1
|
Santostefano F, Moiron M, Sánchez-Tójar A, Fisher DN. Indirect genetic effects increase the heritable variation available to selection and are largest for behaviors: a meta-analysis. Evol Lett 2025; 9:89-104. [PMID: 39906585 PMCID: PMC11790215 DOI: 10.1093/evlett/qrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 02/06/2025] Open
Abstract
The evolutionary potential of traits is governed by the amount of heritable variation available to selection. While this is typically quantified based on genetic variation in a focal individual for its own traits (direct genetic effects, DGEs), when social interactions occur, genetic variation in interacting partners can influence a focal individual's traits (indirect genetic effects, IGEs). Theory and studies on domesticated species have suggested IGEs can greatly impact evolutionary trajectories, but whether this is true more broadly remains unclear. Here, we perform a systematic review and meta-analysis to quantify the amount of trait variance explained by IGEs and the contribution of IGEs to predictions of adaptive potential. We identified 180 effect sizes from 47 studies across 21 species and found that, on average, IGEs of a single social partner account for a small but statistically significant amount of phenotypic variation (0.03). As IGEs affect the trait values of each interacting group member and due to a typically positive-although statistically nonsignificant-correlation with DGEs (r DGE-IGE = 0.26), IGEs ultimately increase trait heritability substantially from 0.27 (narrow-sense heritability) to 0.45 (total heritable variance). This 66% average increase in heritability suggests IGEs can increase the amount of genetic variation available to selection. Furthermore, whilst showing considerable variation across studies, IGEs were most prominent for behaviors and, to a lesser extent, for reproduction and survival, in contrast to morphological, metabolic, physiological, and development traits. Our meta-analysis, therefore, shows that IGEs tend to enhance the evolutionary potential of traits, especially for those tightly related to interactions with other individuals, such as behavior and reproduction.
Collapse
Affiliation(s)
- Francesca Santostefano
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | | - David N Fisher
- School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Zhang W, Wang S, Yang L, Gao L, Ning C, Xu M, Deng S, Gan S. Profile of miRNAs induced during sheep fat tail development and roles of four key miRNAs in proliferation and differentiation of sheep preadipocytes. Front Vet Sci 2024; 11:1491160. [PMID: 39691379 PMCID: PMC11651086 DOI: 10.3389/fvets.2024.1491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background The fat tail of sheep is an adaptive trait that facilitates their adaptation to harsh natural environments. MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the regulation of tail fat deposition. Methods In this study, miRNA-Seq was employed to investigate the expression profiles of miRNAs during different developmental stages of sheep fat tails and elucidate the functions of differentially expressed miRNAs (DE miRNAs). Results A total of 350 DE miRNAs were identified, among which 191, 60, 26, and 21 were significantly upregulated in tail fat tissues of fetal, lamb, hogget Altay sheep, and adult Xinjiang fine wool (XFW) sheep but downregulated in other stages. Furthermore, we predicted a set of candidate target genes (4,476) for the top 20 DE miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they involve in several adipogenesis-related pathways. Subsequent investigations indicated that four DE miRNAs, miR-433-3p, miR-485-3p, miR-409-3p, and miR-495-3p, could suppress the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and regulate the preadipocyte development in sheep. Meanwhile, the lipid metabolism-related genes, fatty acid-binding protein (FABP3), perilipin 1 (PLIN1), adiponectin C1Q and collagen domain containing (ADIPOQ), and lipoprotein lipase (LPL), were significantly downregulated (p < 0.01). Conclusion The expression patterns of miRNAs exhibited significant fluctuations during different development periods of the fat tail, and some of them may participate in the regulation of tail fat deposition by modulating the proliferation and differentiation of preadipocytes.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Shiyin Wang
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Liwei Yang
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Li Gao
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Chengcheng Ning
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shuangyi Deng
- Key Laboratory of Livestock and Poultry Healthy Breeding Technology in Northwest China, Xinjiang Agricultural Vocational and Technical University, Changji, China
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
3
|
Tiokhin L, Panchanathan K, Smaldino PE, Lakens D. Shifting the Level of Selection in Science. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:908-920. [PMID: 37526118 PMCID: PMC11539478 DOI: 10.1177/17456916231182568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Criteria for recognizing and rewarding scientists primarily focus on individual contributions. This creates a conflict between what is best for scientists' careers and what is best for science. In this article, we show how the theory of multilevel selection provides conceptual tools for modifying incentives to better align individual and collective interests. A core principle is the need to account for indirect effects by shifting the level at which selection operates from individuals to the groups in which individuals are embedded. This principle is used in several fields to improve collective outcomes, including animal husbandry, team sports, and professional organizations. Shifting the level of selection has the potential to ameliorate several problems in contemporary science, including accounting for scientists' diverse contributions to knowledge generation, reducing individual-level competition, and promoting specialization and team science. We discuss the difficulties associated with shifting the level of selection and outline directions for future development in this domain.
Collapse
Affiliation(s)
- Leo Tiokhin
- Human Technology Interaction Group, Eindhoven University of Technology, The Netherlands
- Data & Analytics Group, IG&H, The Netherlands
| | | | - Paul E. Smaldino
- Department of Cognitive & Information Sciences, University of California, Merced, USA
- Santa Fe Institute, New Mexico, USA
| | - Daniël Lakens
- Human Technology Interaction Group, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
4
|
Montazeaud G, Helleu Q, Wuest SE, Keller L. Indirect genetic effects are shaped by demographic history and ecology in Arabidopsis thaliana. Nat Ecol Evol 2023; 7:1878-1891. [PMID: 37749402 DOI: 10.1038/s41559-023-02189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
The phenotype of an individual can be affected by the genes of its conspecifics through indirect genetic effects (IGEs). IGEs have been studied across different organisms including wild and domesticated animals and plants, but little is known about their genetic architecture. Here, in a large-scale intraspecific interaction experiment, we show that the contribution of IGEs to the biomass variation of Arabidopsis thaliana is comparable to values classically reported in animals. Moreover, we identify 11 loci explaining 85.1% of the variability in IGEs. We find that positive IGE alleles (that is, those with positive effects on neighbour biomass) occur both in relict accessions from southern Eurasia and in post-glacial colonizers from northern Scandinavia, and that they are likely to have two divergent origins: for nine loci, they evolved in the post-glacial colonizers independently from the relicts, while the two others were introgressed in the post-glacial colonizer from the relicts. Finally, we find that variation in IGEs probably reflects divergent adaptations to the contrasting environments of the edges and the centre of the native range of the species. These findings reveal a surprisingly tractable genetic basis of IGEs in A. thaliana that is shaped by the ecology and the demographic history of the species.
Collapse
Affiliation(s)
- Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR7196, INSERM U1154, Paris, France
| | - Samuel E Wuest
- Group Breeding Research, Division Plant Breeding, Agroscope, Wädenswil, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Social Evolution Unit, Chesières, Switzerland.
| |
Collapse
|
5
|
Lamarins A, Fririon V, Folio D, Vernier C, Daupagne L, Labonne J, Buoro M, Lefèvre F, Piou C, Oddou‐Muratorio S. Importance of interindividual interactions in eco-evolutionary population dynamics: The rise of demo-genetic agent-based models. Evol Appl 2022; 15:1988-2001. [PMID: 36540635 PMCID: PMC9753837 DOI: 10.1111/eva.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.
Collapse
Affiliation(s)
- Amaïa Lamarins
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut AgroUniv Pau & Pays Adour/E2S UPPARennesFrance
| | - Victor Fririon
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Dorinda Folio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Camille Vernier
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Léa Daupagne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Jacques Labonne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Mathieu Buoro
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - François Lefèvre
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Cyril Piou
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Sylvie Oddou‐Muratorio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
6
|
Wuest SE, Pires ND, Luo S, Vasseur F, Messier J, Grossniklaus U, Niklaus PA. Increasing plant group productivity through latent genetic variation for cooperation. PLoS Biol 2022; 20:e3001842. [PMID: 36445870 PMCID: PMC9707777 DOI: 10.1371/journal.pbio.3001842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Historic yield advances in the major crops have, to a large extent, been achieved by selection for improved productivity of groups of plant individuals such as high-density stands. Research suggests that such improved group productivity depends on "cooperative" traits (e.g., erect leaves, short stems) that-while beneficial to the group-decrease individual fitness under competition. This poses a problem for some traditional breeding approaches, especially when selection occurs at the level of individuals, because "selfish" traits will be selected for and reduce yield in high-density monocultures. One approach, therefore, has been to select individuals based on ideotypes with traits expected to promote group productivity. However, this approach is limited to architectural and physiological traits whose effects on growth and competition are relatively easy to anticipate. Here, we developed a general and simple method for the discovery of alleles promoting cooperation in plant stands. Our method is based on the game-theoretical premise that alleles increasing cooperation benefit the monoculture group but are disadvantageous to the individual when facing noncooperative neighbors. Testing the approach using the model plant Arabidopsis thaliana, we found a major effect locus where the rarer allele was associated with increased cooperation and productivity in high-density stands. The allele likely affects a pleiotropic gene, since we find that it is also associated with reduced root competition but higher resistance against disease. Thus, even though cooperation is considered evolutionarily unstable except under special circumstances, conflicting selective forces acting on a pleiotropic gene might maintain latent genetic variation for cooperation in nature. Such variation, once identified in a crop, could rapidly be leveraged in modern breeding programs and provide efficient routes to increase yields.
Collapse
Affiliation(s)
- Samuel E. Wuest
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland,Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland,Group Breeding Research, Division Plant Breeding, Agroscope, Wädenswil, Switzerland,* E-mail:
| | - Nuno D. Pires
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Shan Luo
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | | - Julie Messier
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Cooney DB, Mori Y. Long-time behavior of a PDE replicator equation for multilevel selection in group-structured populations. J Math Biol 2022; 85:12. [PMID: 35864421 DOI: 10.1007/s00285-022-01776-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
In many biological systems, natural selection acts simultaneously on multiple levels of organization. This scenario typically presents an evolutionary conflict between the incentive of individuals to cheat and the collective incentive to establish cooperation within a group. Generalizing previous work on multilevel selection in evolutionary game theory, we consider a hyperbolic PDE model of a group-structured population, in which members within a single group compete with each other for individual-level replication; while the group also competes against other groups for group-level replication. We derive a threshold level of the relative strength of between-group competition such that defectors take over the population below the threshold while cooperation persists in the long-time population above the threshold. Under stronger assumptions on the initial distribution of group compositions, we further prove that the population converges to a steady state density supporting cooperation for between-group selection strength above the threshold. We further establish long-time bounds on the time-average of the collective payoff of the population, showing that the long-run population cannot outperform the payoff of a full-cooperator group even in the limit of infinitely-strong between-group competition. When the group replication rate is maximized by an intermediate level of within-group cooperation, individual-level selection casts a long shadow on the dynamics of multilevel selection: no level of between-group competition can erase the effects of the individual incentive to defect. We further extend our model to study the case of multiple types of groups, showing how the games that groups play can coevolve with the level of cooperation.
Collapse
Affiliation(s)
- Daniel B Cooney
- Department of Mathematics and Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yoichiro Mori
- Department of Mathematics, Department of Biology, and Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Martin JS, Jaeggi AV. Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes. J Evol Biol 2022; 35:520-538. [PMID: 34233047 PMCID: PMC9292565 DOI: 10.1111/jeb.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Collapse
Affiliation(s)
- Jordan S. Martin
- Human Ecology GroupInstitute of Evolutionary MedicineUniversity of ZurichZurichSwitzerland
| | - Adrian V. Jaeggi
- Human Ecology GroupInstitute of Evolutionary MedicineUniversity of ZurichZurichSwitzerland
| |
Collapse
|
9
|
Calsbeek R, Zamora-Camacho FJ, Symes LB. Individual contributions to group chorus dynamics influence access to mating opportunities in wood frogs. Ecol Lett 2022; 25:1401-1409. [PMID: 35305074 DOI: 10.1111/ele.14002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
A limitation in bioacoustic studies has been the inability to differentiate individual sonic contributions from group-level dynamics. We present a novel application of acoustic camera technology to investigate how individual wood frogs' calls influence chorus properties, and how variation influences mating opportunities. We recorded mating calls and used playback trials to gauge preference for different chorus types in the laboratory. Males and females preferred chorus playbacks with low variance in dominant frequency. Females preferred choruses with low mean peak frequency. Field studies revealed more egg masses laid in ponds where males chorused with low variance in dominant frequency. We also noted a trend towards more egg masses laid in ponds where males called with low mean frequency. Nearest-neighbour distances influenced call timing (neighbours called in succession) and distances increased with variance in chorus frequency. Results highlight the potential fitness implications of individual-level contributions to a bioacoustic signal produced by groups.
Collapse
Affiliation(s)
- Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Francisco Javier Zamora-Camacho
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA.,Department of Biogeography and Global Change, Spanish National Research Council, Madrid, Spain
| | - Laurel B Symes
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell lab of Ornithology, Ithaca, New York, USA
| |
Collapse
|
10
|
McGlothlin JW, Akçay E, Brodie ED, Moore AJ, Van Cleve J. A Synthesis of Game Theory and Quantitative Genetic Models of Social Evolution. J Hered 2022; 113:109-119. [PMID: 35174861 DOI: 10.1093/jhered/esab064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution. First, we show how any evolutionary game may be translated into two quantitative genetic selection gradients, nonsocial and social selection, which may be used to predict evolutionary change from a single round of the game. We show that synergistic fitness effects may alter predicted selection gradients, causing changes in magnitude and sign as the population mean evolves. Second, we show how evolutionary games involving plastic behavioral responses to partners can be modeled using indirect genetic effects, which describe how trait expression changes in response to genes in the social environment. We demonstrate that repeated social interactions in models of reciprocity generate indirect effects and conversely, that estimates of parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists and theorists studying social evolution. We advocate the measurement of social selection and indirect genetic effects in natural populations to test the predictions from game theory and, in turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Derring Hall Room 2125, 926 West Campus Drive (MC 0406), Blacksburg, VA 24061, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Edmund D Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, 485 McCormick Road, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Allen J Moore
- College of Agricultural and Environmental Sciences, University of Georgia, 109 Conner Hall, 147 Cedar Street, Athens, GA 30602, USA
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Santostefano F, Allegue H, Garant D, Bergeron P, Réale D. Indirect genetic and environmental effects on behaviors, morphology, and life-history traits in a wild Eastern chipmunk population. Evolution 2021; 75:1492-1512. [PMID: 33855713 DOI: 10.1111/evo.14232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Additive genetic variance in a trait reflects its potential to respond to selection, which is key for adaptive evolution in the wild. Social interactions contribute to this genetic variation through indirect genetic effects-the effect of an individual's genotype on the expression of a trait in a conspecific. However, our understanding of the evolutionary importance of indirect genetic effects in the wild and of their strength relative to direct genetic effects is limited. In this study, we assessed how indirect genetic effects contribute to genetic variation of behavioral, morphological, and life-history traits in a wild Eastern chipmunk population. We also compared the contribution of direct and indirect genetic effects to traits evolvabilities and related these effects to selection strength across traits. We implemented a novel approach integrating the spatial structure of social interactions in quantitative genetic analyses, and supported the reliability of our results with power analyses. We found indirect genetic effects for trappability and relative fecundity, little direct genetic effects in all traits and a large role for direct and indirect permanent environmental effects. Our study highlights the potential evolutionary role of social permanent environmental effects in shaping phenotypes of conspecifics through adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Francesca Santostefano
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Hassen Allegue
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop's University, Sherbrooke, Québec, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Zhang W, Xu M, Wang J, Wang S, Wang X, Yang J, Gao L, Gan S. Comparative Transcriptome Analysis of Key Genes and Pathways Activated in Response to Fat Deposition in Two Sheep Breeds With Distinct Tail Phenotype. Front Genet 2021; 12:639030. [PMID: 33897762 PMCID: PMC8060577 DOI: 10.3389/fgene.2021.639030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Fat tail in sheep presents a valuable energy reserve that has historically facilitated adaptation to harsh environments. However, in modern intensive and semi-intensive sheep industry systems, breeds with leaner tails are more desirable. In the present study, RNA sequencing (RNA-Seq) was applied to determine the transcriptome profiles of tail fat tissues in two Chinese sheep breeds, fat-rumped Altay sheep and thin-tailed Xinjiang fine wool (XFW) sheep, with extreme fat tail phenotype difference. Then the differentially expressed genes (DEGs) and their sequence variations were further analyzed. In total, 21,527 genes were detected, among which 3,965 displayed significant expression variations in tail fat tissues of the two sheep breeds (P < 0.05), including 707 upregulated and 3,258 downregulated genes. Gene Ontology (GO) analysis disclosed that 198 DEGs were related to fat metabolism. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of DEGs were significantly enriched in "adipocytokine signaling," "PPAR signaling," and "metabolic pathways" (P < 0.05); moreover, some genes were involved in multiple pathways. Among the 198 DEGs, 22 genes were markedly up- or downregulated in tail fat tissue of Altay sheep, indicating that these genes might be closely related to the fat tail trait of this breed. A total of 41,724 and 42,193 SNPs were detected in the transcriptomic data of tail fat tissues obtained from Altay and XFW sheep, respectively. The distribution of seven SNPs in the coding regions of the 22 candidate genes was further investigated in populations of three sheep breeds with distinct tail phenotypes. In particular, the g.18167532T/C (Oar_v3.1) mutation of the ATP-binding cassette transporter A1 (ABCA1) gene and g.57036072G/T (Oar_v3.1) mutation of the solute carrier family 27 member 2 (SLC27A2) gene showed significantly different distributions and were closely associated with tail phenotype (P < 0.05). The present study provides transcriptomic evidence explaining the differences in fat- and thin-tailed sheep breeds and reveals numerous DEGs and SNPs associated with tail phenotype. Our data provide a valuable theoretical basis for selection of lean-tailed sheep breeds.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Juanjuan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shiyin Wang
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Xinhua Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingquan Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
13
|
Animal board invited review: OneARK: Strengthening the links between animal production science and animal ecology. Animal 2020; 15:100053. [PMID: 33515992 DOI: 10.1016/j.animal.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.
Collapse
|
14
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
15
|
Hayes SC, Hofmann SG, Wilson DS. Clinical psychology is an applied evolutionary science. Clin Psychol Rev 2020; 81:101892. [PMID: 32801086 PMCID: PMC7486990 DOI: 10.1016/j.cpr.2020.101892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
Historically there has been only a limited relationship between clinical psychology and evolutionary science. This article considers the status of that relationship in light of a modern multi-dimensional and multi-level extended evolutionary approach. Evolution can be purposive and even conscious, and evolutionary principles can give guidance and provide consilience to clinical psychology, especially as it focuses more on processes of change. The time seems ripe to view clinical psychology as an applied evolutionary science.
Collapse
Affiliation(s)
- Steven C Hayes
- University of Nevada, Reno, NV, United States of America.
| | | | | |
Collapse
|
16
|
Walsh JT, Garnier S, Linksvayer TA. Ant Collective Behavior Is Heritable and Shaped by Selection. Am Nat 2020; 196:541-554. [PMID: 33064586 DOI: 10.1086/710709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.
Collapse
|
17
|
DNA methylation variation in the brain of laying hens in relation to differential behavioral patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100700. [DOI: 10.1016/j.cbd.2020.100700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
|
18
|
Evans SR, Postma E, Sheldon BC. It takes two: Heritable male effects on reproductive timing but not clutch size in a wild bird population*. Evolution 2020; 74:2320-2331. [DOI: 10.1111/evo.13980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Simon R. Evans
- Edward Grey Institute, Department of Zoology University of Oxford Oxford OX1 3SZ UK
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE UK
| | - Erik Postma
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE UK
| | - Ben C. Sheldon
- Edward Grey Institute, Department of Zoology University of Oxford Oxford OX1 3SZ UK
| |
Collapse
|
19
|
Tixier-Boichard M. From the jungle fowl to highly performing chickens: are we reaching limits? WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Montazeaud G, Rousset F, Fort F, Violle C, Fréville H, Gandon S. Farming plant cooperation in crops. Proc Biol Sci 2020; 287:20191290. [PMID: 31964305 DOI: 10.1098/rspb.2019.1290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selection of the fittest can promote individual competitiveness but often results in the erosion of group performance. Recently, several authors revisited this idea in crop production and proposed new practices based on selection for cooperative phenotypes, i.e. phenotypes that increase crop yield through decreased competitiveness. These recommendations, however, remain difficult to evaluate without a formal description of crop evolutionary dynamics under different selection strategies. Here, we develop a theoretical framework to investigate the evolution of cooperation-related traits in crops, using plant height as a case study. Our model is tailored to realistic agricultural practices and shows that combining high plant density, high relatedness and selection among groups favours the evolution of shorter plants that maximize grain yield. Our model allows us to revisit past and current breeding practices in light of kin selection theory, and yields practical recommendations to increase cooperation among crops and promote sustainable agriculture.
Collapse
Affiliation(s)
- Germain Montazeaud
- AGAP, Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France.,CEFE, Université de Montpellier, Montpellier SupAgro, CNRS, EPHE, IRD, Université Paul Valéry, Montpellier, France
| | - François Rousset
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Florian Fort
- CEFE, Université de Montpellier, Montpellier SupAgro, CNRS, EPHE, IRD, Université Paul Valéry, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry, Montpellier, France
| | - Hélène Fréville
- AGAP, Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Sylvain Gandon
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry, Montpellier, France
| |
Collapse
|
21
|
Evans SR, Waldvogel D, Vasiljevic N, Postma E. Heritable spouse effects increase evolutionary potential of human reproductive timing. Proc Biol Sci 2019; 285:rspb.2017.2763. [PMID: 29643210 DOI: 10.1098/rspb.2017.2763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Sexual reproduction is inherently interactive, especially in animal species such as humans that exhibit extended pair bonding. Yet we have little knowledge of the role of male characteristics and their evolutionary impact on reproductive behavioural phenotypes, to the extent that biologists typically consider component traits (e.g. reproductive timing) as female-specific. Based on extensive genealogical data detailing the life histories of 6435 human mothers born across four centuries of modern history, we use an animal modelling approach to estimate the indirect genetic effect of men on the reproductive phenotype of their partners. These analyses show that a woman's reproductive timing (age at first birth) is influenced by her partner's genotype. This indirect genetic effect is positively correlated with the direct genetic effect expressed in women, such that total heritable variance in this trait is doubled when heritable partner effects are considered. Our study thus suggests that much of the heritable variation in women's reproductive timing is mediated via partner effects, and that the evolutionary potential of this trait is far greater than previously appreciated.
Collapse
Affiliation(s)
- Simon R Evans
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Dominique Waldvogel
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Vasiljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Erik Postma
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK
| |
Collapse
|
22
|
Herron MD, Zamani-Dahaj SA, Ratcliff WC. Trait heritability in major transitions. BMC Biol 2018; 16:145. [PMID: 30545356 PMCID: PMC6293664 DOI: 10.1186/s12915-018-0612-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Increases in biological complexity and the origins of life's hierarchical organization are described by the "major transitions" framework. A crucial component of this paradigm is that after the transition in complexity or organization, adaptation occurs primarily at the level of the new, higher-level unit. For collective-level adaptations to occur, though, collective-level traits-properties of the group, such as collective size-must be heritable. Since collective-level trait values are functions of lower-level trait values, collective-level heritability is related to particle-level heritability. However, the nature of this relationship has rarely been explored in the context of major transitions. RESULTS We examine relationships between particle-level heritability and collective-level heritability for several functions that express collective-level trait values in terms of particle-level trait values. For clonal populations, when a collective-level trait value is a linear function of particle-level trait values and the number of particles per collective is fixed, the heritability of a collective-level trait is never less than that of the corresponding particle-level trait and is higher under most conditions. For more complicated functions, collective-level heritability is higher under most conditions, but can be lower when the environment experienced by collectives is heterogeneous. Within-genotype variation in collective size reduces collective-level heritability, but it can still exceed particle-level heritability when phenotypic variance among particles within collectives is large. These results hold for a diverse sample of biologically relevant traits. CONCLUSIONS Rather than being an impediment to major transitions, we show that, under a wide range of conditions, the heritability of collective-level traits is actually higher than that of the corresponding particle-level traits. High levels of collective-level trait heritability thus arise "for free," with important implications not only for major transitions but for multilevel selection in general.
Collapse
Affiliation(s)
- Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - Seyed A. Zamani-Dahaj
- School of Physics, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| |
Collapse
|
23
|
Huguin M, Arechiga-Ceballos N, Delaval M, Guidez A, de Castro IJ, Lacoste V, Salmier A, Setién AA, Silva CR, Lavergne A, de Thoisy B. How Social Structure Drives the Population Dynamics of the Common Vampire Bat (Desmodus rotundus, Phyllostomidae). J Hered 2017; 109:393-404. [DOI: 10.1093/jhered/esx111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maïlis Huguin
- Kwata NGO, Cayenne, French Guiana
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Nidia Arechiga-Ceballos
- Laboratorio de Rabia, Instituto de Diagnóstico y Referencia Epidemiológicos. Mexico DF, Mexico
| | | | - Amandine Guidez
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Isaï Jorge de Castro
- Laboratório de Mamíferos, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá, Amapá, Brazil
| | - Vincent Lacoste
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Arielle Salmier
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Alvaro Aguilar Setién
- Unidad de Investigación Médica en Inmunología, Coordinación de Investigación, Instituto Mexicano del Seguro Social, México DF, Mexico
| | - Claudia Regina Silva
- Laboratório de Mamíferos, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá, Amapá, Brazil
| | - Anne Lavergne
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Benoit de Thoisy
- Kwata NGO, Cayenne, French Guiana
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
24
|
Rauw WM, Johnson AK, Gomez-Raya L, Dekkers JCM. A Hypothesis and Review of the Relationship between Selection for Improved Production Efficiency, Coping Behavior, and Domestication. Front Genet 2017; 8:134. [PMID: 29033975 PMCID: PMC5624995 DOI: 10.3389/fgene.2017.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/12/2017] [Indexed: 01/11/2023] Open
Abstract
Coping styles in response to stressors have been described both in humans and in other animal species. Because coping styles are directly related to individual fitness they are part of the life history strategy. Behavioral styles trade off with other life-history traits through the acquisition and allocation of resources. Domestication and subsequent artificial selection for production traits specifically focused on selection of individuals with energy sparing mechanisms for non-production traits. Domestication resulted in animals with low levels of aggression and activity, and a low hypothalamic-pituitary-adrenal (HPA) axis reactivity. In the present work, we propose that, vice versa, selection for improved production efficiency may to some extent continue to favor docile domesticated phenotypes. It is hypothesized that both domestication and selection for improved production efficiency may result in the selection of reactive style animals. Both domesticated and reactive style animals are characterized by low levels of aggression and activity, and increased serotonin neurotransmitter levels. However, whereas domestication quite consistently results in a decrease in the functional state of the HPA axis, the reactive coping style is often found to be dominated by a high HPA response. This may suggest that fearfulness and coping behavior are two independent underlying dimensions to the coping response. Although it is generally proposed that animal welfare improves with selection for calmer animals that are less fearful and reactive to novelty, animals bred to be less sensitive with fewer desires may be undesirable from an ethical point of view.
Collapse
Affiliation(s)
- Wendy M Rauw
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Anna K Johnson
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Luis Gomez-Raya
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
25
|
Canario L, Lundeheim N, Bijma P. The early-life environment of a pig shapes the phenotypes of its social partners in adulthood. Heredity (Edinb) 2017; 118:534-541. [PMID: 28327581 PMCID: PMC5436026 DOI: 10.1038/hdy.2017.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/08/2022] Open
Abstract
Social interactions among individuals are abundant, both in natural and domestic populations, and may affect phenotypes of individuals. Recent research has demonstrated that the social effect of an individual on the phenotype of its social partners may have a genetic component, known as an indirect genetic effect (IGE). Little is known, however, of nongenetic factors underlying such social effects. Early-life environments often have large effects on phenotypes of the individuals themselves later in life. Offspring development in many mammalian species, for example, depends on interactions with the mother and siblings. In domestic pigs, individuals sharing the same juvenile environment develop similar body weight later in life. We, therefore, hypothesized that offspring originating from the same early-life environment also develop common social skills that generate early-life social effects (ELSEs) that affect the phenotypes of their social partners later in life. We, therefore, quantified IGEs and ELSEs on growth in domestic pigs. Results show that individuals from the same early-life environment express similar social effects on the growth of their social partners, and that such ELSEs shape the growth rate of social partners more than IGEs. Thus, the social skills that individuals develop in early life have a long-lasting impact on the phenotypes of social partners. Early-life and genetic social effects were independent of the corresponding direct effects of offspring on their own growth, indicating that individuals may enhance the growth of their social partners without a personal cost. Our findings also illustrate how research devoted to quantifying IGEs may miss nongenetic and potentially confounded social mechanisms which may bias the estimates of IGEs.
Collapse
Affiliation(s)
- L Canario
- Department of Animal Genetics, INRA French National Institute for Agricultural Research, Castanet-Tolosan, France
| | - N Lundeheim
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - P Bijma
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
26
|
Abstract
Classical models of evolution seldom predict the rate at which populations evolve in the wild. One explanation is that the social environment affects how traits change in response to natural selection. Here, we determine how social interactions between parents and offspring, and among larvae, influence the response to experimental selection on adult size. Our experiments focus on burying beetles (Nicrophorus vespilloides), whose larvae develop within a carrion nest. Some broods exclusively self-feed on the carrion while others are also fed by their parents. We found populations responded to selection for larger adults but only when parents cared for their offspring. We also found populations responded to selection for smaller adults too, but only by removing parents and causing larval interactions to exert more influence on eventual adult size. Comparative analyses revealed a similar pattern: evolutionary increases in species size within the genus Nicrophorus are associated with the obligate provision of care. Synthesising our results with previous studies, we suggest that cooperative social environments enhance the response to selection whereas excessive conflict can prevent further directional selection.
Collapse
|
27
|
Edenbrow M, Bleakley BH, Darden SK, Tyler CR, Ramnarine IW, Croft DP. The Evolution of Cooperation: Interacting Phenotypes among Social Partners. Am Nat 2017; 189:630-643. [PMID: 28514638 DOI: 10.1086/691386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Models of cooperation among nonkin suggest that social assortment is important for the evolution of cooperation. Theory predicts that interacting phenotypes, whereby an individual's behavior depends on the behavior of its social partners, can drive such social assortment. We measured repeated indirect genetic effects (IGEs) during cooperative predator inspection in eight populations of Trinidadian guppies (Poecilia reticulata) that vary in their evolutionary history of predation. Four broad patterns emerged that were dependent on river, predation history, and sex: (i) current partner behavior had the largest effect on focal behavior, with fish from low-predation habitats responding more to their social partners than fish from high-predation habitats; (ii) different focal/partner behavior combinations can generate cooperation; (iii) some high-predation fish exhibited carryover effects across social partners; and (iv) high-predation fish were more risk averse. These results provide the first large-scale comparison of interacting phenotypes during cooperation across wild animal populations, highlighting the potential importance of IGEs in maintaining cooperation. Intriguingly, while focal fish responded strongly to current social partners, carryover effects between social partners suggest generalized reciprocity (in which one helps anyone if helped by someone) may contribute to the evolution of cooperation in some, but not all, populations of guppies.
Collapse
|
28
|
Anderson BB, Scott A, Dukas R. Indirect genetic effects on the sociability of several group members. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Pizzari T. The Wood-Gush legacy: A sociobiology perspective to fertility and welfare in chickens. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
The foundress's dilemma: group selection for cooperation among queens of the harvester ant, Pogonomyrmex californicus. Sci Rep 2016; 6:29828. [PMID: 27465430 PMCID: PMC4964563 DOI: 10.1038/srep29828] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022] Open
Abstract
The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.
Collapse
|
31
|
Abstract
AbstractExperimental studies of group selection show that higher levels of selection act on indirect genetic effects, making the response to group and community selection qualitatively different from that of individual selection. This suggests that multilevel selection plays a key role in the evolution of supersocial societies. Experiments showing the effectiveness of community selection indicate that we should consider the possibility that selection among communities may be important in the evolution of supersocial species.
Collapse
|
32
|
Goodnight CJ. Multilevel selection theory and evidence: a critique of Gardner, 2015. J Evol Biol 2015; 28:1734-46. [PMID: 26265012 DOI: 10.1111/jeb.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Gardner (2015) recently developed a model of a 'Genetical Theory of Multilevel Selection, which is a thoughtfully developed, but flawed model. The model's flaws appear to be symptomatic of common misunderstandings of the multi level selection (MLS) literature and the recent quantitative genetic literature. I use Gardner's model as a guide for highlighting how the MLS literature can address the misconceptions found in his model, and the kin selection literature in general. I discuss research on the efficacy of group selection, the roll of indirect genetic effects in affecting the response to selection and the heritability of group-level traits. I also discuss why the Price multilevel partition should not be used to partition MLS, and why contextual analysis and, by association, direct fitness are appropriate for partitioning MLS. Finally, I discuss conceptual issues around questions concerning the level at which fitness is measured, the units of selection, and I present a brief outline of a model of selection in class-structured populations. I argue that the results derived from the MLS research tradition can inform kin selection research and models, and provide insights that will allow researchers to avoid conceptual flaws such as those seen in the Gardner model.
Collapse
Affiliation(s)
- C J Goodnight
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
33
|
Affiliation(s)
| | - James D Bever
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
34
|
Muir WM, Cheng HW, Croney C. Methods to address poultry robustness and welfare issues through breeding and associated ethical considerations. Front Genet 2014; 5:407. [PMID: 25505483 PMCID: PMC4244538 DOI: 10.3389/fgene.2014.00407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
As consumers and society in general become more aware of ethical and moral dilemmas associated with intensive rearing systems, pressure is put on the animal and poultry industries to adopt alternative forms of housing. This presents challenges especially regarding managing competitive social interactions between animals. However, selective breeding programs are rapidly advancing, enhanced by both genomics and new quantitative genetic theory that offer potential solutions by improving adaptation of the bird to existing and proposed production environments. The outcomes of adaptation could lead to improvement of animal welfare by increasing fitness of the animal for the given environments, which might lead to increased contentment and decreased distress of birds in those systems. Genomic selection, based on dense genetic markers, will allow for more rapid improvement of traits that are expensive or difficult to measure, or have a low heritability, such as pecking, cannibalism, robustness, mortality, leg score, bone strength, disease resistance, and thus has the potential to address many poultry welfare concerns. Recently selection programs to include social effects, known as associative or indirect genetic effects (IGEs), have received much attention. Group, kin, multi-level, and multi-trait selection including IGEs have all been shown to be highly effective in reducing mortality while increasing productivity of poultry layers and reduce or eliminate the need for beak trimming. Multi-level selection was shown to increases robustness as indicated by the greater ability of birds to cope with stressors. Kin selection has been shown to be easy to implement and improve both productivity and animal well-being. Management practices and rearing conditions employed for domestic animal production will continue to change based on ethical and scientific results. However, the animal breeding tools necessary to provide an animal that is best adapted to these changing conditions are readily available and should be used, which will ultimately lead to the best possible outcomes for all impacted.
Collapse
Affiliation(s)
- William M. Muir
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, United States Department of Agriculture – Agricultural Research ServiceWest Lafayette, IN, USA
| | - Candace Croney
- Department of Comparative Pathobiology and Department of Animal Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
35
|
Ellen ED, Rodenburg TB, Albers GAA, Bolhuis JE, Camerlink I, Duijvesteijn N, Knol EF, Muir WM, Peeters K, Reimert I, Sell-Kubiak E, van Arendonk JAM, Visscher J, Bijma P. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Front Genet 2014; 5:377. [PMID: 25426136 PMCID: PMC4227523 DOI: 10.3389/fgene.2014.00377] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022] Open
Abstract
Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock.
Collapse
Affiliation(s)
- Esther D Ellen
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University Wageningen, Netherlands
| | - Gerard A A Albers
- Hendrix Genetics, Research and Technology Centre Boxmeer, Netherlands
| | | | - Irene Camerlink
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; Adaptation Physiology Group, Wageningen University Wageningen, Netherlands
| | - Naomi Duijvesteijn
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; TOPIGS Research Centre IPG Beuningen, Netherlands
| | | | - William M Muir
- Department of Animal Science, Purdue University West Lafayette, IN, USA
| | - Katrijn Peeters
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; Hendrix Genetics, Research and Technology Centre Boxmeer, Netherlands
| | - Inonge Reimert
- Adaptation Physiology Group, Wageningen University Wageningen, Netherlands
| | - Ewa Sell-Kubiak
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | | | | | - Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| |
Collapse
|
36
|
Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, Smith TB, Strauss SY, Tabashnik BE. Applying evolutionary biology to address global challenges. Science 2014; 346:1245993. [PMID: 25213376 PMCID: PMC4245030 DOI: 10.1126/science.1245993] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.
Collapse
Affiliation(s)
- Scott P Carroll
- Department of Entomology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. Institute for Contemporary Evolution, Davis, CA 95616, USA.
| | - Peter Søgaard Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark. Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Michael T Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN 55108, USA
| | - Peter Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 619 Charles E. Young Drive East, Los Angeles, 90095-1496, CA
| | - Sharon Y Strauss
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, One Shields Avenue, CA 95616, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
37
|
|
38
|
Pruitt JN, Goodnight CJ. Site-specific group selection drives locally adapted group compositions. Nature 2014; 514:359-62. [PMID: 25274310 DOI: 10.1038/nature13811] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/29/2014] [Indexed: 11/09/2022]
Abstract
Group selection may be defined as selection caused by the differential extinction or proliferation of groups. The socially polymorphic spider Anelosimus studiosus exhibits a behavioural polymorphism in which females exhibit either a 'docile' or 'aggressive' behavioural phenotype. Natural colonies are composed of a mixture of related docile and aggressive individuals, and populations differ in colonies' characteristic docile:aggressive ratios. Using experimentally constructed colonies of known composition, here we demonstrate that population-level divergence in docile:aggressive ratios is driven by site-specific selection at the group level--certain ratios yield high survivorship at some sites but not others. Our data also indicate that colonies responded to the risk of extinction: perturbed colonies tended to adjust their composition over two generations to match the ratio characteristic of their native site, thus promoting their long-term survival in their natal habitat. However, colonies of displaced individuals continued to shift their compositions towards mixtures that would have promoted their survival had they remained at their home sites, regardless of their contemporary environment. Thus, the regulatory mechanisms that colonies use to adjust their composition appear to be locally adapted. Our data provide experimental evidence of group selection driving collective traits in wild populations.
Collapse
Affiliation(s)
- Jonathan N Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Charles J Goodnight
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
39
|
Muir WM, Bijma P, Schinckel A. Multilevel selection with kin and non-kin groups, experimental results with Japanese quail (Coturnix japonica). Evolution 2013; 67:1598-606. [PMID: 23730755 PMCID: PMC3744746 DOI: 10.1111/evo.12062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/12/2013] [Indexed: 11/28/2022]
Abstract
An experiment was conducted comparing multilevel selection in Japanese quail for 43 days weight and survival with birds housed in either kin (K) or random (R) groups. Multilevel selection significantly reduced mortality (6.6% K vs. 8.5% R) and increased weight (1.30 g/MG K vs. 0.13 g/MG R) resulting in response an order of magnitude greater with Kin than Random. Thus, multilevel selection was effective in reducing detrimental social interactions, which contributed to improved weight gain. The observed rates of response did not differ significantly from expected, demonstrating that current theory is adequate to explain multilevel selection response. Based on estimated genetic parameters, group selection would always be superior to any other combination of multilevel selection. Further, near optimal results could be attained using multilevel selection if 20% of the weight was on the group component regardless of group composition. Thus, in nature the conditions for multilevel selection to be effective in bringing about social change maybe common. In terms of a sustainability of breeding programs, multilevel selection is easy to implement and is expected to give near optimal responses with reduced rates of inbreeding as compared to group selection, the only requirement is that animals be housed in kin groups.
Collapse
|
40
|
Bleakley BH, Welter SM, McCauley-Cole K, Shuster SM, Moore AJ. Cannibalism as an interacting phenotype: precannibalistic aggression is influenced by social partners in the endangered Socorro Isopod (Thermosphaeroma thermophilum). J Evol Biol 2013; 26:832-42. [PMID: 23516960 DOI: 10.1111/jeb.12098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
Models for the evolution of cannibalism highlight the importance of asymmetries between individuals in initiating cannibalistic attacks. Studies may include measures of body size but typically group individuals into size/age classes or compare populations. Such broad comparisons may obscure the details of interactions that ultimately determine how socially contingent characteristics evolve. We propose that understanding cannibalism is facilitated by using an interacting phenotypes perspective that includes the influences of the phenotype of a social partner on the behaviour of a focal individual and focuses on variation in individual pairwise interactions. We investigated how relative body size, a composite trait between a focal individual and its social partner, and the sex of the partners influenced precannibalistic aggression in the endangered Socorro isopod, Thermosphaeroma thermophilum. We also investigated whether differences in mating interest among males and females influenced cannibalism in mixed sex pairs. We studied these questions in three populations that differ markedly in range of body size and opportunities for interactions among individuals. We found that relative body size influences the probability of and latency to attack. We observed differences in the likelihood of and latency to attack based on both an individual's sex and the sex of its partner but found no evidence of sexual conflict. The instigation of precannibalistic aggression in these isopods is therefore a property of both an individual and its social partner. Our results suggest that interacting phenotype models would be improved by incorporating a new conditional ψ, which describes the strength of a social partner's influence on focal behaviour.
Collapse
Affiliation(s)
- B H Bleakley
- Department of Biology, Stonehill College, Easton, MA 02357, USA.
| | | | | | | | | |
Collapse
|
41
|
Evolutionary models of extended phenotypes. Trends Ecol Evol 2012; 27:561-9. [DOI: 10.1016/j.tree.2012.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/18/2022]
|
42
|
Peiman KS, Robinson BW. Diversifying and correlational selection on behavior toward conspecific and heterospecific competitors in brook stickleback (Culaea inconstans). Ecol Evol 2012; 2:2141-54. [PMID: 23139874 PMCID: PMC3488666 DOI: 10.1002/ece3.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022] Open
Abstract
Behaviors toward heterospecifics and conspecifics may be correlated because of shared mechanisms of expression in both social contexts (nonadaptive covariation) or because correlational selection favors adaptive covariation. We evaluated these hypotheses by comparing behavior toward conspecifics and heterospecifics in brook stickleback (Culaea inconstans) from three populations sympatric with and three allopatric from a competitor, the ninespine stickleback (Pungitius pungitius). Behavioral traits were classified into three multivariate components: overt aggression, sociability, and activity. The correlation of behavior between social contexts for both overt aggression and activity varied among populations in a way unrelated to sympatry with ninespine stickleback, while mean aggression was reduced in sympatry. Correlations in allopatric populations suggest that overt aggression and activity may genetically covary between social contexts for nonadaptive reasons. Sociability was rarely correlated in allopatry but was consistently correlated in sympatry despite reduced mean sociability, suggesting that correlational selection may favor a sociability syndrome in brook stickleback when they coexist with ninespine stickleback. Thus, interspecific competition may impose diversifying selection on behavior among populations, although the causes of correlated behavior toward conspecifics and heterospecifics and whether it can evolve in one social context independent of the other may depend on the type of behavior.
Collapse
Affiliation(s)
- Kathryn S Peiman
- Department of Integrative Biology, University of Guelph Guelph, Ontario, Canada
| | | |
Collapse
|
43
|
Bailey NW, Zuk M. Socially flexible female choice differs among populations of the Pacific field cricket: geographical variation in the interaction coefficient psi (Ψ). Proc Biol Sci 2012; 279:3589-96. [PMID: 22648156 DOI: 10.1098/rspb.2012.0631] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indirect genetic effects (IGEs) occur when genes expressed in one individual affect the phenotype of a conspecific. Theoretical models indicate that the evolutionary consequences of IGEs critically depend on the genetic architecture of interacting traits, and on the strength and direction of phenotypic effects arising from social interactions, which can be quantified by the interaction coefficient Ψ. In the context of sexually selected traits, strong positive Ψ tends to exaggerate evolutionary change, whereas negative Ψ impedes sexual trait elaboration. Despite its theoretical importance, whether and how Ψ varies among geographically distinct populations is unknown. Such information is necessary to evaluate the potential for IGEs to contribute to divergence among isolated or semi-isolated populations. Here, we report substantial variation in Ψ for a behavioural trait involved in sexual selection in the field cricket Teleogryllus oceanicus: female choosiness. Both the strength and direction of Ψ varied among geographically isolated populations. Ψ also changed over time. In a contemporary population of crickets from Kauai, experience of male song increased female choosiness. In contrast, experience of male song decreased choosiness in an ancestral population from the same location. This rapid change corroborates studies examining the evolvability of Ψ and demonstrates how interpopulation variation in the interaction coefficient might influence sexual selection and accelerate divergence of traits influenced by IGEs that contribute to reproductive isolation in nascent species or subspecies.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology, Dyers Brae House, University of St Andrews, St Andrews, UK.
| | | |
Collapse
|
44
|
Bailey NW, Moore AJ. Runaway sexual selection without genetic correlations: social environments and flexible mate choice initiate and enhance the Fisher process. Evolution 2012; 66:2674-84. [PMID: 22946795 PMCID: PMC3627302 DOI: 10.1111/j.1558-5646.2012.01647.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.
Collapse
Affiliation(s)
- Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, United Kingdom.
| | | |
Collapse
|
45
|
Bijma P. A general definition of the heritable variation that determines the potential of a population to respond to selection. Genetics 2011; 189:1347-59. [PMID: 21926298 PMCID: PMC3241417 DOI: 10.1534/genetics.111.130617] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022] Open
Abstract
Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population's intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection.
Collapse
Affiliation(s)
- Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University, 6709PG Wageningen, The Netherlands.
| |
Collapse
|
46
|
Bernatchez L, Tseng M. Evolutionary applications summer 2011. Evol Appl 2011; 4:617-20. [PMID: 25568009 PMCID: PMC3352538 DOI: 10.1111/j.1752-4571.2011.00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Louis Bernatchez
- Département de biologie, Université Laval Québec, QC, Canada e-mail:
| | - Michelle Tseng
- Department of Zoology, University of British Columbia Vancouver, BC, Canada e-mail:
| |
Collapse
|