our study period spanned both a marine heatwave and a serious drought in California. Our results highlight evidence of a strong genetic component underlying known phenotypic differences in life history traits between two steelhead lineages.
Collapse
Affiliation(s)
- Laura C. Goetz
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - Hayley Nuetzel
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Present address:
Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| | - David L. J. Vendrami
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Present address:
Department of Animal BehaviourUniversity of BielefeldBielefeldGermany
| | - Anne K. Beulke
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Eric C. Anderson
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Devon E. Pearse
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| |
Collapse
|
3
|
Environmentally triggered shifts in steelhead migration behavior and consequences for survival in the mid-Columbia River. PLoS One 2021; 16:e0250831. [PMID: 33970924 PMCID: PMC8109777 DOI: 10.1371/journal.pone.0250831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
The majority of Columbia River summer-run steelhead encounter high river temperatures (near or > 20°C) during their spawning migration. While some steelhead pass through the mid-Columbia River in a matter of days, others use tributary habitats as temperature refuges for periods that can last months. Using PIT tag detection data from adult return years 2004-2016, we fit 3-component mixture models to differentiate between "fast", "slow", and "overwintering" migration behaviors in five aggregated population groups. Fast fish migrated straight through the reach on average in ~7-9 days while slow fish delayed their migration for weeks to months, and overwintering fish generally took ~150-250 days. We then fit covariate models to examine what factors contributed to the probability of migration delay during summer months (slow or overwintering behaviors), and to explore how migration delay related to mortality. Finally, to account for the impact of extended residence times in the reach for fish that delayed, we compared patterns in estimated average daily rates of mortality between migration behaviors and across population groups. Results suggest that migration delay was primarily triggered by high river temperatures but temperature thresholds for delay were lowest just before the seasonal peak in river temperatures. While all populations groups demonstrated these general patterns, we documented substantial variability in temperature thresholds and length of average delays across population groups. Although migration delay was related to higher reach mortality, it was also related to lower average daily mortality rates due to the proportional increase in reach passage duration being larger than the associated increase in mortality. Lower daily mortality rates suggest that migration delay could help mitigate the impacts of harsh migration conditions, presumably through the use of thermal refuges, despite prolonged exposure to local fisheries. Future studies tracking individual populations from their migration through reproduction could help illuminate the full extent of the tradeoffs between different migration behaviors.
Collapse
|
4
|
Horita J, Iwasa Y, Tachiki Y. Eco-evolutionary dynamics may show an irreversible regime shift, illustrated by salmonids facing climate change. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00502-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractThe enhanced or reduced growth of juvenile masu salmon (Oncorhynchus masou masou) may result from climate changes to their environment and thus impact on the eco-evolutionary dynamics of their life-history choices. Male juveniles with status, i.e., if their body size is larger than a threshold, stay in the stream and become resident males reproducing for multiple years, while those with smaller status, i.e., their body size is below the threshold, migrate to the ocean and return to the stream one year later to reproduce only once. Since juvenile growth is suppressed by the density of resident males, the fraction of resident males may stay in equilibrium or fluctuate wildly over a 2-year period. When the threshold value evolves, the convergence stable strategy may generate either an equilibrium or large fluctuations of male residents. If environmental changes occur faster than the rate of evolutionary adaptation, the eco-evolutionary dynamics exhibit a qualitative shift in the population dynamics. We also investigated the relative assessment models, in which individual life-history choices are made based on the individual’s relative status within the juvenile population. The eco-evolutionary dynamics are very different from the absolute assessment model, demonstrating the importance of understanding the mechanisms of life history choices when predicting the impacts of climate change.
Collapse
|
5
|
Vincenzi S, Jesensek D, Crivelli AJ. Biological and statistical interpretation of size-at-age, mixed-effects models of growth. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192146. [PMID: 32431890 PMCID: PMC7211857 DOI: 10.1098/rsos.192146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The differences in life-history traits and processes between organisms living in the same or different populations contribute to their ecological and evolutionary dynamics. We developed mixed-effect model formulations of the popular size-at-age von Bertalanffy and Gompertz growth functions to estimate individual and group variation in body growth, using as a model system four freshwater fish populations, where tagged individuals were sampled for more than 10 years. We used the software Template Model Builder to estimate the parameters of the mixed-effect growth models. Tests on data that were not used to estimate model parameters showed good predictions of individual growth trajectories using the mixed-effects models and starting from one single observation of body size early in life; the best models had R 2 > 0.80 over more than 500 predictions. Estimates of asymptotic size from the Gompertz and von Bertalanffy models were not significantly correlated, but their predictions of size-at-age of individuals were strongly correlated (r > 0.99), which suggests that choosing between the best models of the two growth functions would have negligible effects on the predictions of size-at-age of individuals. Model results pointed to size ranks that are largely maintained throughout the lifetime of individuals in all populations.
Collapse
Affiliation(s)
| | - Dusan Jesensek
- Tolmin Angling Association, Most Na Soci, Tolmin, Slovenia
| | - Alain J. Crivelli
- Station Biologique de la Tour du Valat, Le Sambuc 13200, Arles, France
| |
Collapse
|
6
|
Ferguson A, Reed TE, Cross TF, McGinnity P, Prodöhl PA. Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. JOURNAL OF FISH BIOLOGY 2019; 95:692-718. [PMID: 31197849 PMCID: PMC6771713 DOI: 10.1111/jfb.14005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.
Collapse
Affiliation(s)
- Andrew Ferguson
- School of Biological SciencesQueen's University BelfastBelfastUK
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Tom F. Cross
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Paulo A. Prodöhl
- School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
7
|
Archer LC, Hutton SA, Harman L, O'Grady MN, Kerry JP, Poole WR, Gargan P, McGinnity P, Reed TE. The Interplay Between Extrinsic and Intrinsic Factors in Determining Migration Decisions in Brown Trout (Salmo trutta): An Experimental Study. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Lopez Arriaza J, Boughton DA, Urquhart K, Mangel M. Size-conditional smolting and the response of Carmel River steelhead to two decades of conservation efforts. PLoS One 2017; 12:e0188971. [PMID: 29190806 PMCID: PMC5708832 DOI: 10.1371/journal.pone.0188971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
Threshold effects are common in ecosystems and can generate counterintuitive outcomes in management interventions. A threshold effect proposed for steelhead trout (Oncorhynchus mykiss) is size-conditional smolting and marine survival. Steelhead are anadromous, maturing in the ocean but migrating to freshwater to spawn, where their offspring reside for one or more years before smolting—physiologically transforming to a saltwater form—and migrating to the ocean. In conditional smolting, juveniles transform only if growth exceeds a threshold body size prior to migration season, and subsequent marine survival correlates with size at ocean entry. Conditional smolting suggests that efforts to improve freshwater survival of juveniles may reduce smolt success if they increase competition and reduce growth. Using model-selection techniques, we asked if this effect explained declining numbers of adult Carmel River steelhead. This threatened population has been the focus of two decades of habitat restoration, as well as active translocation and captive-rearing of juveniles stranded in seasonally dewatered channels. In the top-ranked model selected by information-theoretic criteria, adult decline was linked to reduced juvenile growth rates in the lower river, consistent with the conditional smolting hypothesis. According to model inference, since 2005 most returning adult steelhead were captively-reared. However, a lower-ranked model without conditional smolting also had modest support, and suggested a negative effect of captive rearing. Translocations of juvenile fish to perennial reaches may have reduced the steelhead run slightly by raising competition, but this effect is confounded in the data with effects of river flow on growth. Efforts to recover Carmel River steelhead will probably be more successful if they focus on conditions promoting rapid growth in the river. Our analysis clearly favored a role for size-conditional smolting and marine survival in the decline of the population, but did not definitively rule out alternative explanations.
Collapse
Affiliation(s)
- Juan Lopez Arriaza
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz, California, United States of America
- Center for Stock Assessment Research, University of California, Santa Cruz, California, United States of America
| | - David A. Boughton
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
- * E-mail:
| | - Kevan Urquhart
- Monterey Peninsula Water Management District, Monterey, California, United States of America
| | - Marc Mangel
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz, California, United States of America
- Center for Stock Assessment Research, University of California, Santa Cruz, California, United States of America
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Apgar TM, Pearse DE, Palkovacs EP. Evolutionary restoration potential evaluated through the use of a trait-linked genetic marker. Evol Appl 2017; 10:485-497. [PMID: 28515781 PMCID: PMC5427673 DOI: 10.1111/eva.12471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Human‐driven evolution can impact the ecological role and conservation value of impacted populations. Most evolutionary restoration approaches focus on manipulating gene flow, but an alternative approach is to manipulate the selection regime to restore historical or desired trait values. Here we examined the potential utility of this approach to restore anadromous migratory behavior in coastal California steelhead trout (Oncorhynchus mykiss) populations. We evaluated the effects of natural and anthropogenic environmental variables on the observed frequency of alleles at a genomic marker tightly associated with migratory behavior across 39 steelhead populations from across California, USA. We then modeled the potential for evolutionary restoration at sites that have been impacted by anthropogenic barriers. We found that complete barriers such as dams are associated with major reductions in the frequency of anadromy‐associated alleles. The removal of dams is therefore expected to restore anadromy significantly. Interestingly, accumulations of large numbers of partial barriers (passable under at least some flow conditions) were also associated with significant reductions in migratory allele frequencies. Restoration involving the removal of partial barriers could be evaluated alongside dam removal and fishway construction as a cost‐effective tool to restore anadromous fish migrations. Results encourage broader consideration of in situ evolution during the development of habitat restoration projects.
Collapse
Affiliation(s)
- Travis M Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Devon E Pearse
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA.,Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| |
Collapse
|
10
|
De Leenheer P, Mohapatra A, Ohms HA, Lytle DA, Cushing JM. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives. J Theor Biol 2016; 412:172-185. [PMID: 27810395 DOI: 10.1016/j.jtbi.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/18/2023]
Abstract
We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis.
Collapse
Affiliation(s)
- Patrick De Leenheer
- Department of Mathematics, Oregon State University, Corvallis, OR 97330, USA; Department of Integrative Biology, Oregon State University, Corvallis, OR 97330, USA
| | - Anushaya Mohapatra
- Department of Mathematics, Oregon State University, Corvallis, OR 97330, USA
| | - Haley A Ohms
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97330, USA
| | - David A Lytle
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97330, USA
| | - J M Cushing
- Department of Mathematics, University of Arizona, Tuscon, AZ 85721, USA
| |
Collapse
|
11
|
English S, Fawcett TW, Higginson AD, Trimmer PC, Uller T. Adaptive Use of Information during Growth Can Explain Long-Term Effects of Early Life Experiences. Am Nat 2016; 187:620-32. [DOI: 10.1086/685644] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Phillis CC, Moore JW, Buoro M, Hayes SA, Garza JC, Pearse DE. Shifting Thresholds: Rapid Evolution of Migratory Life Histories in Steelhead/Rainbow Trout, Oncorhynchus mykiss. J Hered 2015; 107:51-60. [PMID: 26585381 DOI: 10.1093/jhered/esv085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 10/07/2015] [Indexed: 11/13/2022] Open
Abstract
Expression of phenotypic plasticity depends on reaction norms adapted to historic selective regimes; anthropogenic changes in these selection regimes necessitate contemporary evolution or declines in productivity and possibly extinction. Adaptation of conditional strategies following a change in the selection regime requires evolution of either the environmentally influenced cue (e.g., size-at-age) or the state (e.g., size threshold) at which an individual switches between alternative tactics. Using a population of steelhead (Oncorhynchus mykiss) introduced above a barrier waterfall in 1910, we evaluate how the conditional strategy to migrate evolves in response to selection against migration. We created 9 families and 917 offspring from 14 parents collected from the above- and below-barrier populations. After 1 year of common garden-rearing above-barrier offspring were 11% smaller and 32% lighter than below-barrier offspring. Using a novel analytical approach, we estimate that the mean size at which above-barrier fish switch between the resident and migrant tactic is 43% larger than below-barrier fish. As a result, above-barrier fish were 26% less likely to express the migratory tactic. Our results demonstrate how rapid and opposing changes in size-at-age and threshold size contribute to the contemporary evolution of a conditional strategy and indicate that migratory barriers may elicit rapid evolution toward the resident life history on timescales relevant for conservation and management of conditionally migratory species.
Collapse
Affiliation(s)
- Corey C Phillis
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis).
| | - Jonathan W Moore
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis)
| | - Mathieu Buoro
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis)
| | - Sean A Hayes
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis)
| | - John Carlos Garza
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis)
| | - Devon E Pearse
- From the Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 (Phillis, Moore, and Pearse); Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada (Phillis and Moore); Department of Environmental Science, Policy, & Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (Buoro); Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Rd., Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); Institute of Marine Sciences, University of California, Santa Cruz, CA 95060 (Hayes, Garza, and Pearse); and Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA 98112 (Phillis)
| |
Collapse
|
13
|
Weston DP, Schlenk D, Riar N, Lydy MJ, Brooks ML. Effects of pyrethroid insecticides in urban runoff on Chinook salmon, steelhead trout, and their invertebrate prey. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:649-657. [PMID: 25545717 DOI: 10.1002/etc.2850] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/17/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Pyrethroid insecticides can affect salmonids either indirectly through toxicity to their prey or directly by toxicity to the fish themselves. In support of a study on pyrethroid impacts to Chinook salmon and steelhead trout in the American River (Sacramento, California, USA), 96-h median effective concentration (EC50) and median lethal concentration (LC50) values for the pyrethroid bifenthrin were determined for taxa not traditionally used for toxicity testing but of interest as salmonid prey, including a chironomid, caddisflies, mayflies, and stoneflies. A laboratory was constructed on the banks of the American River to expose macroinvertebrates, Chinook salmon, and steelhead trout to flow-through river water containing urban runoff during storm events. Bifenthrin from urban runoff was found in river water following 5 rain events, reaching 14.6 ng/L. Mortality to the exposed salmonids was not observed, and sublethal effects were not seen in vitellogenin or sex steroid levels. Indirect effects via toxicity to salmonid prey are possible. Mortality to Hyalella azteca, a potential prey, was observed in every event tested, and peak bifenthrin concentrations were comparable to the 96-h EC50 of the caddisfly, Hydropsyche sp., the most important prey species on a biomass basis for American River Chinook salmon. The other invertebrates tested had EC50s exceeding bifenthrin concentrations seen in the American River, though could potentially be at risk at concentrations previously reported in smaller urban tributaries. Environ Toxicol Chem 2015;34:649-657. © 2014 SETAC.
Collapse
Affiliation(s)
- Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
14
|
Holt RE, Jørgensen C. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua). CONSERVATION PHYSIOLOGY 2014; 2:cou050. [PMID: 27293671 PMCID: PMC4806736 DOI: 10.1093/conphys/cou050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 05/25/2023]
Abstract
Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.
Collapse
Affiliation(s)
- Rebecca E. Holt
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | | |
Collapse
|
15
|
Stochastic dynamic programming illuminates the link between environment, physiology, and evolution. Bull Math Biol 2014; 77:857-77. [PMID: 25033778 DOI: 10.1007/s11538-014-9973-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
I describe how stochastic dynamic programming (SDP), a method for stochastic optimization that evolved from the work of Hamilton and Jacobi on variational problems, allows us to connect the physiological state of organisms, the environment in which they live, and how evolution by natural selection acts on trade-offs that all organisms face. I first derive the two canonical equations of SDP. These are valuable because although they apply to no system in particular, they share commonalities with many systems (as do frictionless springs). After that, I show how we used SDP in insect behavioral ecology. I describe the puzzles that needed to be solved, the SDP equations we used to solve the puzzles, and the experiments that we used to test the predictions of the models. I then briefly describe two other applications of SDP in biology: first, understanding the developmental pathways followed by steelhead trout in California and second skipped spawning by Norwegian cod. In both cases, modeling and empirical work were closely connected. I close with lessons learned and advice for the young mathematical biologists.
Collapse
|
16
|
Moore JW, Yeakel JD, Peard D, Lough J, Beere M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J Anim Ecol 2014; 83:1035-46. [DOI: 10.1111/1365-2656.12212] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Moore
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Justin D. Yeakel
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Dean Peard
- Ministry of Environment; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Jeff Lough
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Mark Beere
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| |
Collapse
|
17
|
Beakes MP, Sharron S, Charish R, Moore JW, Satterthwaite WH, Sturm E, Wells BK, Sogard SM, Mangel M. Using scale characteristics and water temperature to reconstruct growth rates of juvenile steelhead Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2014; 84:58-72. [PMID: 24383800 DOI: 10.1111/jfb.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/11/2013] [Indexed: 06/03/2023]
Abstract
Juvenile steelhead Oncorhynchus mykiss from a northern California Central Valley population were reared in a controlled laboratory experiment. Significantly different rates of growth were observed among fish reared under two ration treatments and three temperature treatments (8, 14 and 20°C). Wider circulus spacing and faster deposition was associated with faster growth. For the same growth rate, however, circulus spacing was two-fold wider and deposited 36% less frequently in the cold compared to the hot temperature treatment. In a multiple linear regression, median circulus spacing and water temperature accounted for 68% of the variation in observed O. mykiss growth. These results corroborate previous research on scale characteristics and growth, while providing novel evidence that highlights the importance of water temperature in these relationships. Thus, this study establishes the utility of using scale analysis as a relatively non-invasive method for inferring growth in salmonids.
Collapse
Affiliation(s)
- M P Beakes
- Earth to Ocean Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of California-Santa Cruz, Santa Cruz, CA, 95064, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shelton AO, Satterthwaite WH, Beakes MP, Munch SB, Sogard SM, Mangel M. Separating intrinsic and environmental contributions to growth and their population consequences. Am Nat 2013; 181:799-814. [PMID: 23669542 DOI: 10.1086/670198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Among-individual heterogeneity in growth is a commonly observed phenomenon that has clear consequences for population and community dynamics yet has proved difficult to quantify in practice. In particular, observed among-individual variation in growth can be difficult to link to any given mechanism. Here, we develop a Bayesian state-space framework for modeling growth that bridges the complexity of bioenergetic models and the statistical simplicity of phenomenological growth models. The model allows for intrinsic individual variation in traits, a shared environment, process stochasticity, and measurement error. We apply the model to two populations of steelhead trout (Oncorhynchus mykiss) grown under common but temporally varying food conditions. Models allowing for individual variation match available data better than models that assume a single shared trait for all individuals. Estimated individual variation translated into a roughly twofold range in realized growth rates within populations. Comparisons between populations showed strong differences in trait means, trait variability, and responses to a shared environment. Together, individual- and population-level variation have substantial implications for variation in size and growth rates among and within populations. State-dependent life-history models predict that this variation can lead to differences in individual life-history expression, lifetime reproductive output, and population life-history diversity.
Collapse
Affiliation(s)
- Andrew O Shelton
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, WA 98112, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Piou C, Prévost E. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. GLOBAL CHANGE BIOLOGY 2013; 19:711-723. [PMID: 23504829 DOI: 10.1111/gcb.12085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/24/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.
Collapse
Affiliation(s)
- Cyril Piou
- INRA, UMR 1224 ECOBIOP, Aquapôle, Quartier Ibarron, Saint-Pée sur Nivelle, 64310, France.
| | | |
Collapse
|
20
|
Modelling the complete life-cycle of Atlantic salmon (Salmo salar L.) using a spatially explicit individual-based approach. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2012.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lee WS, Metcalfe NB, Monaghan P, Mangel M. A Comparison of Dynamic-State-Dependent Models of the Trade-Off Between Growth, Damage, and Reproduction. Am Nat 2011; 178:774-86. [DOI: 10.1086/662671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Buoro M, Gimenez O, Prévost E. Assessing adaptive phenotypic plasticity by means of conditional strategies from empirical data: the latent environmental threshold model. Evolution 2011; 66:996-1009. [PMID: 22486685 DOI: 10.1111/j.1558-5646.2011.01484.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conditional strategies are the most common form of discrete phenotypic plasticity. In a conditional strategy, the phenotype expressed by an organism is determined by the difference between an environmental cue and a threshold, both of which may vary among individuals. The environmental threshold model (ETM) has been proposed as a mean to understand the evolution of conditional strategies, but has been surprisingly seldom applied to empirical studies. A hindrance for the application of the ETM is that often, the proximate cue triggering the phenotypic expression and the individual threshold are not measurable, and can only be assessed using a related observable cue. We describe a new statistical model that can be applied in this common situation. The Latent ETM (LETM) allows for a measurement error in the phenotypic expression of the individual environmental cue and a purely genetically determined threshold. We show that coupling our model with quantitative genetic methods allows an evolutionary approach including an estimation of the heritability of conditional strategies. We evaluate the performance of the LETM with a simulation study and illustrate its utility by applying it to empirical data on the size-dependent smolting process for stream-dwelling Atlantic salmon juveniles.
Collapse
Affiliation(s)
- Mathieu Buoro
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, Montpellier Cedex 5, France.
| | | | | |
Collapse
|
23
|
Bernatchez L, Tseng M. Evolutionary applications summer 2011. Evol Appl 2011; 4:617-20. [PMID: 25568009 PMCID: PMC3352538 DOI: 10.1111/j.1752-4571.2011.00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Louis Bernatchez
- Département de biologie, Université Laval Québec, QC, Canada e-mail:
| | - Michelle Tseng
- Department of Zoology, University of British Columbia Vancouver, BC, Canada e-mail:
| |
Collapse
|