1
|
Trofimiuk-Müldner M, Domagała B, Sokołowski G, Skalniak A, Hubalewska-Dydejczyk A. AIP gene germline variants in adult Polish patients with apparently sporadic pituitary macroadenomas. Front Endocrinol (Lausanne) 2023; 14:1098367. [PMID: 36843582 PMCID: PMC9950257 DOI: 10.3389/fendo.2023.1098367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Up to 5% of all pituitary tumors are hereditary e.g. due to MEN1 or aryl hydrocarbon receptor-interacting protein (AIP) genes mutations. OBJECTIVES The study was aimed at the assessment of the frequency and characteristics of AIP-mutation related tumors in patients with apparently sporadic pituitary macroadenomas in the Polish population. MATERIALS AND METHODS The study included 131 patients (57 males, 74 females; median age 42 years) diagnosed with pituitary macroadenomas, and with a negative family history of familial isolated pituitary adenoma (FIPA) or multiple endocrine neoplasia type 1 (MEN1) syndromes. Sanger sequencing was used for the assessment of AIP gene variants. The study was approved by the Ethics Board of JUMC. RESULTS AIP variants were identified in five of the 131 included subjects (3.8%): one diagnosed with Cushing's disease, two with acromegaly, and two with non-secreting adenomas. Patients harboring hereditary AIP gene alterations did not differ from the rest of the study group in median age at diagnosis (41.0 vs. 42.5 years, P=0.8), median largest tumor diameter (25 vs. 24 mm, P=0.6), gender distribution (60.0% vs. 56.3% females, P=0.8), secreting tumor frequency (60.0% vs. 67.5%, P=0.7), or acromegaly diagnosis frequency (40.0% vs.37.3%, P=0.9). CONCLUSIONS In our series of apparently sporadic pituitary macroadenomas, AIP gene variant carriers did not differ substantially from patients with negative genetic testing. A risk factor-centred approach to AIP genetic screening may result in missing germline variants. Considering the clinical impact of such genetic variants and their relatively low penetrance, it is, however, doubtful if general genetic screening benefits the whole cohort of pituitary macroadenoma patients and their families.
Collapse
Affiliation(s)
- Małgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Małgorzata Trofimiuk-Müldner,
| | - Bartosz Domagała
- Department of Endocrinology, Endocrine Oncology and Nuclear Medicine, University Hospital in Kraków, Kraków, Poland
| | - Grzegorz Sokołowski
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Skalniak
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
2
|
Guaraldi F, Morandi L, Zoli M, Mazzatenta D, Righi A, Evangelisti S, Ambrosi F, Tonon C, Giannini C, Lloyd RV, Asioli S. Epigenomic and somatic mutations of pituitary tumors with clinical and pathological correlations in 111 patients. Clin Endocrinol (Oxf) 2022; 97:763-772. [PMID: 36161330 PMCID: PMC9828656 DOI: 10.1111/cen.14827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To profile clinically non-aggressive and aggressive pituitary adenomas (PAs)/pituitary neuroendocrine tumours (PitNETs) and pituitary carcinomas for somatic mutations and epigenetic alterations of genes involved in cell proliferation/differentiation, microRNAs (miRNA)/long noncoding RNA (LncRNA)-post-transcriptional regulators and therapy targets. DESIGN Retrospective observational study. PATIENTS AND MEASUREMENTS A total of 64 non-aggressive and 41 aggressive PAs/PitNETs and 6 pituitary carcinomas treated by endoscopic surgery with ≥1-year follow-up were included. Somatic mutations of 17 genes and DNA methylation of 22 genes were assessed. Ten normal pituitaries were used as control. RESULTS We found at least one mutation in 17 tumours, including 6/64 non-aggressive, 10/41 aggressive PAs/PitNETs, and 1/6 pituitary carcinoma. AIP (N = 6) was the most frequently mutated gene, followed by NOTCH (4), and TP53 (3). Hypermethylation of PARP15, LINC00599, ZAP70 was more common in aggressive than non-aggressive PAs/PITNETs (p < .05). Lower levels of methylation of AIP, GNAS and PDCD1 were detected in aggressive PAs/PITNETs than non-aggressive ones (p < .05). For X-linked genes, males presented higher level of methylation of FLNA, UXT and MAGE family (MAGEA11, MAGEA1, MAGEC2) genes in aggressive vs. non-aggressive PAs/PITNETs (p < .05). In pituitary carcinomas, methylation of autosomal genes PARP15, LINC00599, MIR193 and ZAP70 was higher than in PAs/PITNETs, while X-linked genes methylation level was lower. CONCLUSIONS Somatic mutations and methylation levels of genes involved in cell proliferation/differentiation, miRNA/LncRNA-post-transcriptional regulators and targets of antineoplastic therapies are different in non-aggressive and in aggressive PAs/PitNETs. Methylation profile also varies according to gender. Combined genetic-epigenetic analysis, in association with clinico-radiological-pathological data, may be of help in predicting PA/PitNET behaviour.
Collapse
Affiliation(s)
| | - Luca Morandi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Matteo Zoli
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Alberto Righi
- Department of PathologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefania Evangelisti
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Francesca Ambrosi
- Dipartimento Interaziendale Anatomia Patologica, Pathology Unit, Maggiore HospitalAUSL BolognaBolognaItaly
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- Anatomic Pathology Unit, Department of Pathology and Laboratory MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ricardo V. Lloyd
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonMichiganUSA
| | - Sofia Asioli
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- Dipartimento Interaziendale Anatomia Patologica, Unit of Anatomic PathologyAUSL BolognaBolognaItaly
| |
Collapse
|
3
|
García WR, Cortes HT, Romero AF. Pituitary gigantism: a case series from Hospital de San José (Bogotá, Colombia). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:385-393. [PMID: 31365626 PMCID: PMC10528647 DOI: 10.20945/2359-3997000000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Gigantism is a rare pediatric disease characterized by increased production of growth hormone (GH) before epiphyseal closure, that manifests clinically as tall stature, musculoskeletal abnormalities, and multiple comorbidities. MATERIALS AND METHODS Case series of 6 male patients with gigantism evaluated at the Endocrinology Service of Hospital de San José (Bogotá, Colombia) between 2010 and 2016. RESULTS All patients had macroadenomas and their mean final height was 2.01 m. The mean age at diagnosis was 16 years, and the most common symptoms were headache (66%) and hyperhidrosis (66%). All patients had acral changes, and one had visual impairment secondary to compression of the optic chiasm. All patients underwent surgery, and 5 (83%) required additional therapy for biochemical control, including radiotherapy (n = 4, 66%), somatostatin analogues (n = 5, 83%), cabergoline (n = 3, 50%), and pegvisomant (n = 2, 33%). Three patients (50%) achieved complete biochemical control, while 2 patients showed IGF-1 normalization with pegvisomant. Two patients were genetically related and presented a mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene (pathogenic variant, c.504G>A in exon 4, p.Trp168*), fulfilling the diagnostic criteria of familial isolated pituitary adenoma. CONCLUSIONS This is the largest case series of patients with gigantism described to date in Colombia. Transsphenoidal surgery was the first-choice procedure, but additional pharmacological therapy was usually required. Mutations in the AIP gene should be considered in familial cases of GH-producing adenomas.
Collapse
Affiliation(s)
- William Rojas García
- Hospital de San JoséEndocrinology UnitHospital de San JoséColombia Head of the Endocrinology Unit, Hospital de San José;
- Fundación Universitaria de Ciencias de la SaludBogotáDCColombiaassociate professor, Fundación Universitaria de Ciencias de la Salud, Bogotá, DC, Colombia
| | - Henry Tovar Cortes
- Hospital de San JoséColombiaHospital de San José;
- Fundación Universitaria de Ciencias de la SaludBogotáDCColombiaassistant professor, Fundación Universitaria de Ciencias de la Salud, Bogotá, DC, Colombia
| | | |
Collapse
|
4
|
Bizzi MF, Bolger GB, Korbonits M, Ribeiro-Oliveira Jr. A. Phosphodiesterases and cAMP Pathway in Pituitary Diseases. Front Endocrinol (Lausanne) 2019; 10:141. [PMID: 30941100 PMCID: PMC6433792 DOI: 10.3389/fendo.2019.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Human phosphodiesterases (PDEs) comprise a complex superfamily of enzymes derived from 24 genes separated into 11 PDE gene families (PDEs 1-11), expressed in different tissues and cells, including heart and brain. The isoforms PDE4, PDE7, and PDE8 are specific for the second messenger cAMP, which is responsible for mediating diverse physiological actions involving different hormones and neurotransmitters. The cAMP pathway plays an important role in the development and function of endocrine tissues while phosphodiesterases are responsible for ensuring the appropriate intensity of the actions of this pathway by hydrolyzing cAMP to its inactive form 5'-AMP. PDE1, PDE2, PDE4, and PDE11A are highly expressed in the pituitary, and overexpression of some PDE4 isoforms have been demonstrated in different pituitary adenoma subtypes. This observed over-expression in pituitary adenomas, although of unknown etiology, has been considered a compensatory response to tumorigenesis. PDE4A4/5 has a unique interaction with the co-chaperone aryl hydrocarbon receptor-interacting protein (AIP), a protein implicated in somatotroph tumorigenesis via germline loss-of-function mutations. Based on the association of low PDE4A4 expression with germline AIP-mutation-positive samples, the available data suggest that lack of AIP hinders the upregulation of PDE4A4 protein seen in sporadic somatotrophinomas. This unique disturbance of the cAMP-PDE pathway observed in the majority of AIP-mutation positive adenomas could contribute to their well-described poor response to somatostatin analogs and may support a role in tumorigenesis.
Collapse
Affiliation(s)
- Mariana Ferreira Bizzi
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Graeme B. Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Márta Korbonits
- Center for Endocrinology, Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Ribeiro-Oliveira Jr.
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Antonio Ribeiro-Oliveira Jr.
| |
Collapse
|
5
|
Aflorei ED, Klapholz B, Chen C, Radian S, Dragu AN, Moderau N, Prodromou C, Ribeiro PS, Stanewsky R, Korbonits M. In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet 2018; 55:522-529. [PMID: 29632148 PMCID: PMC6073908 DOI: 10.1136/jmedgenet-2017-105191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Background Heterozygous germline loss-of-function mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to childhood-onset pituitary tumours. The pathogenicity of missense variants may pose difficulties for genetic counselling and family follow-up. Objective To develop an in vivo system to test the pathogenicity of human AIP mutations using the fruit fly Drosophila melanogaster. Methods We generated a null mutant of the Drosophila AIP orthologue, CG1847, a gene located on the Xchromosome, which displayed lethality at larval stage in hemizygous knockout male mutants (CG1847exon1_3). We tested human missense variants of ‘unknown significance’, with ‘pathogenic’ variants as positive control. Results We found that human AIP can functionally substitute for CG1847, as heterologous overexpression of human AIP rescued male CG1847exon1_3 lethality, while a truncated version of AIP did not restore viability. Flies harbouring patient-specific missense AIP variants (p.C238Y, p.I13N, p.W73R and p.G272D) failed to rescue CG1847exon1_3 mutants, while seven variants (p.R16H, p.Q164R, p.E293V, p.A299V, p.R304Q, p.R314W and p.R325Q) showed rescue, supporting a non-pathogenic role for these latter variants corresponding to prevalence and clinical data. Conclusion Our in vivo model represents a valuable tool to characterise putative disease-causing human AIP variants and assist the genetic counselling and management of families carrying AIP variants.
Collapse
Affiliation(s)
- Elena Daniela Aflorei
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Chenghao Chen
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Serban Radian
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Neluta Dragu
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Nina Moderau
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Paulo S Ribeiro
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK.,Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, Münster, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Pardi E, Borsari S, Saponaro F, Bogazzi F, Urbani C, Mariotti S, Pigliaru F, Satta C, Pani F, Materazzi G, Miccoli P, Grantaliano L, Marcocci C, Cetani F. Mutational and large deletion study of genes implicated in hereditary forms of primary hyperparathyroidism and correlation with clinical features. PLoS One 2017; 12:e0186485. [PMID: 29036195 PMCID: PMC5643132 DOI: 10.1371/journal.pone.0186485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/01/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to carry out genetic screening of the MEN1, CDKN1B and AIP genes, both by direct sequencing of the coding region and multiplex ligation-dependent probe amplification (MLPA) assay in the largest monocentric series of Italian patients with Multiple Endocrine Neoplasia type 1 syndrome (MEN1) and Familial Isolated Hyperparathyroidism (FIHP). The study also aimed to describe and compare the clinical features of MEN1 mutation-negative and mutation-positive patients during long-term follow-up and to correlate the specific types and locations of MEN1 gene mutations with onset and aggressiveness of the main MEN1 manifestations. A total of 69 index cases followed at the Endocrinology Unit in Pisa over a period of 19 years, including 54 MEN1 and 15 FIHP kindreds were enrolled. Seven index cases with MEN1 but MEN1 mutation-negative, followed at the University Hospital of Cagliari, were also investigated. FIHP were also tested for CDC73 and CaSR gene alterations. MEN1 germline mutations were identified in 90% of the index cases of familial MEN1 (F-MEN1) and in 23% of sporadic cases (S-MEN1). MEN1 and CDC73 mutations accounted for 13% and 7% of the FIHP cohort, respectively. A CDKN1B mutation was identified in one F-MEN1. Two AIP variants of unknown significance were detected in two MEN1-negative S-MEN1. A MEN1 positive test best predicted the onset of all three major MEN1-related manifestations or parathyroid and gastro-entero-pancreatic tumors during follow-up. A comparison between the clinical characteristics of F and S-MEN1 showed a higher prevalence of a single parathyroid disease and pituitary tumors in sporadic compared to familial MEN1 patients. No significant correlation was found between the type and location of MEN1 mutations and the clinical phenotype. Since all MEN1 mutation-positive sporadic patients had a phenotype resembling that of familial MEN1 (multiglandular parathyroid hyperplasia, a prevalence of gastro-entero-pancreatic tumors and/or the classic triad) we might hypothesize that a subset of the sporadic MEN1 mutation-negative patients could represent an incidental coexistence of sporadic primary hyperparathyroidism and pituitary tumors or a MEN1 phenocopy, in our cohort, as in most cases described in the literature.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mariotti
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pigliaru
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabiana Pani
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Lorena Grantaliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Medical Sciences, Hospital Villa Albani, Anzio (RM), Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
| | - Filomena Cetani
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
- * E-mail:
| |
Collapse
|
7
|
Fortunati N, Guaraldi F, Zunino V, Penner F, D'Angelo V, Zenga F, Pecori Giraldi F, Catalano MG, Arvat E. Effects of environmental pollutants on signaling pathways in rat pituitary GH3 adenoma cells. ENVIRONMENTAL RESEARCH 2017; 158:660-668. [PMID: 28732322 DOI: 10.1016/j.envres.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
An increased rate of acromegaly was reported in industrialized areas, suggesting an involvement of environmental pollutants in the pathogenesis and behavior of GH-secreting pituitary adenomas. Based on these premises, the aim of the study was to evaluate the effects of some widely diffused pollutants (i.e. benzene, BZ; bis(2-ethylhexyl) phthalate, DEHP and polychlorinated biphenyls, PCB) on growth hormone secretion, the somatostatin and estrogenic pathways, viability and proliferation of rat GH-producing pituitary adenoma (GH3) cells. All the pollutants induced a statistically significant increase in GH secretion and interfered with cell signaling. They all modulated the expression of SSTR2 and ZAC1, involved in the somatostatin signaling, and the expression of the transcription factor FOXA1, involved in the estrogen receptor signaling. Moreover, all the pollutants increased the expression of the CYP1A1, suggesting AHR pathway activation. None of the pollutants impacted on cell proliferation or viability. Present data demonstrate that exposure to different pollutants, used at in vivo relevant concentrations, plays an important role in the behavior of GH3 pituitary adenoma cells, by increasing GH secretion and modulating several cellular signaling pathways. These observations support a possible influence of different pollutants in vivo on the GH-adenoma aggressiveness and biological behavior.
Collapse
Affiliation(s)
- Nicoletta Fortunati
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Federica Guaraldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Valentina Zunino
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Federica Penner
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Valentina D'Angelo
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Francesco Zenga
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Francesca Pecori Giraldi
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Cusano Milanino, (MI), Italy and Department of Clinical Sciences and Community Health, University of Milan, I-20149 Milan, Italy
| | | | - Emanuela Arvat
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy; Department of Medical Sciences, University of Turin, I-10126 Turin, Italy.
| |
Collapse
|
8
|
Lecoq AL, Kamenický P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol 2015; 11:43-54. [PMID: 25350067 DOI: 10.1038/nrendo.2014.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is ∼4%, but can increase to 8-20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Zatelli MC, Torre ML, Rossi R, Ragonese M, Trimarchi F, degli Uberti E, Cannavò S. Should aip gene screening be recommended in family members of FIPA patients with R16H variant? Pituitary 2013; 16:238-44. [PMID: 22915287 DOI: 10.1007/s11102-012-0409-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Germline mutations of aryl-hydrocarbon-receptor interacting protein (AIP) are associated with pituitary adenoma predisposition. They occur in 20 % of familial isolated pituitary adenoma (FIPA) and in about 3-5 % of sporadic pituitary adenomas, especially in early onset somatotropinomas and prolactinomas. Our aim was to evaluate the clinical and genetic features of a large Italian FIPA family, where an AIP variant was identified. AIP direct sequencing from genomic DNA was carried out in 16 available family members. AIP R16H carriers also underwent magnetic resonance imaging and hormonal assessments. AIP mutations were also searched in 16 patients with sporadic growth hormone-secreting pituitary adenoma and in 6 unrelated patients in whom pituitary adenoma was excluded. We found an AIP R16H variation in two family members harbouring a pituitary adenoma and in 6 unaffected family members. No AIP mutation was found neither in growth hormone-secreting pituitary adenoma patients, nor in the unrelated patients without pituitary adenoma. We report a FIPA family harbouring an AIP R16H change, supporting the hypothesis that the latter represents a variant of unknown significance.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Department of Biomedical Sciences and Advanced Therapies, Section of Endocrinology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34:239-77. [PMID: 23371967 PMCID: PMC3610678 DOI: 10.1210/er.2012-1013] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|
11
|
Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Invest 2012; 35:1003-14. [PMID: 23310926 DOI: 10.1007/bf03346742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial pituitary tumors are increasingly recognized. While some of these cases are related to wellknown syndromic conditions such as multiple endocrine neoplasia type 1 (MEN1) or Carney complex, others belong to the familial isolated pituitary adenoma (FIPA) patient group. The discovery of heterozygous, loss-of-function germline mutations in the gene encoding the aryl hydrocarbon receptor interacting protein (AIP) in 2006 has subsequently enabled the identification of a mutation in this gene in 20% of FIPA families and 20% of childhood-onset simplex soma- totroph adenomas. The exact mechanism by which the lack of AIP leads to pituitary adenomas is not clear. AIP mutations cause a low penetrance autosomal dominant disease with often a distinct phenotype characterized by young-onset, aggressive, large GH, mixed GH and PRL or PRL-secreting adenomas. This review aims to summarize currently available clinical data on AIP mutation-positive and negative FIPA patients.
Collapse
Affiliation(s)
- F Martucci
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | |
Collapse
|
12
|
Guaraldi F, Corazzini V, Gallia GL, Grottoli S, Stals K, Dalantaeva N, Frohman LA, Korbonits M, Salvatori R. Genetic analysis in a patient presenting with meningioma and familial isolated pituitary adenoma (FIPA) reveals selective involvement of the R81X mutation of the AIP gene in the pathogenesis of the pituitary tumor. Pituitary 2012; 15 Suppl 1:S61-7. [PMID: 22527616 DOI: 10.1007/s11102-012-0391-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial isolated pituitary adenoma (FIPA), defined as the occurrence of at least two cases of pituitary adenoma in a family that does not exhibit features of syndromic diseases, such as Carney complex or Multiple Endocrine Neoplasia type 1 or 4, is a rare autosomal dominant disease with low penetrance. About 20 % of the families with FIPA harbor inactivating mutation in aryl hydrocarbon receptor-interacting protein gene (AIP) associated with loss of heterozygosity of the same genetic locus (11q13) in the tumor. Rarely different types of extra-pituitary tumors have been described in the setting of AIP mutation-positive FIPA. We present the case of a patient who was diagnosed with acromegaly due to the AIP mutation c.241C>T (p.R81X) at the age of 34 years, and treated by transsphenoidal surgery. At the age of 43 years she was diagnosed with a meningioma, and at age 46 had recurrence of the somatotropinoma. Genetic studies demonstrated loss of the normal allele (by sequencing and microsatellite analysis) in DNA from the pituitary adenoma but not from the meningioma, suggesting a selective involvement of AIP mutation in the pathogenesis of the pituitary adenoma, and a casual association with the meningioma. Further investigations are required to define the exact role of AIP in non-pituitary tumorigenesis.
Collapse
Affiliation(s)
- Federica Guaraldi
- Division of Endocrinology, Department of Internal Medicine, University of Turin, 10126, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
[Neuroendocrinology in 2011]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2012; 59:311-25. [PMID: 22425316 DOI: 10.1016/j.endonu.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
14
|
Tichomirowa MA, Barlier A, Daly AF, Jaffrain-Rea ML, Ronchi C, Yaneva M, Urban JD, Petrossians P, Elenkova A, Tabarin A, Desailloud R, Maiter D, Schürmeyer T, Cozzi R, Theodoropoulou M, Sievers C, Bernabeu I, Naves LA, Chabre O, Montañana CF, Hana V, Halaby G, Delemer B, Aizpún JIL, Sonnet E, Longás AF, Hagelstein MT, Caron P, Stalla GK, Bours V, Zacharieva S, Spada A, Brue T, Beckers A. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur J Endocrinol 2011; 165:509-15. [PMID: 21753072 DOI: 10.1530/eje-11-0304] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aryl hydrocarbon receptor interacting protein (AIP) mutations (AIPmut) cause aggressive pituitary adenomas in young patients, usually in the setting of familial isolated pituitary adenomas. The prevalence of AIPmut among sporadic pituitary adenoma patients appears to be low; studies have not addressed prevalence in the most clinically relevant population. Hence, we undertook an international, multicenter, prospective genetic, and clinical analysis at 21 tertiary referral endocrine departments. METHODS We included 163 sporadic pituitary macroadenoma patients irrespective of clinical phenotype diagnosed at <30 years of age. RESULTS Overall, 19/163 (11.7%) patients had germline AIPmut; a further nine patients had sequence changes of uncertain significance or polymorphisms. AIPmut were identified in 8/39 (20.5%) pediatric patients. Ten AIPmut were identified in 11/83 (13.3%) sporadic somatotropinoma patients, in 7/61 (11.5%) prolactinoma patients, and in 1/16 non-functioning pituitary adenoma patients. Large genetic deletions were not seen using multiplex ligation-dependent probe amplification. Familial screening was possible in the relatives of seven patients with AIPmut and carriers were found in six of the seven families. In total, pituitary adenomas were diagnosed in 2/21 AIPmut-screened carriers; both had asymptomatic microadenomas. CONCLUSION Germline AIPmut occur in 11.7% of patients <30 years with sporadic pituitary macroadenomas and in 20.5% of pediatric patients. AIPmut mutation testing in this population should be considered in order to optimize clinical genetic investigation and management.
Collapse
Affiliation(s)
- Maria A Tichomirowa
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Domaine Universitaire du Sart-Tilman, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|