1
|
Mladěnka P, Hrdina R, Hübl M, Šimůnek T. The Fate of Iron in The Organism and Its Regulatory Pathways. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Iron is an essential element involved in many life-necessary processes. Interestingly, in mammals there is no active excretion mechanism for iron. Therefore iron kinetics has to be meticulously regulated. The most important step for regulation of iron kinetics is absorption. The absorption takes place in small intestine and it is implicated that it requires several proteins. Iron is then released from enterocytes into the circulation and delivered to the cells. Iron movement inside the cell is only partially elucidated and its traffic to mitochondia is not known. Surprisingly, the regulation of various proteins related to iron kinetics and energy metabolism at the molecular level is better described. On contrary, the complex control of iron absorption cannot be fully explicated with present knowledge.
Collapse
|
2
|
Piñero DJ, Connor JR. Iron in the Brain: An Important Contributor in Normal and Diseased States. Neuroscientist 2016. [DOI: 10.1177/107385840000600607] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron is essential for normal neurological function because of its role in oxidative metabolism and because it is a cofactor in the synthesis of neurotransmitters and myelin. In the past several years, there has been increased attention to the importance of oxidative stress in the central nervous system. Iron is the most important inducer of reactive oxygen species, therefore, the relation of iron to neurodegenerative processes is more appreciated today than it was a few years ago. Nevertheless, despite this increased attention and awareness, our knowledge of iron metabolism in the brain at the cellular and molecular levels is still limited. Iron is distributed in a heterogeneous fashion among the different regions and cells of the brain. This regional and cellular heterogeneity is preserved across many species. Brain iron concentrations are not static; they increase with age and in many diseases and decrease when iron is deficient in the diet. In infants and children, insufficient iron in the diet is associated with decreased brain iron and with changes in behavior and cognitive functioning. Abnormal iron accumulation in the diseased brain areas and, in some cases, alterations in iron-related proteins have been reported in many neurodegenerative diseases, including Hallervorden-Spatz syndrome, Alzheimer’s disease, Parkinson’s disease, and Friedreich’s ataxia. There is strong evidence for iron-mediated oxidative damage as a primary contributor to cell death in these disorders. Demyelinating diseases, such as multiple sclerosis, especially warrant study in relation to iron availability. Myelin synthesis and maintenance have a high iron requirement, thus, oligodendrocytes must have a relatively high and constant supply of iron. However, the high oxygen utilization, high density of lipids, and high iron content of white matter all combine to increase the risk of oxidative damage. We review here the current knowledge of the normal metabolism of iron in the brain and the suspected role of iron in neuropathology.
Collapse
Affiliation(s)
- Domingo J. Piñero
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania
| | - James R. Connor
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania,
| |
Collapse
|
3
|
Wang J, Li D, Che L, Lin Y, Fang Z, Xu S, Wu D. Influence of organic iron complex on sow reproductive performance and iron status of nursing pigs. Livest Sci 2014. [DOI: 10.1016/j.livsci.2013.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Abstract
Multi-copper oxidases are a large family of enzymes prevalent in all three domains of life. They couple the one-electron oxidation of substrate to the four-electron reduction of dioxygen to water and feature at least four Cu atoms, traditionally divided into three sites: T1, T2, and (binuclear) T3. The T1 site catalyzes substrate oxidation while a trinuclear cluster (comprising combined T2 and T3 centres) catalyzes the reduction of dioxygen. Substrate oxidation at the T1 Cu site occurs via an outer-sphere mechanism and consequently substrate specificities are determined primarily by the nature of a substrate docking/oxidation (SDO) site associated with the T1 Cu centre. Many of these enzymes ‘moonlight’, i.e. display broad specificities towards many different substrates and may have multiple cellular functions. A sub-set are robust catalysts for the oxidation of low-valent transition metal ions such as FeII, CuI, and MnII and are termed ‘metallo-oxidases’. They play essential roles in nutrient metal uptake and homeostasis, with the ferroxidase ceruloplasmin being a prominent member. Their SDO sites are tailored to facilitate specific binding and facile oxidation of these low-valent metal ions and this is the focus of this review.
Collapse
|
5
|
Allen MD, del Campo JA, Kropat J, Merchant SS. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:1841-52. [PMID: 17660359 PMCID: PMC2043389 DOI: 10.1128/ec.00205-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we had identified FOX1 and FTR1 as iron deficiency-inducible components of a high-affinity copper-dependent iron uptake pathway in Chlamydomonas. In this work, we survey the version 3.0 draft genome to identify a ferrireductase, FRE1, and two ZIP family proteins, IRT1 and IRT2, as candidate ferrous transporters based on their increased expression in iron-deficient versus iron-replete cells. In a parallel proteomic approach, we identified FEA1 and FEA2 as the major proteins secreted by iron-deficient Chlamydomonas reinhardtii. The recovery of FEA1 and FEA2 from the medium of Chlamydomonas strain CC425 cultures is strictly correlated with iron nutrition status, and the accumulation of the corresponding mRNAs parallels that of the Chlamydomonas FOX1 and FTR1 mRNAs, although the magnitude of regulation is more dramatic for the FEA genes. Like the FOX1 and FTR1 genes, the FEA genes do not respond to copper, zinc, or manganese deficiency. The 5' flanking untranscribed sequences from the FEA1, FTR1, and FOX1 genes confer iron deficiency-dependent expression of ARS2, suggesting that the iron assimilation pathway is under transcriptional control by iron nutrition. Genetic analysis suggests that the secreted proteins FEA1 and FEA2 facilitate high-affinity iron uptake, perhaps by concentrating iron in the vicinity of the cell. Homologues of FEA1 and FRE1 were identified previously as high-CO(2)-responsive genes, HCR1 and HCR2, in Chlorococcum littorale, suggesting that components of the iron assimilation pathway are responsive to carbon nutrition. These iron response components are placed in a proposed iron assimilation pathway for Chlamydomonas.
Collapse
Affiliation(s)
- Michael D Allen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
6
|
Chen H, Huang G, Su T, Gao H, Attieh ZK, McKie AT, Anderson GJ, Vulpe CD. Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J Nutr 2006; 136:1236-41. [PMID: 16614410 DOI: 10.1093/jn/136.5.1236] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (approximately 50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (approximately 60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to approximately 40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Latunde-Dada GO, McKie AT, Simpson RJ. Animal models with enhanced erythropoiesis and iron absorption. Biochim Biophys Acta Mol Basis Dis 2006; 1762:414-23. [PMID: 16459059 DOI: 10.1016/j.bbadis.2005.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/22/2005] [Accepted: 12/16/2005] [Indexed: 12/19/2022]
Abstract
The regulation of iron absorption is of considerable interest in mammals since excretion is minimal. Recent advances in iron metabolism have expounded the molecular mechanisms by which iron absorption is attuned to the physiological demands of the body. The pinnacle was the discovery and identification of hepcidin, a hepatic antimicrobial peptide that regulates absorption to maintain iron homeostasis. While the intricacies of its expression and regulation by HFE, transferrin receptor 2 and hemojuvelin are still speculative, hepcidin responsiveness has correlated negatively with iron absorption in different models and disorders of iron metabolism. Consequently, hepcidin expression is repressed to enhance iron absorption during stimulated erythropoiesis even in situations of elevated iron stores. Animal models have been crucial to the advances in understanding iron metabolism and the present review focuses on phenylhydrazine treated and hypotransferrinaemic rodents. These, respectively, experimental and genetic models of enhanced erythropoiesis highlight the shifting focus of iron absorption regulation from the marrow to the liver.
Collapse
Affiliation(s)
- Gladys O Latunde-Dada
- Department of Biochemistry and Nutrition Sciences Research Division, King's College London, Franklin Wilkin's Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | |
Collapse
|
8
|
|
9
|
Reeves PG, DeMars LCS. Copper deficiency reduces iron absorption and biological half-life in male rats. J Nutr 2004; 134:1953-7. [PMID: 15284382 DOI: 10.1093/jn/134.8.1953] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary copper deficiency (CuD) in rats leads to iron (Fe) deficiency anemia. Is this because CuD reduces Fe absorption? Fe absorption in CuD rats was determined by feeding diets labeled with (59)Fe and using whole-body counting (WBC) to assess the amount retained over time. Two groups, each with 45 male weanling rats, were fed an AIN-93G diet low in Cu (<0.3 mg/kg; CuD) or one containing adequate Cu (5.0 mg/kg; CuA). At intervals over the next 42 d, 5 rats per group were killed and blood was drawn to determine hematocrit, hemoglobin, and other indicators of Fe status. At d 7 and 25, 5 rats per group were fed 1.0 g of their respective diets that had been labeled with (59)Fe. Retained (59)Fe was monitored for 10 d by WBC; then rats were killed and (59)Fe was measured in various organs. Signs of Fe deficiency, such as low hemoglobin, hematocrit, and RBC count, were evident in CuD rats by d 14. At d 7, CuD rats absorbed 90% as much Fe as CuA rats (P > 0.20), but at d 25, CuD rats absorbed only 50% as much as CuA rats (P < 0.001). In the study beginning at d 7, the biological half-life (BHL) of (59)Fe in CuD rats was less (P < 0.02) than that in CuA rats [geometric mean (-SEM, +SEM); 75(62,91) d vs. 175(156,195) d]. In the study beginning at d 25, the BHL was again less (P < 0.02) in the CuD rats than in the CuA rats [33(23,49) d for CuD and 157(148,166) d for CuA]. Apparently, the route of Fe loss in the CuD rats was through the gut. At d 16 and 34, CuD rats lost 4 to 5 times more (P < 0.01) (59)Fe in the feces in a 24-h period than the CuA rats. Also, (59)Fe in the duodenal mucosa of CuD rats was approximately 100% higher (P < 0.01) than in CuA rats. These findings suggest that Fe deficiency anemia in CuD male rats is caused at least in part by reductions in Fe absorption and retention.
Collapse
Affiliation(s)
- Philip G Reeves
- U.S. Department of Agriculture, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | | |
Collapse
|
10
|
Takala TI, Suominen P, Lehtonen-Veromaa M, Möttönen T, Viikari J, Rajamäki A, Irjala K. Increased serum soluble transferrin receptor concentration detects subclinical iron deficiency in healthy adolescent girls. Clin Chem Lab Med 2003; 41:203-8. [PMID: 12667008 DOI: 10.1515/cclm.2003.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate whether the measurement of serum soluble transferrin receptor could detect subclinical iron deficiency in adolescent girls, and to assess the possible specificity-compromising effects of growth, menarche, and intensive physical activity. The study population consisted of 191 physically active (control) girls aged 9-15 years. Dietary iron intake was estimated at baseline, and after 6 and 12 months. Iron status of the subjects was assessed by haematological laboratory tests at 6 and 12 months. A 3-month iron and multivitamin supplementation was started after the visit at 6 months. The supplementation consistently decreased soluble transferrin receptor concentrations in subjects with initial values greater than 2.4 mg/l, which was determined by regression analysis to be the cut-off value for iron-deficient erythropoiesis. The 95% reference interval in the iron-replete subjects (0.9-2.4 mg/l) was consistent with this finding. In our population, the incidence of subclinical iron deficiency was 10%. Growth or physical activity had no effect on the iron status. This study shows that, similarly to adults, soluble transferrin receptor measurement can be used to detect subclinical iron deficiency in adolescents (competitive athletes or normal controls). We suggest that soluble transferrin receptor concentrations above 2.4 mg/l indicate clinically relevant iron deficiency in adolescents.
Collapse
Affiliation(s)
- Timo I Takala
- Department of Clinical Chemistry, Turku University Central Hospital, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
11
|
La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. EUKARYOTIC CELL 2002; 1:736-57. [PMID: 12455693 PMCID: PMC126744 DOI: 10.1128/ec.1.5.736-757.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Accepted: 07/24/2002] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded byAtx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftrl were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. TRANSFUSION SCIENCE 2000; 23:185-92. [PMID: 11099894 DOI: 10.1016/s0955-3886(00)00087-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The concept of non-transferrin bound iron (NTBI) was introduced 22 years ago by Hershko et al. (Brit. J. Haematol. 40 (1978) 255). It stemmed from a suspicion that, in iron overloaded patients, the large amounts of excess iron released into the circulation are likely to exceed the serum transferrin (Tf) iron-binding capacity (TIBC), leading to the appearance of various forms of iron not bound to Tf. In accordance with this assumption, NTBI was initially looked for and detected in patients with > or = 100% Tf-saturation. As techniques for its detection became more sophisticated and sensitive, NTBI was also found in conditions where Tf was not fully saturated, leading to a revision of the original view of NTBI as a simple spillover phenomenon. In this review, we will discuss some of the properties of NTBI, methods for its detection, its significance and potential value as an indicator for therapeutic regimens of iron chelation and supplementation.
Collapse
Affiliation(s)
- W Breuer
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.
| | | | | |
Collapse
|