1
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
2
|
Chankamngoen W, Thammayon N, Suntornsaratoon P, Nammultriputtar K, Kitiyanant N, Donpromma N, Chaichanan J, Supcharoen P, Teerapo K, Teerapornpuntakit J, Rodrat M, Panupinthu N, Svasti S, Wongdee K, Charoenphandhu N. Fibroblast growth factor-21 potentiates the stimulatory effects of 1,25-dihydroxyvitamin D 3 on transepithelial calcium transport and TRPV6 Ca 2+ channel expression. Biochem Biophys Res Commun 2024; 733:150429. [PMID: 39053106 DOI: 10.1016/j.bbrc.2024.150429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narisorn Kitiyanant
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natthida Donpromma
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Establishment of Mahidol University Bio-industrial Development Center, Mahidol University, Nakhon Pathom, Thailand
| | - Promsup Supcharoen
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Kittitat Teerapo
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | | | - Mayuree Rodrat
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
3
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
4
|
Thammayon N, Wongdee K, Teerapornpuntakit J, Panmanee J, Chanpaisaeng K, Charoensetakul N, Srimongkolpithak N, Suntornsaratoon P, Charoenphandhu N. Enhancement of intestinal calcium transport by short-chain fatty acids: roles of Na +/H + exchanger 3 and transient receptor potential vanilloid subfamily 6. Am J Physiol Cell Physiol 2024; 326:C317-C330. [PMID: 38073487 DOI: 10.1152/ajpcell.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.
Collapse
Affiliation(s)
- Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Netnapa Charoensetakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
5
|
Welham S, Rose P, Kirk C, Coneyworth L, Avery A. Mineral Supplements in Ageing. Subcell Biochem 2024; 107:269-306. [PMID: 39693029 DOI: 10.1007/978-3-031-66768-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With advancing age, achievement of dietary adequacy for all nutrients is increasingly difficult and this is particularly so for minerals. Various factors impede mineral acquisition and absorption including reduced appetite, depressed gastric acid production and dysregulation across a range of signalling pathways in the intestinal mucosa. Minerals are required in sufficient levels since they are critical for the proper functioning of metabolic processes in cells and tissues, including energy metabolism, DNA and protein synthesis, immune function, mobility, and skeletal integrity. When uptake is diminished or loss exceeds absorption, alternative approaches are required to enable individuals to maintain adequate mineral levels. Currently, supplementation has been used effectively in populations for the restoration of levels of some minerals like iron, zinc, and calcium, but these may not be without inherent challenges. Therefore, in this chapter we review the current understanding around the effectiveness of mineral supplementation for the minerals most clinically relevant for the elderly.
Collapse
Affiliation(s)
- Simon Welham
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
| | - Peter Rose
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Charlotte Kirk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Lisa Coneyworth
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Amanda Avery
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
6
|
Gotoh S, Kitaguchi K, Yabe T. Pectin Modulates Calcium Absorption in Polarized Caco-2 Cells via a Pathway Distinct from Vitamin D Stimulation. J Appl Glycosci (1999) 2023; 70:59-66. [PMID: 38143569 PMCID: PMC10738857 DOI: 10.5458/jag.jag.jag-2022_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Pectin, a type of soluble fiber, promotes morphological changes in the small intestinal villi. Although its physiological significance is unknown, we hypothesized that changes in villus morphology enhance the efficiency of nutrient absorption in the small intestine and investigated the effect of pectin derived from persimmon on calcium absorption using polarized Caco-2 cells. In polarized Caco-2 cells, pectin altered the mRNA expression levels of substances involved in calcium absorption and the regulation of intracellular calcium concentration and significantly reduced calcium absorption. Although this was comparable to the results of absorption and permeability associated with the addition of active vitamin D, the simultaneous action of pectin and active vitamin D did not show any additive effects. Furthermore, as active vitamin D significantly increases the activity of intestinal alkaline phosphatase (ALP), which is known to be involved in the regulation of intestinal absorption of calcium and lipids, we also investigated the effect of pectin on intestinal ALP activity. As a result, it was found that, unlike the effect of active vitamin D, pectin significantly reduced intestinal ALP activity. These results suggest that pectin stimulates polarized Caco-2 cells through a mechanism distinct from the regulation of calcium absorption by vitamin D, modulating total calcium absorption from the elongated villi through morphological changes in the small intestine by suppressing it at the cellular level.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
- Institute for Glyco-core Research (iGCORE), Gifu University
| |
Collapse
|
7
|
Wang J, Zhang Y, Huai H, Hou W, Qi Y, Leng Y, Liu X, Wang X, Wu D, Min W. Purification, Identification, Chelation Mechanism, and Calcium Absorption Activity of a Novel Calcium-Binding Peptide from Peanut ( Arachis hypogaea) Protein Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11970-11981. [PMID: 37493196 DOI: 10.1021/acs.jafc.3c03256] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A novel calcium-binding peptide was purified from peanut protein hydrolysate using gel filtration chromatography and identified using HPLC-MS/MS. Its amino acid sequence was determined as Phe-Pro-Pro-Asp-Val-Ala (FPPDVA, named as FA6) with the calcium-binding capacity of 15.67 ± 0.39 mg/g. Then, the calcium chelating characteristics of FPPDVA were investigated using ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, particle size, and zeta potential. The results showed that FPPDVA interacted with calcium ions, the chelation of calcium ions induced FPPDVA to fold and form a denser structure, the calcium-binding sites may mainly involve oxygen atoms from the carboxyl residues of Asp and Ala, and Phe possessed contact energy and carbonyl residues of Val. Microstructure analysis showed that FPPDVA-calcium chelate exhibited a regularly ordered and tightly aggregated sheets or block structures. Additionally, FPPDVA-calcium chelate had good gastrointestinal digestive stability and thermal stability. The results of everted rat intestinal sac and Caco-2 cell monolayer experiments showed that FPPDVA-calcium chelate could promote calcium absorption and transport through the Cav1.3 and TRPV6 calcium channels. These data suggest that FPPDVA-calcium chelate possesses the potential to be developed and applied as calcium supplement.
Collapse
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yaoxin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Haiping Huai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Weiyu Hou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
8
|
Giustina A, di Filippo L, Allora A, Bikle DD, Cavestro GM, Feldman D, Latella G, Minisola S, Napoli N, Trasciatti S, Uygur M, Bilezikian JP. Vitamin D and malabsorptive gastrointestinal conditions: A bidirectional relationship? Rev Endocr Metab Disord 2023; 24:121-138. [PMID: 36813995 PMCID: PMC9946876 DOI: 10.1007/s11154-023-09792-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
This paper is one of the outcomes of the 5th International Conference "Controversies in Vitamin D" held in Stresa, Italy from 15 to 18 September 2021 as part of a series of annual meetings which was started in 2017. The scope of these meetings is to discuss controversial issues about vitamin D. Publication of the outcomes of the meeting in international journals allows a wide sharing of the most recent data with the medical and academic community. Vitamin D and malabsorptive gastrointestinal conditions was one of the topics discussed at the meeting and focus of this paper. Participants to the meeting were invited to review available literature on selected issues related to vitamin D and gastrointestinal system and to present their topic to all participants with the aim to initiate a discussion on the main outcomes of which are reported in this document. The presentations were focused on the possible bidirectional relationship between vitamin D and gastrointestinal malabsorptive conditions such as celiac disease, inflammatory bowel diseases (IBDs) and bariatric surgery. In fact, on one hand the impact of these conditions on vitamin D status was examined and on the other hand the possible role of hypovitaminosis D on pathophysiology and clinical course of these conditions was also evaluated. All examined malabsorptive conditions severely impair vitamin D status. Since vitamin D has known positive effects on bone this in turn may contribute to negative skeletal outcomes including reduced bone mineral density, and increased risk of fracture which may be mitigated by vitamin D supplementation. Due to the immune and metabolic extra-skeletal effects there is the possibility that low levels of vitamin D may negatively impact on the underlying gastrointestinal conditions worsening its clinical course or counteracting the effect of treatment. Therefore, vitamin D status assessment and supplementation should be routinely considered in all patients affected by these conditions. This concept is strengthened by the existence of a possible bidirectional relationship through which poor vitamin D status may negatively impact on clinical course of underlying disease. Sufficient elements are available to estimate the desired threshold vitamin D level above which a favourable impact on the skeleton in these conditions may be obtained. On the other hand, ad hoc controlled clinical trials are needed to better define this threshold for obtaining a positive effect of vitamin D supplementation on occurrence and clinical course of malabsorptive gastrointestinal diseases.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Endocrinology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Agnese Allora
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, 1700 Owens St, San Francisco, CA, 94158, USA
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - David Feldman
- Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition Division, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico Di Roma, Rome, Italy
| | | | - Melin Uygur
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Endocrinology and Metabolism Disease, RTE University School of Medicine, Rize, Turkey
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York City, NY, USA
| |
Collapse
|
9
|
Mucosal expression of Ca and P transporters and claudins in the small intestine of broilers is altered by dietary Ca:P in a limestone particle size dependent manner. PLoS One 2022; 17:e0273852. [PMID: 36048795 PMCID: PMC9436080 DOI: 10.1371/journal.pone.0273852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
High calcium (Ca) intake and fine limestone reduces precaecal phosphorus (P) absorption independently of P solubility in broilers. This study aimed to determine whether dietary total Ca: total P ratio (Ca:P) and limestone particle size (LPS) affect gene expression of P transporters in the small intestine. A total of 384 one-day-old Ross 308 male broiler chickens received diets low (0.50), medium (1.00) or high (1.75) in Ca:P containing either fine (160 μm) or coarse (1062 μm) limestone, in a 3×2 factorial arrangement. Expression of Ca- and P-related genes were determined using real-time quantitative PCR (RT-qPCR) in duodenum and jejunum. Increasing dietary Ca:P decreased duodenal calcium-sensing receptor (CaSR), calbindin-D28k (CaBP-D28k), plasma membrane Ca-ATPase 1 (PMCA1) and sodium-coupled P cotransporter type IIb (NaPi-IIb), but not transient receptor potential canonical 1 (TRPC1) mRNA. This effect was greater with fine limestone when Ca:P increased from low to medium, but greater with coarse limestone when increased from medium to high. A similar inhibitory effect was observed for jejunal CaBP-D28k expression where increasing dietary Ca:P and fine limestone decreased CaSR mRNA, while dietary Ca:P decreased TRPC1 mRNA only for coarse limestone. It also decreased jejunal NaPi-IIb mRNA irrespective of LPS. Dietary treatments did not affect jejunal PMCA1 mRNA expression or that of inorganic phosphate transporter 1 and 2 and xenotropic and polytropic retrovirus receptor 1 in both intestinal segments. Dietary Ca increase reduced mucosal claudin-2 mRNA in both segments, and jejunal zonula occludens-1 (ZO-1) mRNA only for coarse limestone. In conclusion, increasing dietary Ca:P reduced expression of duodenal P transporters (NaPi-IIb) in a LPS dependent manner, hence Ca induced reduction in intestinal P absorption is mediated by decreasing P transporters expression. Dietary Ca reduces Ca digestibility by downregulating mRNA expression of both Ca permeable claudin-2 and Ca transporters (CaBP-D28k, PMCA1).
Collapse
|
10
|
Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients 2022; 14:3351. [PMID: 36014856 PMCID: PMC9416674 DOI: 10.3390/nu14163351] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during growth, the protection of bone in adults, and the prevention of osteoporosis. Intestinal Ca absorption is regulated by 1,25 dihydroxyvitamin D (1,25(OH)2 D), a hormone that activates gene transcription following binding to the intestinal vitamin D receptor (VDR). When dietary Ca intake is low, Ca absorption follows a vitamin-D-regulated, saturable pathway, but when dietary Ca intake is high, Ca absorption is predominately through a paracellular diffusion pathway. Deletion of genes that mediate vitamin D action (i.e., VDR) or production (CYP27B1) eliminates basal Ca absorption and prevents the adaptation of mice to low-Ca diets. Various physiologic or disease states modify vitamin-D-regulated intestinal absorption of Ca (enhanced during late pregnancy, reduced due to menopause and aging).
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutritional Sciences, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
11
|
Identification, characterization and binding sites prediction of calcium transporter-embryo egg-derived egg white peptides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01398-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Chu F, Wan H, Xiao W, Dong H, Lü M. Ca 2+-Permeable Channels/Ca 2+ Signaling in the Regulation of Ileal Na +/Gln Co-Transport in Mice. Front Pharmacol 2022; 13:816133. [PMID: 35281933 PMCID: PMC8905502 DOI: 10.3389/fphar.2022.816133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced Isc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal Isc, especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal Isc, in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- Isc. Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal Isc, Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal Isc. In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal Isc. We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
Collapse
Affiliation(s)
- Fenglan Chu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Irsik DL, Bollag WB, Isales CM. Renal Contributions to Age-Related Changes in Mineral Metabolism. JBMR Plus 2021; 5:e10517. [PMID: 34693188 PMCID: PMC8520061 DOI: 10.1002/jbm4.10517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
Aging results in a general decline in function in most systems. This is particularly true with respect to the skeleton and renal systems, impacting mineral homeostasis. Calcium and phosphate regulation requires tight coordination among the intestine, bone, parathyroid gland, and kidney. The role of the intestine is to absorb calcium and phosphate from the diet. The bone stores or releases calcium and phosphate depending on the body's needs. In response to low plasma ionized calcium concentration, the parathyroid gland produces parathyroid hormone, which modulates bone turnover. The kidney reabsorbs or excretes the minerals and serves as the final regulator of plasma concentration. Many hormones are involved in this process in addition to parathyroid hormone, including fibroblast growth factor 23 produced by the bone and calcitriol synthesized by the kidney. Sclerostin, calcitonin, osteoprotegerin, and receptor activator of nuclear factor‐κB ligand also contribute to tissue‐specific regulation. Changes in the function of organs due to aging or disease can perturb this balance. During aging, the intestine cannot absorb calcium efficiently due to decreased expression of key proteins. In the bone, the balance between bone formation and bone resorption tends toward the latter in older individuals. The kidney may not filter blood as efficiently in the later decades of life, and the expression of certain proteins necessary for mineral homeostasis declines with age. These changes often lead to dysregulation of organismal mineral homeostasis. This review will focus on how mineral homeostasis is impacted by aging with a particular emphasis on the kidney's role in this process. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Debra L Irsik
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Physiology Augusta University Augusta GA USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA.,Division of Endocrinology, Department of Medicine Augusta University Augusta GA USA
| |
Collapse
|
15
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
16
|
Li S, De La Cruz J, Hutchens S, Mukhopadhyay S, Criss ZK, Aita R, Pellon-Cardenas O, Hur J, Soteropoulos P, Husain S, Dhawan P, Verlinden L, Carmeliet G, Fleet JC, Shroyer NF, Verzi MP, Christakos S. Analysis of 1,25-Dihydroxyvitamin D 3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol Cell Biol 2020; 41:e00372-20. [PMID: 33139494 PMCID: PMC7849401 DOI: 10.1128/mcb.00372-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica De La Cruz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Zachary K Criss
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rohit Aita
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Joseph Hur
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
- Genomics Center, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Leuven, Belgium
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Division of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
17
|
Zhang F, Wan H, Chu F, Lu C, Chen J, Dong H. Small intestinal glucose and sodium absorption through calcium-induced calcium release and store-operated Ca 2+ entry mechanisms. Br J Pharmacol 2020; 178:346-362. [PMID: 33080043 DOI: 10.1111/bph.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Luminal glucose enhances intestinal Ca2+ absorption through apical Cav 1.3 channels necessary for GLUT2-mediated glucose absorption. As these reciprocal mechanisms are not well understood, we investigated the regulatory mechanisms of intestinal [Ca2+ ]cyt and SGLT1-mediated Na+ -glucose co-transports. EXPERIMENTAL APPROACH Glucose absorption and channel expression were examined in mouse upper jejunal epithelium using an Ussing chamber, immunocytochemistry and Ca2+ and Na+ imaging in single intestinal epithelial cells. KEY RESULTS Glucose induced jejunal Isc via Na+ -glucose cotransporter 1 (SGLT1) operated more efficiently in the presence of extracellular Ca2+ . A crosstalk between luminal Ca2+ entry via plasma Cav 1.3 channels and the ER Ca2+ release through ryanodine receptor (RYR) activation in small intestinal epithelial cell (IEC) or Ca2+ -induced Ca2+ release (CICR) mechanism was involve in Ca2+ -mediated jejunal glucose absorption. The ER Ca2+ release through RyR triggered basolateral Ca2+ entry or store-operated Ca2+ entry (SOCE) mechanism and the subsequent Ca2+ entry via Na+ /Ca2+ exchanger 1 (NCX1) were found to be critical in Na+ -glucose cotransporter-mediated glucose absorption. Blocking RyR, SOCE and NCX1 inhibited glucose induced [Na+ ]cyt and [Ca2+ ]cyt in single IEC and protein expression and co-localization of STIM1/Orai1, RyR1 and NCX1 were detected in IEC and jejunal mucosa. CONCLUSION AND IMPLICATIONS Luminal Ca2+ influx through Cav 1.3 triggers the CICR through RyR1 to deplete the ER Ca2+ , which induces the basolateral STIM1/Orai1-mediated SOCE mechanism and the subsequent Ca2+ entry via NCX1 to regulate intestinal glucose uptake via Ca2+ signalling. Targeting these mechanisms in IEC may help to modulate blood glucose and sodium in the metabolic disease.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
18
|
Wang Z, Wang K, Feng Y, Jiang S, Zhao Y, Zeng M. Preparation, characterization of L-aspartic acid chelated calcium from oyster shell source and its calcium supplementation effect in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
20
|
Corbeels K, Verlinden L, Lannoo M, Khalil R, Deleus E, Mertens A, Matthys C, Verstuyf A, Meulemans A, Vangoitsenhoven R, Carmeliet G, Van der Schueren B. The curious fate of bone following bariatric surgery: bone effects of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) in mice. Int J Obes (Lond) 2020; 44:2165-2176. [PMID: 32546862 DOI: 10.1038/s41366-020-0626-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bone loss and increased fracture risk following bariatric surgery has been reported. We investigated whether the two most commonly performed surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), lead to bone loss. In addition, we examined whether fortification of the diet with calcium citrate prevents bone loss. METHODS We used mouse models for SG and RYGB and compared bone loss with a group of sham mice with similar weight loss. All groups were switched at the time of surgery to a low-fat diet (LFD). We also examined whether fortification of the diet with calcium citrate and vitamin D was able to prevent bone loss. RESULTS At 2 weeks we observed no major bone effects. However, at 8 weeks, both trabecular and cortical bone were lost to the same extent after SG and RYGB, despite increased calcium absorption and adequate serum levels of calcium, vitamin D, and parathyroid hormone (PTH). Diet fortification with calcium citrate and vitamin D was able to partially prevent bone loss. CONCLUSIONS Both SG and RYGB lead to excess bone loss, despite intestinal adaptations to increase calcium absorption. Fortifying the diet with calcium citrate and vitamin D partly prevented the observed bone loss. This finding emphasizes the importance of nutritional support strategies after bariatric surgery, but also affirms that the exact mechanisms leading to bone loss after bariatric surgery remain elusive and thus warrant further research.
Collapse
Affiliation(s)
- Katrien Corbeels
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ann Meulemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Dietary Phytase and Lactic Acid-Treated CerealGrains Differently Affected Calcium and PhosphorusHomeostasis from Intestinal Uptake to SystemicMetabolism in a Pig Model. Nutrients 2020; 12:nu12051542. [PMID: 32466313 PMCID: PMC7284645 DOI: 10.3390/nu12051542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
High intestinal availability of dietary phosphorus (P) may impair calcium (Ca)homeostasis and bone integrity. In the present study, we investigated the effect of phytasesupplementation in comparison to the soaking of cereal grains in 2.5% lactic acid (LA) on intestinalCa and P absorption; intestinal, renal, and bone gene expression regarding Ca and P homeostasis;bone parameters; and serum levels of regulatory hormones in growing pigs. Thirty-two pigs wererandomly assigned to one of four diets in a 2 × 2 factorial design in four replicate batches for 19days. The diets comprised either untreated or LA-treated wheat and maize without and withphytase supplementation (500 phytase units/kg). Although both treatments improved the Pbalance, phytase and LA-treated cereals differently modulated gene expression related to intestinalabsorption, and renal and bone metabolism of Ca and P, thereby altering homeostatic regulatorymechanisms as indicated by serum Ca, P, vitamin D, and fibroblast growth factor 23 levels.Moreover, phytase increased the gene expression related to reabsorption of Ca in the kidney,whereas LA-treated cereals decreased the expression of genes for osteoclastogenesis in bones,indicating an unbalanced systemic availability of minerals. In conclusion, high intestinalavailability of dietary P may impair Ca homeostasis and bone integrity.
Collapse
|
22
|
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69:683-696. [PMID: 31222614 PMCID: PMC10717634 DOI: 10.1007/s12576-019-00688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Besides the two canonical calciotropic hormones, namely parathyroid hormone and 1,25-dihydroxyvitamin D [1,25(OH)2D3], there are several other endocrine and paracrine factors, such as prolactin, estrogen, and insulin-like growth factor that have been known to directly stimulate intestinal calcium absorption. Generally, to maintain an optimal plasma calcium level, these positive regulators enhance calcium absorption, which is indirectly counterbalanced by a long-loop negative feedback mechanism, i.e., through calcium-sensing receptor in the parathyroid chief cells. However, several lines of recent evidence have revealed the presence of calcium absorption inhibitors present in the intestinal lumen and extracellular fluid in close vicinity to enterocytes, which could also directly compromise calcium absorption. For example, luminal iron, circulating fibroblast growth factor (FGF)-23, and stanniocalcin can decrease calcium absorption, thereby preventing excessive calcium uptake under certain conditions. Interestingly, the intestinal epithelial cells themselves could lower their rate of calcium uptake after exposure to high luminal calcium concentration, suggesting a presence of an ultra-short negative feedback loop independent of systemic hormones. The existence of neural regulation is also plausible but this requires more supporting evidence. In the present review, we elaborate on the physiological significance of these negative feedback regulators of calcium absorption, and provide evidence to show how our body can efficiently restrict a flood of calcium influx in order to maintain calcium homeostasis.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayuree Rodrat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand.
| |
Collapse
|
23
|
Beggs MR, Lee JJ, Busch K, Raza A, Dimke H, Weissgerber P, Engel J, Flockerzi V, Alexander RT. TRPV6 and Ca v1.3 Mediate Distal Small Intestine Calcium Absorption Before Weaning. Cell Mol Gastroenterol Hepatol 2019; 8:625-642. [PMID: 31398491 PMCID: PMC6889763 DOI: 10.1016/j.jcmgh.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal Ca2+ absorption early in life is vital to achieving optimal bone mineralization. The molecular details of intestinal Ca2+ absorption have been defined in adults after peak bone mass is obtained, but they are largely unexplored during development. We sought to delineate the molecular details of transcellular Ca2+ absorption during this critical period. METHODS Expression of small intestinal and renal calcium transport genes was assessed by using quantitative polymerase chain reaction. Net calcium flux across small intestinal segments was measured in Ussing chambers, including after pharmacologic inhibition or genetic manipulation of TRPV6 or Cav1.3 calcium channels. Femurs were analyzed by using micro-computed tomography and histology. RESULTS Net TRPV6-mediated Ca2+ flux across the duodenum was absent in pre-weaned (P14) mice but present after weaning. In contrast, we found significant transcellular Ca2+ absorption in the jejunum at 2 weeks but not 2 months of age. Net jejunal Ca2+ absorption observed at P14 was not present in either Trpv6 mutant (D541A) mice or Cav1.3 knockout mice. We observed significant nifedipine-sensitive transcellular absorption across the ileum at P14 but not 2 months. Cav1.3 knockout pups exhibited delayed bone mineral accrual, compensatory nifedipine-insensitive Ca2+ absorption in the ileum, and increased expression of renal Ca2+ reabsorption mediators at P14. Moreover, weaning pups at 2 weeks reduced jejunal and ileal Cav1.3 expression. CONCLUSIONS We have detailed novel pathways contributing to transcellular Ca2+ transport across the distal small intestine of mice during development, highlighting the complexity of the multiple mechanisms involved in achieving a positive Ca2+ balance early in life.
Collapse
Affiliation(s)
- Megan R. Beggs
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Kai Busch
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,Correspondence Address correspondence to: R. Todd Alexander, MD, PhD, Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, 11405 – 87 Avenue, University of Alberta, Edmonton, Alberta T6G 2R7, Canada. fax: (780) 248-5556.
| |
Collapse
|
24
|
Effect of Chlorella Pyrenoidosa Protein Hydrolysate-Calcium Chelate on Calcium Absorption Metabolism and Gut Microbiota Composition in Low-Calcium Diet-Fed Rats. Mar Drugs 2019; 17:md17060348. [PMID: 31212630 PMCID: PMC6628084 DOI: 10.3390/md17060348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
In our current investigation, we evaluated the effect of Chlorella pyrenoidosa protein hydrolysate (CPPH) and Chlorella pyrenoidosa protein hydrolysate-calcium chelate (CPPH-Ca) on calcium absorption and gut microbiota composition, as well as their in vivo regulatory mechanism in SD rats fed low-calcium diets. Potent major compounds in CPPH were characterized by HPLC-MS/MS, and the calcium-binding mechanism was investigated through ultraviolet and infrared spectroscopy. Using high-throughput next-generation 16S rRNA gene sequencing, we analyzed the composition of gut microbiota in rats. Our study showed that HCPPH-Ca increased the levels of body weight gain, serum Ca, bone activity, bone mineral density (BMD) and bone mineral content (BMC), while decreased serum alkaline phosphatase (ALP) and inhibited the morphological changes of bone. HCPPH-Ca up-regulated the gene expressions of transient receptor potential cation V5 (TRPV5), TRPV6, calcium-binding protein-D9k (CaBP-D9k) and a calcium pump (plasma membrane Ca-ATPase, PMCA1b). It also improved the abundances of Firmicutes and Lactobacillus. Bifidobacterium and Sutterella were both positively correlated with calcium absorption. Collectively, these findings illustrate the potential of HCPPH-Ca as an effective calcium supplement.
Collapse
|
25
|
Klinger S, Lange P, Brandt E, Hustedt K, Schröder B, Breves G, Herrmann J. Degree of SGLT1 phosphorylation is associated with but does not determine segment-specific glucose transport features in the porcine small intestines. Physiol Rep 2018; 6. [PMID: 29333720 PMCID: PMC5789657 DOI: 10.14814/phy2.13562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
Glucose‐induced electrogenic ion transport is higher in the porcine ileum compared with the jejunum despite equal apical abundance of SGLT1. The objective of this study was a detailed determination of SGLT1 and GLUT2 expressions at mRNA and protein levels along the porcine small intestinal axis. Phosphorylation of SGLT1 at serine 418 was assessed as a potential modulator of activity. Porcine intestinal tissues taken along the intestinal axis 1 h or 3 h after feeding were analyzed for relative mRNA (RT‐PCR) and protein levels (immunoblot) of SGLT1, pSGLT1, GLUT2, (p)AMPK, β2‐receptor, and PKA substrates. Functional studies on electrogenic glucose transport were done (Ussing chambers: short circuit currents (Isc)). Additionally, effects of epinephrine (Epi) administration on segment‐specific glucose transport and pSGLT1 content were examined. SGLT1 and GLUT2 expression was similar throughout the small intestines but lower in the duodenum and distal ileum. pSGLT1 abundance was significantly lower in the ileum compared with the jejunum associated with significantly higher glucose‐induced Isc. SGLT1 phosphorylation was not inducible by Epi. Epi treatment decreased glucose‐induced Isc and glucose flux rates in the jejunum but increased basal Isc in the ileum. Epi‐induced PKA activation was detectable in jejunal tissue. These results may indicate that SGLT1 phosphorylation at Ser418 represents a structural change to compensate for certain conditions that may decrease glucose transport (unfavorable driving forces/changed apical membrane potential) rather than being the cause for the overall differences in glucose transport characteristics between the jejunum and ileum.
Collapse
Affiliation(s)
- Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Patrick Lange
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Elisabeth Brandt
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karin Hustedt
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schröder
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Herrmann
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
26
|
Wongdee K, Rodrat M, Keadsai C, Jantarajit W, Teerapornpuntakit J, Thongbunchoo J, Charoenphandhu N. Activation of calcium-sensing receptor by allosteric agonists cinacalcet and AC-265347 abolishes the 1,25(OH)2D3-induced Ca2+ transport: Evidence that explains how the intestine prevents excessive Ca2+ absorption. Arch Biochem Biophys 2018; 657:15-22. [DOI: 10.1016/j.abb.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
|
27
|
Hou T, Lu Y, Guo D, Liu W, Shi W, He H. A pivotal peptide (Val-Ser-Glu-Glu) from duck egg white promotes calcium uptake and structure-activity relationship study. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
28
|
Lertsuwan K, Wongdee K, Teerapornpuntakit J, Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J Physiol Sci 2018; 68:221-232. [PMID: 29484538 PMCID: PMC10717198 DOI: 10.1007/s12576-018-0600-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Abstract
Osteoporosis and derangement of calcium homeostasis are common complications of thalassemia. Despite being an important process for bone and calcium metabolism, little is known about intestinal calcium transport in thalassemia. Recent reports of decreases in both intestinal calcium transport and bone mineral density in thalassemic patients and animal models suggested that defective calcium absorption might be a cause of thalassemic bone disorder. Herein, the possible mechanisms associated with intestinal calcium malabsorption in thalassemia are discussed. This includes alterations in the calcium transporters and hormonal controls of the transcellular and paracellular intestinal transport systems in thalassemia. In addition, the effects of iron overload on intestinal calcium absorption, and the reciprocal interaction between iron and calcium transport in thalassemia are elaborated. Understanding the mechanisms underlining calcium malabsorption in thalassemia would lead to development of therapeutic agents and mineral supplements that restore calcium absorption as well as prevent osteoporosis in thalassemic patients.
Collapse
Affiliation(s)
- Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
29
|
Fiscaletti M, Lebel MJ, Alos N, Benoit G, Jantchou P. Two Cases of Mistaken Polyuria and Nephrocalcinosis in Infants with Glucose-Galactose Malabsorption: A Possible Role of 1,25(OH)2D3
. Horm Res Paediatr 2018; 87:277-282. [PMID: 28152538 DOI: 10.1159/000454951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Glucose-galactose malabsorption (GGM) is a rare and potentially fatal disorder. The autosomal recessive mutation of the SGLT1 gene interferes with the active glucose transport in the gut resulting in osmotic diarrhea and failure to thrive (FTT). Two nonrelated infants with GGM are presented as well as a novel mutation in SGLT1. CASE PRESENTATION The first case consulted for FTT and presented with hypercalcemia and hypercalciuria. His mother had self-medicated with high doses of vitamin D. The second case consulted for macroscopic hematuria, and presented with dehydration and secondary acute kidney injury. In both cases, the profuse diarrhea, initially mistaken for polyuria, promptly resolved after the introduction of glucose-galactose-free milk. Investigations showed bilateral nephrocalcinosis and high levels of 1,25(OH)2D3 in both patients. We hypothesize that the upregulation of epithelial calcium channels (TRPV6) and 1,25(OH)2D3 are possible factors involved in the pathophysiology of nephrocalcinosis sometimes seen in GGM. Furthermore, a novel intronic SGLT1 mutation (c.207+2dup) is described. CONCLUSION These 2 cases demonstrate that a malabsorption disorder such as GGM can present with nephrocalcinosis and/or hypercalcemia, with increased 1,25(OH)2D3 levels in infants. Prompt recognition of GGM is sometimes difficult but crucial.
.
Collapse
Affiliation(s)
- Melissa Fiscaletti
- Sainte Justine University Health Center, University of Montreal, Montreal, Québec, Canada
| | - Marie-Jeanne Lebel
- Sainte Justine University Health Center, University of Montreal, Montreal, Québec, Canada
| | - Nathalie Alos
- Sainte Justine University Health Center, University of Montreal, Montreal, Québec, Canada.,Research Center of Sainte Justine Health Center, Montreal, Québec, Canada
| | - Geneviève Benoit
- Sainte Justine University Health Center, University of Montreal, Montreal, Québec, Canada
| | - Prévost Jantchou
- Sainte Justine University Health Center, University of Montreal, Montreal, Québec, Canada.,Research Center of Sainte Justine Health Center, Montreal, Québec, Canada
| |
Collapse
|
30
|
Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 2017; 453:36-45. [PMID: 28400273 PMCID: PMC5529228 DOI: 10.1016/j.mce.2017.04.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D and its' metabolites are a crucial part of the endocrine system that controls whole body calcium homeostasis. The goal of this hormonal control is to regulate serum calcium levels so that they are maintained within a very narrow range. To achieve this goal, regulatory events occur in coordination at multiple tissues, e.g. the intestine, kidney, bone, and parathyroid gland. Production of the vitamin D endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2 D) is regulated by habitual dietary calcium intake and physiologic states like growth, aging, and the menopause. The molecular actions of 1,25(OH)2 D on calcium regulating target tissues are mediated predominantly by transcription controlled by the vitamin D receptor. A primary role for 1,25(OH)2 D during growth is to increase intestinal calcium absorption so that sufficient calcium is available for bone mineralization. However, vitamin D also has specific actions on kidney and bone.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutrition Science, Room G1B Stone Hall, Purdue University, West Lafayette, IN 47907-2059, United States.
| |
Collapse
|
31
|
Intra-Amniotic Administration (Gallus gallus) of Cicer arietinum and Lens culinaris Prebiotics Extracts and Duck Egg White Peptides Affects Calcium Status and Intestinal Functionality. Nutrients 2017; 9:nu9070785. [PMID: 28754012 PMCID: PMC5537899 DOI: 10.3390/nu9070785] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two supplements is not clear. By using the Gallus gallus model and the intra-amniotic administration procedure, the aim of this study was to investigate whether Ca status, intestinal functionality, and health-promoting bacterial populations were affected by prebiotics extracted from chickpea and lentil, and duck egg white peptides (DPs). Eleven groups (non-injected; 18 MΩ H2O; 4 mmol/L CaCl2; 50 mg/mL chickpea + 4 mmol/L CaCl2; 50 mg/mL lentil + 4 mmol/L CaCl2; 40 mg/mL DPs + 4 mmol/L CaCl2; 5 mg/mL Val-Ser-Glu-Glu (VSEE) + 4 mmol/L CaCl2; 50 mg/mL chickpea; 50 mg/mL lentil; 40 mg/mL DPs; 5 mg/mL VSEE) were utilized. Upon hatch, blood, cecum, small intestine, liver and bone were collected for assessment of serum bone alkaline phosphate level (BALP), the relative abundance of intestinal microflora, expression of Ca-related genes, brush border membrane (BBM) functional genes, and liver and bone mineral levels, respectively. The BALP level increased in the presence of lentil, DPs and VSEE (p < 0.05). The relative abundance of probiotics increased significantly (p < 0.05) by VSEE + Ca and chickpea. The expression of CalbindinD9k (Ca transporter) increased (p < 0.05) in Ca, chickpea + Ca and lentil + Ca groups. In addition, the brush border membrane functionality genes expressions increased (p < 0.05) by the chickpea or lentil extracts. Prebiotics and DPs beneficially affected the intestinal microflora and duodenal villus surface area. This research expands the understanding of the prebiotics’ properties of chickpea and lentil extracts, and peptides’ effects on calcium metabolism and gut health.
Collapse
|
32
|
Hou T, Liu Y, Kolba N, Guo D, He H. Desalted Duck Egg White Peptides Promote Calcium Uptake and Modulate Bone Formation in the Retinoic Acid-Induced Bone Loss Rat and Caco-2 Cell Model. Nutrients 2017; 9:nu9050490. [PMID: 28498349 PMCID: PMC5452220 DOI: 10.3390/nu9050490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 02/03/2023] Open
Abstract
Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups (p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.
Collapse
Affiliation(s)
- Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanshuang Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14850, USA.
| | - Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Beggs MR, Alexander RT. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp Biol Med (Maywood) 2017; 242:840-849. [PMID: 28346014 DOI: 10.1177/1535370217699536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis.
Collapse
Affiliation(s)
- Megan R Beggs
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
34
|
Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol 2017; 23:2841-2853. [PMID: 28522903 PMCID: PMC5413780 DOI: 10.3748/wjg.v23.i16.2841] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The disequilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione (GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.
Collapse
|
35
|
Thammayon N, Wongdee K, Lertsuwan K, Suntornsaratoon P, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Na +/H + exchanger 3 inhibitor diminishes the amino-acid-enhanced transepithelial calcium transport across the rat duodenum. Amino Acids 2017; 49:725-734. [PMID: 27981415 DOI: 10.1007/s00726-016-2374-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Na+/H+ exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.
Collapse
Affiliation(s)
- Nithipak Thammayon
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
36
|
Hou T, Liu W, Shi W, Ma Z, He H. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid. Food Chem 2017; 219:428-435. [DOI: 10.1016/j.foodchem.2016.09.166] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
|
37
|
Wilkens M, Marholt L, Eigendorf N, Muscher-Banse A, Feige K, Schröder B, Breves G, Cehak A. Trans- and paracellular calcium transport along the small and large intestine in horses. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:157-163. [DOI: 10.1016/j.cbpa.2016.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
|
38
|
Radhakrishnan VM, Gilpatrick MM, Parsa NA, Kiela PR, Ghishan FK. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFNγ. Am J Physiol Gastrointest Liver Physiol 2017; 312:G77-G84. [PMID: 27932504 PMCID: PMC5283901 DOI: 10.1152/ajpgi.00394.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
It has been hypothesized that apically expressed L-type Ca2+ channel Cav1.3 (encoded by CACNA1D gene) contributes toward an alternative TRPV6-independent route of intestinal epithelial Ca2+ absorption, especially during digestion when high luminal concentration of Ca2+ and other nutrients limit TRPV6 contribution. We and others have implicated altered expression and activity of key mediators of intestinal and renal Ca2+ (re)absorption as contributors to negative systemic Ca2+ balance and bone loss in intestinal inflammation. Here, we investigated the effects of experimental colitis and related inflammatory mediators on colonic Cav1.3 expression. We confirmed Cav1.3 expression within the segments of the mouse and human gastrointestinal tract. Consistent with available microarray data (GEO database) from inflammatory bowel disease (IBD) patients, mouse colonic expression of Cav1.3 was significantly reduced in trinitrobenzene sulfonic acid (TNBS) colitis. In vitro, IFNγ most potently reduced Cav1.3 expression. We reproduced these findings in vivo with wild-type and Stat1-/- mice injected with IFNγ. The observed effect in Stat1-/- suggested a noncanonical transcriptional repression or a posttranscriptional mechanism. In support of the latter, we observed no effect on the cloned Cav1.3 gene promoter activity and accelerated Cav1.3 mRNA decay rate in IFNγ-treated HCT116 cells. While the relative contribution of Cav1.3 to intestinal Ca2+ absorption and its value as a therapeutic target remain to be established, we postulate that Cav1.3 downregulation in IBD may contribute to the negative systemic Ca2+ balance, to increased bone resorption, and to reduced bone mineral density in IBD patients.
Collapse
Affiliation(s)
| | | | - Nour Alhoda Parsa
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and
| | - Pawel R. Kiela
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and ,2Department of Immunobiology, The University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- 1Department of Pediatrics, The University of Arizona, Tucson, Arizona; and
| |
Collapse
|
39
|
Sun N, Wu H, Du M, Tang Y, Liu H, Fu Y, Zhu B. Food protein-derived calcium chelating peptides: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Blevins TC, Farooki A. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus. Postgrad Med 2016; 129:159-168. [DOI: 10.1080/00325481.2017.1256747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Azeez Farooki
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Klinger S, Schröder B, Gemmer A, Reimers J, Breves G, Herrmann J, Wilkens MR. Gastrointestinal transport of calcium and glucose in lactating ewes. Physiol Rep 2016; 4:4/11/e12817. [PMID: 27273883 PMCID: PMC4908493 DOI: 10.14814/phy2.12817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 01/26/2023] Open
Abstract
During lactation, mineral and nutrient requirements increase dramatically, particularly those for Ca and glucose. In contrast to monogastric species, in ruminants, it is rather unclear to which extend this physiological change due to increased demand for milk production is accompanied by functional adaptations of the gastrointestinal tract (GIT). Therefore, we investigated potential modulations of Ca and glucose transport mechanisms in the GIT of lactating and dried‐off sheep. Ussing‐chamber technique was applied to determine the ruminal and jejunal Ca flux rates. In the jejunum, electrophysiological properties in response to glucose were recorded. Jejunal brush‐border membrane vesicles (BBMV) served to characterize glucose uptake via sodium‐linked glucose transporter 1 (SGLT1), and RNA and protein expression levels of Ca and glucose transporting systems were determined. Ruminal Ca flux rate data showed a trend for higher absorption in lactating sheep. In the jejunum, small Ca absorption could only be observed in lactating ewes. From the results, it may be assumed that lactating ewes compensate for the Ca loss by increasing bone mobilization rather than by increasing supply through absorption from the GIT. Presence of SGLT1 in the jejunum of both groups was shown by RNA and protein identification, but glucose uptake into BBMV could only be detected in lactating sheep. This, however, could not be attributed to electrogenic glucose absorption in lactating sheep under Ussing‐chamber conditions, providing evidence that changes in jejunal glucose uptake may include additional factors, that is, posttranslational modifications such as phosphorylation.
Collapse
Affiliation(s)
- Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schröder
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Anja Gemmer
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Julia Reimers
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Herrmann
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mirja R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
42
|
Starke S, Reimers J, Muscher-Banse AS, Schröder B, Breves G, Wilkens MR. Gastrointestinal transport of calcium and phosphate in lactating goats. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Kraidith K, Svasti S, Teerapornpuntakit J, Vadolas J, Chaimana R, Lapmanee S, Suntornsaratoon P, Krishnamra N, Fucharoen S, Charoenphandhu N. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am J Physiol Endocrinol Metab 2016; 311:E214-E223. [PMID: 27245334 DOI: 10.1152/ajpendo.00067.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia.
Collapse
Affiliation(s)
- Kamonshanok Kraidith
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | | | - Jim Vadolas
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Rattana Chaimana
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarawut Lapmanee
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
| |
Collapse
|
44
|
Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: Contribution of lactogenic hormone prolactin. Arch Biochem Biophys 2015; 590:109-117. [PMID: 26657069 DOI: 10.1016/j.abb.2015.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
As the principal lactogenic hormone, prolactin (PRL) not only induces lactogenesis but also enhances intestinal calcium absorption to supply calcium for milk production. How the intestinal epithelium res-ponses to PRL is poorly understood, but it is hypothesized to increase mucosal absorptive surface area and calcium transporter expression. Herein, lactating rats were found to have greater duodenal, jejunal and ileal villous heights as well as cecal crypt depths than age-matched nulliparous rats. Morphometric analyses in the duodenum and cecum showed that their mucosal adaptations were diminished by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated calcium transporter expression (e.g., TRPV6 and PMCA1b) in the duodenum of lactating rats. Since excessive calcium absorption could be detrimental to lactating rats, local negative regulator of calcium absorption, e.g., fibroblast growth factor (FGF)-23, should be increased. Immunohistochemistry confirmed the upregulation of FGF-23 protein expression in the duodenal and cecal mucosae of lactating rats, consistent with the enhanced FGF-23 mRNA expression in Caco-2 cells. Bromocriptine abolished this lactation-induced FGF-23 expression. Additionally, FGF-23 could negate PRL-stimulated calcium transport across Caco-2 monolayer. In conclusion, PRL was responsible for the lactation-induced mucosal adaptations, which were associated with compensatory increase in FGF-23 expression probably to prevent calcium hyperabsorption.
Collapse
|
45
|
Reyes-Fernandez PC, Fleet JC. Luminal glucose does not enhance active intestinal calcium absorption in mice: evidence against a role for Ca(v)1.3 as a mediator of calcium uptake during absorption. Nutr Res 2015; 35:1009-15. [PMID: 26403486 DOI: 10.1016/j.nutres.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
Intestinal Ca absorption occurs through a 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-regulated transcellular pathway, especially when habitual dietary Ca intake is low. Recently the L-type voltage-gated Ca channel, Cav1.3, was proposed to mediate active, transcellular Ca absorption in response to membrane depolarization caused by elevated luminal glucose levels after a meal. We tested the hypothesis that high luminal glucose could reveal a role for Cav1.3 in active intestinal Ca absorption in mice. Nine-week-old male C57BL/6 J mice were fed AIN93G diets containing either low (0.125%) or high (1%) Ca for 1 week, and Ca absorption was examined by an oral gavage method using a 45Ca-transport buffer containing 25 mmol/L of glucose or fructose. Transient receptor potential vanilloid 6 (TRPV6), calbindin D9k (CaBPD9k), and Cav1.3 messenger RNA (mRNA) levels were measured in the duodenum, jejunum, and ileum. TRPV6 and CaBPD9k expressions were highest in the duodenum, where active, 1,25(OH)2D3-regulated Ca absorption occurs, whereas Cav1.3 mRNA levels were similar across the intestinal segments. As expected, the low-Ca diet increased renal cytochrome p450-27B1 (CYP27B1) mRNA (P = .003), serum 1,25(OH)2D3 (P < .001), and Ca absorption efficiency by 2-fold with the fructose buffer. However, the glucose buffer used to favor Cav1.3 activation did not increase Ca absorption efficiency (P = .6) regardless of the dietary Ca intake level. Collectively, our results show that glucose did not enhance Ca absorption and they do not support a critical role for Cav1.3 in either basal or vitamin D-regulated intestinal Ca absorption in vivo.
Collapse
Affiliation(s)
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
46
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
47
|
Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 2015; 21:7142-7154. [PMID: 26109800 PMCID: PMC4476875 DOI: 10.3748/wjg.v21.i23.7142] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal Ca2+ absorption is a crucial physiological process for maintaining bone mineralization and Ca2+ homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca2+ across the brush border membranes (BBM) of enterocytes through epithelial Ca2+ channels TRPV6, TRPV5, and Cav1.3; Ca2+ movement from the BBM to the basolateral membranes by binding proteins with high Ca2+ affinity (such as CB9k); and Ca2+ extrusion into the blood. Plasma membrane Ca2+ ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca2+ from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca2+ transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca2+ transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca2+ absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca2+ transport to control values. Calcitriol [1,25(OH)2D3] is the major controlling hormone of intestinal Ca2+ transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca2+ transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)2D3 production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca2+ absorption according to Ca2+ demands. Better knowledge of the molecular details of intestinal Ca2+ absorption could lead to the development of nutritional and medical strategies for optimizing the efficiency of intestinal Ca2+ absorption and preventing osteoporosis and other pathologies related to Ca2+ metabolism.
Collapse
|
48
|
Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs. Br J Nutr 2015; 113:1019-31. [PMID: 25761471 DOI: 10.1017/s0007114515000380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (SEM 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat-barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P> 0.05). High Ca diets decreased jejunal zonula occludens 1 (ZO1) and occludin (OCLN) expression, up-regulated jejunal expression of toll-like receptor 2 (TLR2) and down-regulated colonic GLUT2 expression as compared to the adequate Ca diets (P< 0.05). Dietary cereal composition up-regulated jejunal TLR2 expression and interacted (P= 0.021) with dietary Ca on colonic IL1B expression; high Ca concentration up-regulated IL1B expression with wheat-barley diets and down-regulated it with maize diets. Spearman's correlations (r> 0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs.
Collapse
|
49
|
Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway. Eur J Cell Biol 2015; 94:190-203. [PMID: 25801217 DOI: 10.1016/j.ejcb.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023] Open
Abstract
Advanced oxidation protein products (AOPPs), novel protein markers of oxidative damage, accumulate in the plasma of patients with inflammatory bowel disease (IBD). Osteoporosis, which is closely related to the regulation of intestinal calcium transport channels (CTCs), is a prevalent extraintestinal complication of IBD and is associated with oxidative stress. However, the underlying mechanisms are unknown. The present study aimed to verify whether AOPPs inhibit CTCs in the small intestinal epithelium and to identify the underlying mechanisms that may contribute to IBD-associated osteoporosis. Normal Sprague-Dawley rats were treated with AOPP-modified rat serum albumin. The calcium ion level in serum was not significantly altered, while the duodenal expression of CTCs (e.g. transient receptor potential vanilloid [TRPV6], calbindin-D9k [CaBP-D9k], plasma membrane Ca(2+)-ATPase 1 [PMCA1], and Na(+)/Ca(2+) exchanger 1 [NCX1]) were decreased. In contrast, the levels of the related hormones that regulate calcium absorption including parathyroid hormone (PTH), 25-(OH)D₃, and 1,25-(OH)₂D₃ were increased, although the trend toward an increase in PTH levels was not significant. In order to further investigate the effects of AOPP exposure, we also evaluated the expression of CTCs (including the voltage-dependent L-type calcium channel [CaV1.3], TRPV6, CaBP-D9k, PMCA1, and NCX1) in cultured human colorectal adenocarcinoma cells (Caco-2). The expression levels of total CTC protein and mRNA, except for CaV1.3, were significantly down-regulated in a concentration- and time-dependent manner. Moreover, phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) was observed in vivo and in vitro. The p44/42 inhibitor U0126 reversed the down-regulation of CTCs induced by AOPPs in the Caco-2 monolayer. Our results indicate that AOPPs down-regulate the expression of CTCs through p44/42 MAPK signaling mechanisms in the small intestinal epithelium. These data provide new insights regarding the molecular basis of AOPP-induced reductions in intestinal CTCs, and are relevant to understanding the mechanisms of IBD-associated osteoporosis. Further studies are needed to explore these mechanisms in greater detail.
Collapse
|
50
|
Abstract
For humans and rodents, duodenum is a very important site of calcium absorption since it is exposed to ionized calcium released from dietary complexes by gastric acid. Calcium traverses the duodenal epithelium via both transcellular and paracellular pathways in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium transporter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca(2+)-ATPase1b, and NCX1, thereby enhancing the transcellular calcium transport. This action has been reported to be under the regulation of parathyroid-kidney-intestinal and bone-kidney-intestinal axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feedback regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight junction-related genes and convective water flow, presumably to increase the paracellular calcium permeability and solvent drag-induced calcium transport. However, vitamin D-independent calcium absorption does exist and plays an important role in calcium homeostasis under certain conditions, particularly in neonatal period, pregnancy, and lactation as well as in naturally vitamin D-impoverished subterranean mammals.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|