1
|
Cario M, Scalia J, Mahfouf W, Muzotte E, Michaud V, Plaisant C, Dupuy JW, Douki T, Morice-Picard F, Rambert J, Perrier E, Trompezinski S, Rezvani HR. Proteome characterization of XPC-deficient melanocytes generated by CRISPR-Cas9 technology reveals alteration in the expression of several hundred proteins. J Dermatol Sci 2024; 114:79-82. [PMID: 38556435 DOI: 10.1016/j.jdermsci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | - Julie Scalia
- NAOS Institute of Life Science, Aix-en-Provence, France
| | | | | | | | | | | | - Thierry Douki
- Nucleic Acids Lesions Laboratory, SCIB/INAC, CEA, Universite´ Joseph Fourier- Grenoble, Grenoble, France
| | - Fanny Morice-Picard
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Paediatric Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Jérôme Rambert
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | - Eric Perrier
- NAOS Institute of Life Science, Aix-en-Provence, France
| | | | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Cario M, Pain C, Kaulanjan-Checkmodine P, Masia D, Delia G, Casoli V, Costet P, Goussot JF, Guyonnet-Duperat V, Bibeyran A, Ezzedine K, Reymermier C, Andre-Frei V, Taieb A. Epidermal keratin 5 expression and distribution is under dermal influence. Pigment Cell Melanoma Res 2019; 33:435-445. [PMID: 31692218 DOI: 10.1111/pcmr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF-2 and keratin 5. In vitro analysis confirmed that FGF-2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling-Degos Disease (DDD) have already been associated with the pheomelanosome-eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age-related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.
Collapse
Affiliation(s)
- Muriel Cario
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,AquiDerm, Bordeaux, France
| | - Catherine Pain
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France
| | | | - Daniela Masia
- Department of Plastic Surgery and Hand Surgery, Aurelia Hospital, Rome, Italy
| | - Gabriele Delia
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Vincent Casoli
- Department of Plastic Surgery, Bordeaux University Hospitals, Bordeaux, France
| | - Pierre Costet
- Animalerie Spécialisée, Bordeaux University, Bordeaux, France
| | | | | | - Alice Bibeyran
- Plateforme de Vectorologie VectUb, Bordeaux University, Bordeaux, France
| | - Khaled Ezzedine
- EA EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Service de Dermatologie, UPE-Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | | | | | - Alain Taieb
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,Department of Dermatology, Bordeaux University Hospitals, Bordeaux, France
| |
Collapse
|
3
|
Vela-Romera A, Carriel V, Martín-Piedra MA, Aneiros-Fernández J, Campos F, Chato-Astrain J, Prados-Olleta N, Campos A, Alaminos M, Garzón I. Characterization of the human ridged and non-ridged skin: a comprehensive histological, histochemical and immunohistochemical analysis. Histochem Cell Biol 2018; 151:57-73. [PMID: 30099600 PMCID: PMC6328512 DOI: 10.1007/s00418-018-1701-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/12/2023]
Abstract
The structure of the human skin is directly dependent on its location and the mechanical forces to which it is subjected. In the present work, we have performed a comprehensive analysis of the human ridged and non-ridged skin to identify the differences and similarities between both skin types. For this purpose, human skin samples were obtained from dorsal hand skin (DHS), palmar hand skin (PHS), dorsal foot skin (DFS) and plantar foot skin (PFS) from the same cadaveric donors. Histological, histochemical and semiquantitative and quantitative immunohistochemical analyses were carried out to evaluate the epidermis, dermis and basement membrane. Results show that the epithelial layer of ridged skin had larger cell number and size than non-ridged skin for most strata. Melanocytes and Langerhans cells were more abundant in non-ridged skin, whereas Merkel cells were preferentially found in ridged skin. The expression pattern of CK5/6 was slightly differed between non-ridged and ridged skin. Involucrin expression was slightly more intense in non-ridged skin than in ridged skin. Collagen was more abundant in foot skin dermis than in hand skin, and in ridged skin as compared to non-ridged skin. Elastic fibers were more abundant in DHS. Biglycan was more abundant in foot skin than in hand skin. No differences were found for blood and lymphatic vessels. The basement membrane laminin was preferentially found in foot skin. These results revealed important differences at the epithelial, dermal and basement membrane levels that could contribute to a better knowledge of the human skin histology.
Collapse
Affiliation(s)
- A Vela-Romera
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,PhD Program in Biomedicine, Escuela de Posgrado, University of Granada, Granada, Spain
| | - V Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - M A Martín-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - F Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - J Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain
| | - N Prados-Olleta
- Orthopedic Surgery Department, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Surgery, University of Granada, Granada, Spain
| | - A Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - M Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - I Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions. PLoS One 2017; 12:e0184154. [PMID: 28880927 PMCID: PMC5589172 DOI: 10.1371/journal.pone.0184154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/19/2017] [Indexed: 01/11/2023] Open
Abstract
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Collapse
|
5
|
Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1. J Invest Dermatol 2017; 137:2560-2569. [PMID: 28774590 DOI: 10.1016/j.jid.2017.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023]
Abstract
There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consists either of adipose tissue-derived stromal cells, dermal fibroblasts (Fbs), or a mixture of both cell types. These skin substitutes were transplanted for 5 weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and Western blot analyses showed a significantly higher expression of transforming growth factor-β1 by adipose tissue-derived stromal cells compared with dermal Fbs. In addition, we showed that melanocytes responded to the increased levels of transforming growth factor-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and, consequently, greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that adipose tissue-derived stromal cells derived from the hypodermis fail to appropriately interact with epidermal melanocytes, thus preventing the sustainable restoration of the patient's native skin color in bioengineered skin grafts.
Collapse
|
6
|
Qa'aty N, Vincent M, Wang Y, Wang A, Mitts TF, Hinek A. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors. J Dermatol Sci 2015; 80:175-85. [PMID: 26475432 DOI: 10.1016/j.jdermsci.2015.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. OBJECTIVE Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). RESULTS We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. CONCLUSION We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin.
Collapse
Affiliation(s)
- Nour Qa'aty
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Matthew Vincent
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Yanting Wang
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada
| | - Andrew Wang
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada
| | | | - Aleksander Hinek
- Physiology & Experimental Medicine Program, Hospital for Sick Children, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.
| |
Collapse
|
7
|
Biedermann T, Böttcher-Haberzeth S, Klar AS, Widmer DS, Pontiggia L, Weber AD, Weber DM, Schiestl C, Meuli M, Reichmann E. The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Eng Part A 2015; 21:960-9. [PMID: 25300246 DOI: 10.1089/ten.tea.2014.0327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application.
Collapse
Affiliation(s)
- Thomas Biedermann
- 1 Tissue Biology Research Unit, University Children's Hospital Zurich , Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biedermann T, Klar AS, Böttcher-Haberzeth S, Michalczyk T, Schiestl C, Reichmann E, Meuli M. Long-term expression pattern of melanocyte markers in light- and dark-pigmented dermo-epidermal cultured human skin substitutes. Pediatr Surg Int 2015; 31:69-76. [PMID: 25326121 DOI: 10.1007/s00383-014-3622-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE Transplantation of pigmented tissue-engineered human autologous skin substitutes represents a promising procedure to cover skin defects. We have already demonstrated that we can restore the patient's native light or dark skin color by adding melanocytes to our dermo-epidermal skin analogs. In this long-term study, we investigated if melanocytes in our skin substitutes continue to express markers as BCL2, SOX9, and MITF, known to be involved in survival, differentiation, and function of melanocytes. METHODS Human epidermal melanocytes and keratinocytes, as well as dermal fibroblasts from light- and dark-pigmented skin biopsies were isolated and cultured. Bovine collagen hydrogels containing fibroblasts were prepared, and melanocytes and keratinocytes were seeded in a 1:5 ratio onto the gels. Pigmented dermo-epidermal skin substitutes were transplanted onto full-thickness wounds of immuno-incompetent rats and analyzed for the expression of melanocyte markers after 15 weeks. RESULTS Employing immunofluorescence staining techniques, we observed that our light and dark dermo-epidermal skin substitutes expressed the same typical melanocyte markers including BCL2, SOX9, and MITF 15 weeks after transplantation as normal human light and dark skin. CONCLUSIONS These data suggest that, even in the long run, our light and dark dermo-epidermal tissue-engineered skin substitutes contain melanocytes that display a characteristic expression pattern as seen in normal pigmented human skin. These findings have crucial clinical implications as such grafts transplanted onto patients should warrant physiological numbers, distribution, and function of melanocytes.
Collapse
Affiliation(s)
- Thomas Biedermann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Melanocytes (MC) sit along the epidermal basal layer, largely quiescent except for constitutive melanin production. They are usually only activated after sun exposure. The recent paper by McGowan et al. (1) describes a novel mechanism by which melanocytes are induced to proliferate upon p53 activation in adjacent keratinocytes (KC). In this study, small subunit ribosomal protein mutations cause a dramatic activation of p53 that we propose mimics important aspects of the skin sunburn response after ultraviolet radiation (UVR) exposure. McGowan et al. show that the phenotype of their hyperpigmented mouse mutants results from p53-dependent upregulation of KITLG, a cytokine that binds to the KIT receptor on melanocytes and influences melanin synthesis, melanocyte proliferation, and dictates MC localization at the dermo-epidermal junction. These findings extend our knowledge about skin stress responses, in particular, how p53 activity in keratinocytes is central to the regulation of melanocyte behaviour.
Collapse
Affiliation(s)
- Graeme Walker
- Oncogenomics Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, 4029, Qld, Australia
| | | |
Collapse
|
10
|
Lee AY, Noh M. The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents. Arch Pharm Res 2013; 36:792-801. [PMID: 23604723 DOI: 10.1007/s12272-013-0130-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/13/2013] [Indexed: 12/21/2022]
Abstract
Abnormal pigmentation, particularly hyperpigmentation, is major issue of concern for people with colored skin. Several hypopigmenting agents, which exert their action by inhibiting tyrosinase activity and/or transcription, have been used for treatment. However, results have been discouraging. To manage abnormal pigmentation properly, the mechanisms of melanogenesis should be understood. Endogenous and exogenous factors affect melanogenesis via intracellular machineries. cAMP and PKC are critical factors of important transduction pathways and cross-talk between them could amplify the melanogenic effect. Here, factors involved in melanogenesis regulation via cAMP and/or PKC pathways are reviewed with their action mechanisms.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-773, South Korea.
| | | |
Collapse
|
11
|
|
12
|
Characteristic distribution of melanin columns in the cornified layer of acquired acral nevus: an important clue for histopathologic differentiation from early acral melanoma. Am J Dermatopathol 2011; 33:468-73. [PMID: 21552104 DOI: 10.1097/dad.0b013e318201ac8f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clinical and histopathologic differentiation between early acral melanoma and acral nevus is often difficult. Dermoscopy is helpful in this differentiation. On dermoscopy, early acral melanoma shows the parallel ridge pattern showing band-like pigmentation on the ridges of the surface skin markings, whereas a representative dermoscopic pattern in acquired acral nevus is the parallel furrow pattern showing parallel linear pigmentation along the surface furrows. The parallel furrow pattern suggests that melanocytes of acral nevus preferentially proliferate in the crista profunda limitans, an epidermal rete ridge underlying the surface furrow. In the present study, however, we found that in 13 of 18 acquired acral nevi, proliferation of melanocytes were detected not only in the crista profunda limitans but also in the crista profunda intermedia (CPI), an epidermal rete ridge underlying the surface ridge. Very interestingly, Fontana-Masson staining of these acral nevi revealed that even when proliferation of melanocytes was prominent in the CPI, melanin granules in the cornified layer were observed as regular melanin columns situated under the surface furrows and were hardly detected under the surface ridges. These findings indicate that in acral nevus, melanin granules produced by melanocytes in the CPI are not transferred to the upper epidermis. Hence, we must be careful not to overdiagnose an acral melanocytic lesion in which an increased number of melanocytes are detected in the CPI. Even in such a case, if melanin granules in the cornified layer are detected as melanin columns regularly distributed under the surface furrows, the lesion is strongly suggested to be a benign acral nevus.
Collapse
|
13
|
Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010; 23:496-513. [PMID: 20444197 DOI: 10.1111/j.1755-148x.2010.00711.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over 10 years have passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|