1
|
GLI1, a novel target of the ER stress regulator p97/VCP, promotes ATF6f-mediated activation of XBP1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194924. [PMID: 36842643 DOI: 10.1016/j.bbagrm.2023.194924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.
Collapse
|
2
|
Hiltunen AE, Kangas SM, Ohlmeier S, Pietilä I, Hiltunen J, Tanila H, McKerlie C, Govindan S, Tuominen H, Kaarteenaho R, Hallman M, Uusimaa J, Hinttala R. Variant in NHLRC2 leads to increased hnRNP C2 in developing neurons and the hippocampus of a mouse model of FINCA disease. Mol Med 2020; 26:123. [PMID: 33297935 PMCID: PMC7724728 DOI: 10.1186/s10020-020-00245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background FINCA disease is a pediatric cerebropulmonary disease caused by variants in the NHL repeat-containing 2 (NHLRC2) gene. Neurological symptoms are among the first manifestations of FINCA disease, but the consequences of NHLRC2 deficiency in the central nervous system are currently unexplored. Methods The orthologous mouse gene is essential for development, and its complete loss leads to early embryonic lethality. In the current study, we used CRISPR/Cas9 to generate an Nhlrc2 knockin (KI) mouse line, harboring the FINCA patient missense mutation (c.442G > T, p.Asp148Tyr). A FINCA mouse model, resembling the compound heterozygote genotype of FINCA patients, was obtained by crossing the KI and Nhlrc2 knockout mouse lines. To reveal NHLRC2-interacting proteins in developing neurons, we compared cortical neuronal precursor cells of E13.5 FINCA and wild-type mouse embryos by two-dimensional difference gel electrophoresis. Results Despite the significant decrease in NHLRC2, the mice did not develop severe early onset multiorgan disease in either sex. We discovered 19 altered proteins in FINCA neuronal precursor cells; several of which are involved in vesicular transport pathways and actin dynamics which have been previously reported in other cell types including human to have an association with dysfunctional NHLRC2. Interestingly, isoform C2 of hnRNP C1/C2 was significantly increased in both developing neurons and the hippocampus of adult female FINCA mice, connecting NHLRC2 dysfunction with accumulation of RNA binding protein. Conclusions We describe here the first NHLRC2-deficient mouse model to overcome embryonic lethality, enabling further studies on predisposing and causative mechanisms behind FINCA disease. Our novel findings suggest that disrupted RNA metabolism may contribute to the neurodegeneration observed in FINCA patients.
Collapse
Affiliation(s)
- Anniina E Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Salla M Kangas
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Steffen Ohlmeier
- Proteomics Core Facility, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu, 90014, Finland
| | - Ilkka Pietilä
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Jori Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, Canada.,Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Subashika Govindan
- Tissue Engineering Laboratory, Hepia/HES-SO, University of Applied Sciences Western Switzerland, Geneva, Switzerland
| | - Hannu Tuominen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, Respiratory Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu and Unit of Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Mikko Hallman
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| | - Johanna Uusimaa
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Clinic for Children and Adolescents, Paediatric Neurology Unit, Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Rep 2019; 23:1342-1356. [PMID: 29719249 DOI: 10.1016/j.celrep.2018.03.136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 01/04/2023] Open
Abstract
Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a β-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c-/- muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.
Collapse
|
4
|
Llewellyn KJ, Nalbandian A, Weiss LN, Chang I, Yu H, Khatib B, Tan B, Scarfone V, Kimonis VE. Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery. PLoS One 2017; 12:e0176919. [PMID: 28575052 PMCID: PMC5456028 DOI: 10.1371/journal.pone.0176919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardiac and respiratory failures can lead to mortality at an early age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs) now provide a valuable resource for the research owing to their renewable and pluripotent nature. In the present study, we report the differentiation and characterization of a VCP disease-specific hiPSCs into precursors expressing myogenic markers including desmin, myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub), Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapamycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect, and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology provide a useful platform for a rapid drug discovery and hence constitutes a bridge between clinical and bench research in VCP and related diseases.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Angèle Nalbandian
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Lan N. Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Isabela Chang
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Howard Yu
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Bibo Khatib
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Baichang Tan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| |
Collapse
|
5
|
Llewellyn KJ, Walker N, Nguyen C, Tan B, BenMohamed L, Kimonis VE, Nalbandian A. A Fine Balance of Dietary Lipids Improves Pathology of a Murine Model of VCP-Associated Multisystem Proteinopathy. PLoS One 2015; 10:e0131995. [PMID: 26134519 PMCID: PMC4489713 DOI: 10.1371/journal.pone.0131995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
The discovery of effective therapies and of disease mechanisms underlying valosin containing protein (VCP)-associated myopathies and neurodegenerative disorders remains elusive. VCP disease, caused by mutations in the VCP gene, are a clinically and genetically heterogeneous group of disorders with manifestations varying from hereditary inclusion body myopathy, Paget’s disease of bone, frontotemporal dementia (IBMPFD), and amyotrophic lateral sclerosis (ALS). In the present study, we examined the effects of higher dietary lipid percentages on VCPR155H/R155H, VCPR155H/+ and Wild Type (WT) mice from birth until 15 months of age by immunohistochemical and biochemical assays. Findings illustrated improvement in the muscle strength, histology, and autophagy signaling pathway in the heterozygote mice when fed 9% lipid-enriched diets (LED). However, increasing the LED by 12%, 30%, and 48% showed no improvement in homozygote and heterozygote survival, muscle pathology, lipid accumulation or the autophagy cascade. These findings suggest that a balanced lipid supplementation may have a therapeutic strategy for patients with VCP-associated multisystem proteinopathies.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Naomi Walker
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Christopher Nguyen
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Baichang Tan
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Genomics Medicine, University of California Irvine, Irvine, CA, 92697, United States of America
- Sue and Bill Gross Stem Institute, University of California Irvine, Irvine, CA, 92697, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nalbandian A, Ghimbovschi S, Wang Z, Knoblach S, Llewellyn KJ, Vesa J, Hoffman EP, Kimonis VE. Global gene expression profiling in R155H knock-in murine model of VCP disease. Clin Transl Sci 2014; 8:8-16. [PMID: 25388089 DOI: 10.1111/cts.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dominant mutations in the valosin-containing protein (VCP) gene cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, which is characterized by progressive muscle weakness, dysfunction in bone remodeling, and frontotemporal dementia. More recently, VCP has been linked to 2% of familial amyotrophic lateral sclerosis cases. VCP plays a significant role in a plethora of cellular functions including membrane fusion, transcription activation, nuclear envelope reconstruction, postmitotic organelle reassembly, and cell cycle control. To elucidate the pathological mechanisms underlying the VCP disease progression, we have previously generated a VCP(R155H/+) mouse model with the R155H mutation. Histological analyses of mutant muscle showed vacuolization of myofibrils, centrally located nuclei, and disorganized muscle fibers. Global expression profiling of VCP(R155H/+) mice using gene annotations by DAVID identified key dysregulated signaling pathways including genes involved in the physiological system development and function, diseases and disorders, and molecular and cellular functions. There were a total of 212 significantly dysregulated genes, several of which are involved in the regulation of proteasomal function and NF-κB signaling cascade. Findings of the gene expression study were validated by using quantitative reverse transcriptase polymerase chain reaction analyses to test genes involved in various signaling cascades. This investigation reveals the importance of the VCP(R155H/+) mouse model in the understanding of cellular and molecular mechanisms causing VCP-associated neurodegenerative diseases and in the discovery of novel therapeutic advancements and strategies for patients suffering with these debilitating disorders.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California-Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Llewellyn KJ, Nalbandian A, Jung KM, Nguyen C, Avanesian A, Mozaffar T, Piomelli D, Kimonis VE. Lipid-enriched diet rescues lethality and slows down progression in a murine model of VCP-associated disease. Hum Mol Genet 2013; 23:1333-44. [PMID: 24158850 DOI: 10.1093/hmg/ddt523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Valosin-containing protein (VCP)-associated disease caused by mutations in the VCP gene includes combinations of a phenotypically heterogeneous group of disorders such as hereditary inclusion body myopathy, Paget's disease of bone, frontotemporal dementia and amyotrophic lateral sclerosis. Currently, there are no effective treatments for VCP myopathy or dementia. VCP mouse models carrying the common R155H mutation include several of the features typical of the human disease. In our previous investigation, VCP(R155H/R155H) homozygous mice exhibited progressive weakness and accelerated pathology prior to their early demise. Herein, we report that feeding pregnant VCP(R155H/+) heterozygous dams with a lipid-enriched diet (LED) results in the reversal of the lethal phenotype in VCP(R155H/R155H) homozygous offspring. We examined the effects of this diet on homozygous and wild-type mice from birth until 9 months of age. The LED regimen improved survival, motor activity, muscle pathology and the autophagy cascade. A targeted lipidomic analysis of skeletal muscle and liver revealed elevations in tissue levels of non-esterified palmitic acid and ceramide (d18:1/16:0), two lipotoxic substances, in the homozygous mice. The ability to reverse lethality, increase survival, and ameliorate myopathy and lipids deficits in the VCP(R155H/R155H) homozygous animals suggests that lipid supplementation may be a promising therapeutic strategy for patients with VCP-associated neurodegenerative diseases.
Collapse
|
8
|
Nalbandian A, Nguyen C, Katheria V, Llewellyn KJ, Badadani M, Caiozzo V, Kimonis VE. Exercise training reverses skeletal muscle atrophy in an experimental model of VCP disease. PLoS One 2013; 8:e76187. [PMID: 24130765 PMCID: PMC3794032 DOI: 10.1371/journal.pone.0076187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022] Open
Abstract
Background The therapeutic effects of exercise resistance and endurance training in the alleviation of muscle hypertrophy/atrophy should be considered in the management of patients with advanced neuromuscular diseases. Patients with progressive neuromuscular diseases often experience muscle weakness, which negatively impact independence and quality of life levels. Mutations in the valosin containing protein (VCP) gene lead to Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) and more recently affect 2% of amyotrophic lateral sclerosis (ALS)-diagnosed cases. Methods/Principle Findings The present investigation was undertaken to examine the effects of uphill and downhill exercise training on muscle histopathology and the autophagy cascade in an experimental VCP mouse model carrying the R155H mutation. Progressive uphill exercise in VCPR155H/+ mice revealed significant improvement in muscle strength and performance by grip strength and Rotarod analyses when compared to the sedentary mice. In contrast, mice exercised to run downhill did not show any significant improvement. Histologically, the uphill exercised VCPR155H/+ mice displayed an improvement in muscle atrophy, and decreased expression levels of ubiquitin, P62/SQSTM1, LC3I/II, and TDP-43 autophagy markers, suggesting an alleviation of disease-induced myopathy phenotypes. There was also an improvement in the Paget-like phenotype. Conclusions Collectively, our data highlights that uphill exercise training in VCPR155H/+ mice did not have any detrimental value to the function of muscle, and may offer effective therapeutic options for patients with VCP-associated diseases.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
| | - Christopher Nguyen
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
| | - Veeral Katheria
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
| | - Katrina J. Llewellyn
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
| | - Mallikarjun Badadani
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
| | - Vincent Caiozzo
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States of America
- Department of Orthopedics, University of California Irvine, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Metabolism, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dec E, Rana P, Katheria V, Dec R, Khare M, Nalbandian A, Leu SY, Radom-Aizik S, Llewellyn K, BenMohamed L, Zaldivar F, Kimonis V. Cytokine profiling in patients with VCP-associated disease. Clin Transl Sci 2013; 7:29-32. [PMID: 24119107 DOI: 10.1111/cts.12117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Valosin containing protein (VCP) disease (also known as Inclusion Body Myopathy, Paget Disease of Bone and Frontotemporal Dementia [IBMPFD] syndrome) is caused by mutations in the gene encoding VCP classically affecting the muscle, bone and brain. Although the genetic cause has been identified, details regarding the pathogenesis of IBMPFD have not been fully determined. Muscle wasting observed in VCP disease is suggestive of cytokine imbalance. We hypothesized that dysfunctional protein homeostasis caused by VCP mutations leads to cytokine imbalances thereby contributing to the muscle wasting phenotype. Circulating levels of interleukin-4 (IL-4), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF a) and epidermal growth factor (EGF) were measured in plasma of patients with VCP disease or controls. TNF a and EGF were significantly altered in VCP disease as compared to control. TNF a was up-regulated, consistent with a cachexia phenotype and EGF levels were increased. No significant differences were observed in IL-4 and IL-6. Cytokine imbalances may be associated with VCP disease and may play a contributory role in VCP myopathy. Further understanding of how VCP dysfunction leads to aberrant protein homeostasis and subsequent cytokine imbalances may also aid in the understanding of other proteinopathies and in the development of novel treatments.
Collapse
Affiliation(s)
- Eric Dec
- Division of Genetics and Metabolism, Department of Pediatrics, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|