1
|
Yoon JH, Kim DO, Lee S, Lee BH, Kim ES, Son YK, Kopalli SR, Lee JH, Ju Y, Lee J, Cho JY. Anti-apoptotic, anti-inflammatory, and anti-melanogenic effects of the ethanol extract of Picrasma quassioides (D. Don) Benn. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118374. [PMID: 38789093 DOI: 10.1016/j.jep.2024.118374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Ock Kim
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byong-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea.
| | - Ji Heun Lee
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Youngwoon Ju
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Jongsung Lee
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jae Youl Cho
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
2
|
Zamudio Díaz DF, Busch L, Kröger M, Klein AL, Lohan SB, Mewes KR, Vierkotten L, Witzel C, Rohn S, Meinke MC. Significance of melanin distribution in the epidermis for the protective effect against UV light. Sci Rep 2024; 14:3488. [PMID: 38347037 PMCID: PMC10861496 DOI: 10.1038/s41598-024-53941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Melanin, the most abundant skin chromophore, is produced by melanocytes and is one of the key components responsible for mediating the skin's response to ultraviolet radiation (UVR). Because of its antioxidant, radical scavenging, and broadband UV absorbing properties, melanin reduces the penetration of UVR into the nuclei of keratinocytes. Despite its long-established photoprotective role, there is evidence that melanin may also induce oxidative DNA damage in keratinocytes after UV exposure and therefore be involved in the development of melanoma. The present work aimed at evaluating the dependence of UV-induced DNA damage on melanin content and distribution, using reconstructed human epidermis (RHE) models. Tanned and light RHE were irradiated with a 233 nm UV-C LED source at 60 mJ/cm2 and a UV lamp at 3 mJ/cm2. Higher UV-mediated free radicals and DNA damage were detected in tanned RHE with significantly higher melanin content than in light RHE. The melanin distribution in the individual models can explain the lack of photoprotection. Fluorescence lifetime-based analysis and Fontana-Masson staining revealed a non-homogeneous distribution and absence of perinuclear melanin in the tanned RHE compared to the in vivo situation in humans. Extracellularly dispersed epidermal melanin interferes with photoprotection of the keratinocytes.
Collapse
Affiliation(s)
- Daniela F Zamudio Díaz
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Loris Busch
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35032, Marburg, Germany
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Silke B Lohan
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Karsten R Mewes
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Lars Vierkotten
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Christian Witzel
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
4
|
Zhou B, Basu J, Kazmi HR, Chitrala KN, Mo X, Preston-Alp S, Cai KQ, Kappes D, Zaidi MR. Interferon-gamma signaling promotes melanoma progression and metastasis. Oncogene 2023; 42:351-363. [PMID: 36463370 PMCID: PMC9991867 DOI: 10.1038/s41388-022-02561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Interferon-gamma (IFNG) has long been regarded as the flag-bearer for the anti-cancer immunosurveillance mechanisms. However, relatively recent studies have suggested a dual role of IFNG, albeit there is no direct experimental evidence for its potential pro-tumor functions. Here we provide in vivo evidence that treatment of mouse melanoma cell lines with Ifng enhances their tumorigenicity and metastasis in lung colonization allograft assays performed in immunocompetent syngeneic host mice, but not in immunocompromised host mice. We also show that this enhancement is dependent on downstream signaling via Stat1 but not Stat3, suggesting an oncogenic function of Stat1 in melanoma. The experimental results suggest that melanoma cell-specific Ifng signaling modulates the tumor microenvironment and its pro-tumorigenic effects are partially dependent on the γδ T cells, as Ifng-enhanced tumorigenesis was inhibited in the TCR-δ knockout mice. Overall, these results show that Ifng signaling may have tumor-promoting effects in melanoma by modulating the immune cell composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Bo Zhou
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,MEI Pharma, San Diego, CA, USA
| | - Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hasan Raza Kazmi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - Xuan Mo
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sarah Preston-Alp
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Abou-Dahech M, HS Boddu S, Devi Bachu R, Jayachandra Babu R, Shahwan M, Al-Tabakha MM, Tiwari AK. A Mini-Review on Limitations Associated with UV Filters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Vachiramon V, Anuntrangsee T, Palakornkitti P, Jurairattanaporn N, Harnchoowong S. Incobotulinum Toxin Type A for Treatment of Ultraviolet-B-Induced Hyperpigmentation: A Prospective, Randomized, Controlled Trial. Toxins (Basel) 2022; 14:toxins14060417. [PMID: 35737078 PMCID: PMC9231130 DOI: 10.3390/toxins14060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Incobotulinum toxin A (IncoBoNT-A) is effective in preventing ultraviolet B (UVB)-induced hyperpigmentation. This prospective, randomized, controlled study aimed to evaluate the effect of IncoBoNT-A on the treatment of UVB-induced hyperpigmentation in 15 volunteers. Five hyperpigmentation squares (2 × 2 cm) were induced by local UVB on the abdomen at baseline. At Day 7, each site was randomized to receive no treatment (control), normal saline, or intradermal IncoBoNT-A injection with 1:2.5, 1:5, and 1:7.5 dilutions (12, 6, and 4 units, respectively). The mean lightness index (L*), hyperpigmentation improvement score evaluated by blinded dermatologists, and participant satisfaction scores were obtained at Days 21, 28, and 35. At Day 21, improvements in mean L* of 1:2.5, 1:5, and 1:7.5 IncoBoNT-A-treated, saline-treated, and control sites were 14.30%, 12.28%, 6.62%, 0.32%, and 4.98%, respectively (p = 0.86). At Day 28, the improvement in mean L* in IncoBoNT-A-treated groups was superior to that in the other groups. In terms of the hyperpigmentation improvement score, 12 participants (80%) experienced better outcomes with the IncoBoNT-A-injected site compared with the other sites. IncoBoNT-A, especially at higher concentrations, showed some positive effects on the treatment of UVB-induced hyperpigmentation. This may serve as an adjuvant treatment for hyperpigmentary conditions that are aggravated by UVB.
Collapse
|
7
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
8
|
Mahendra CK, Goh KW, Ming LC, Zengin G, Low LE, Ser HL, Goh BH. The Prospects of Swietenia macrophylla King in Skin Care. Antioxidants (Basel) 2022; 11:antiox11050913. [PMID: 35624777 PMCID: PMC9137607 DOI: 10.3390/antiox11050913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered “natural” and “green” in the public’s eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential “cosmetic-worthy” bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the “ageless” beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (L.C.M.); (B.H.G.)
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia;
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (L.C.M.); (B.H.G.)
| |
Collapse
|
9
|
Benito-Martinez S, Salavessa L, Raposo G, Marks MS, Delevoye C. Melanin transfer and fate within keratinocytes in human skin pigmentation. Integr Comp Biol 2021; 61:1546-1555. [PMID: 34021340 DOI: 10.1093/icb/icab094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human skin and hair pigmentation play important roles in social behavior but also in photoprotection from the harmful effects of ultraviolet light. The main pigments in mammalian skin, the melanins, are synthesized within specialized organelles called melanosomes in melanocytes, which sit at the basal layer of the epidermis and the hair bulb. The melanins are then transferred from melanocytes to keratinocytes, where they accumulate perinuclearly in membrane-bound organelles as a "cap" above the nucleus. The mechanism of transfer, the nature of the pigmented organelles within keratinocytes, and the mechanism governing their intracellular positioning are all debated and poorly understood, but likely play an important role in the photoprotective properties of melanin in the skin. Here, we detail our current understanding of these processes and present a guideline for future experimentation in this area.
Collapse
Affiliation(s)
- Silvia Benito-Martinez
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Laura Salavessa
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| |
Collapse
|
10
|
A Study of Botulinum Toxin A for Ultraviolet-Induced Hyperpigmentation: A Randomized Controlled Trial. Dermatol Surg 2021; 47:e174-e178. [PMID: 33731570 DOI: 10.1097/dss.0000000000002943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ultraviolet (UV) exposure contributes to skin hyperpigmentation. Recently, botulinum neurotoxin type A (BoNT-A) showed a promising protective effect on UVB-induced hyperpigmentation in both in vitro and animal models. OBJECTIVE The study aimed to investigate the preventive effect of BoNT-A against UVB-induced hyperpigmentation in human subjects. MATERIALS AND METHODS A prospective, double-blinded, randomized controlled trial was performed in 15 healthy participants. Four separate square areas on the abdomen were randomly injected intradermally with different dilutions of BoNT-A (1:2.5, 1:5, 1:7.5) and normal saline (control). Two weeks after injection, hyperpigmented spots were induced by UVB irradiation at the experimental sites. The lightness index and hyperpigmentation scores from blinded physician and participants were evaluated. RESULTS Fifteen participants completed the study. One week after UVB irradiation, all BoNT-A-treated sites had a significantly lower degree of hyperpigmentation than the control site in lightness index and hyperpigmentation scores from blinded physician and participants (p < .05). However, no statistically significant difference was observed between different concentrations of BoNT-A. No side effects were observed throughout the study period. CONCLUSION Intradermal BoNT-A injection provided a protective effect from UVB-induced hyperpigmentation. It may be used for other hyperpigmentation disorders that are aggravated by UVB.
Collapse
|
11
|
Pathogenesis of Keratinocyte Carcinomas and the Therapeutic Potential of Medicinal Plants and Phytochemicals. Molecules 2021; 26:molecules26071979. [PMID: 33915735 PMCID: PMC8037492 DOI: 10.3390/molecules26071979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022] Open
Abstract
Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.
Collapse
|
12
|
Yan H, Liu H, Zhang H, Dang M, Lin Y. Protective effect of Viburnum grandiflorum against ultraviolet-B radiation-induced cellular and molecular changes in human epidermal keratinocytes. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_397_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Yan H, Liu H, Zhang H, Dang M, Lin Y. Protective effect of Viburnum grandiflorum against ultraviolet-B radiation-induced cellular and molecular changes in human epidermal keratinocytes. Pharmacogn Mag 2021. [DOI: 10.4103/0973-1296.313853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Hamba N, Gerbi A, Tesfaye S. Histopathological effects of ultraviolet radiation exposure on the ocular structures in animal studies –literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Choksi J, Vora J, Shrivastava N. Bioactive Pigments from Isolated Bacteria and Its Antibacterial, Antioxidant and Sun Protective Application Useful for Cosmetic Products. Indian J Microbiol 2020; 60:379-382. [PMID: 32647396 PMCID: PMC7329960 DOI: 10.1007/s12088-020-00870-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial pigments are the unique and sustainable source of bioactive colour compounds used in cosmetics, food, textiles, printing and pharmaceutical products. Here, we report the pigment-producing isolates and their biological activities that could be benefited for different industries including cosmeceuticals. In this study, a total of 19 pigment-producing bacteria were isolated and purified from collected soil and water samples. The colour production ability of purified bacteria was observed up to 5 transfers. Of the 19 isolates, two isolates lost colour production ability in subsequent transfers. Crude pigments extracted from the remaining 17 isolates showed sunscreen activity in the range of 0.4-8.34. However, only 6 of them showed significant antibacterial and antioxidant activities. In the media optimization experiment, these 6 bacteria showed optimum growth in neutral to alkaline pH, while optimum temperatures for growth were different for different bacteria. One isolate produces the promising pigment, out of all six potential pigments. It is stable up to 5 transfers, having antioxidant and antibacterial activity with Sun protective activity; the strain was identified using 16srRNA gene sequencing and obtained accession number as MK770403 (probable strain is Staphylococcus xylosus) from National Center for Biotechnology Information (NCBI) database. The results of this study suggested that these bioactive pigments can further be developed and used as antibacterial, antioxidant and sun-protective ingredients in cosmeceuticals.
Collapse
Affiliation(s)
- Janki Choksi
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, Surat, Gujarat India
| | - Jaykant Vora
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
| |
Collapse
|
16
|
Kim D, Kim HJ, Jun HS. Polygonum multiflorum Thunb. Extract Stimulates Melanogenesis by Induction of COX2 Expression through the Activation of p38 MAPK in B16F10 Mouse Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7642019. [PMID: 32714420 PMCID: PMC7334760 DOI: 10.1155/2020/7642019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Polygonum multiflorum Thunb. (PM) root extracts have been used for treating graying hair in Oriental medicine; however, the molecular mechanisms underlying the melanogenic effects of PM root have not been fully understood. In the present study, we investigated the melanogenic effects of an ethanolic extract of PM root (PME) and the mechanisms involved. We examined the effects of PME on cell viability, cellular melanin content, and tyrosinase activity in B16F10 cells. The melanogenic mechanism of PME was explored using signaling inhibitors and examining the expression of melanogenic genes and signaling molecules by western blot and RT-qPCR analyses. PME did not exhibit any cytotoxicity in B16F10 cells compared to that in control cells. PME treatment significantly increased melanin production and tyrosinase activity. In addition, PME induced the expression of cyclooxygenase-2 (COX2) as well as that of melanogenic genes, such as microphthalmia-associated transcription factor (MiTF), tyrosinase-related protein (Trp) 1, Trp2, and tyrosinase, in B16F10 cells. PME treatment increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), and pretreatment with SB 203580, a p38 MAPK inhibitor, significantly suppressed this PME-induced increase in the expression of COX2 and melanogenic genes. These results indicate that PME induced the expression of melanogenic genes by inducing COX2 expression via the activation of the p38 MAPK pathway, thereby contributing to the enhancement of melanogenesis.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyo-Jin Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21565, Republic of Korea
| |
Collapse
|
17
|
Protective Effects of Salicornia europaea on UVB-Induced Misoriented Cell Divisions in Skin Epithelium. COSMETICS 2020. [DOI: 10.3390/cosmetics7020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Correct orientation of cell division is extremely important in the maintenance, regeneration, and repair of continuously proliferating tissues, such as the epidermis. Regulation of the axis of division of epidermal cells prevents the apoptosis-induced compensatory proliferation, and eventually the cancer. Thus, the orientation of cell division is critical for maintaining the tissue architecture. In this study, we investigated the effects of S. europaea extract on the texture of human skin and the behavior of these cells during skin morphogenesis. In sun-exposed skin, S. europaea improved the texture. A multilayered, highly differentiated in vitro skin model indicated that, S. europaea extract suppressed the UVB-induced changes in the morphology of basal keratinocytes. Orientation of cell division was determined by measuring the axis of mitosis in the vertical sections of our experimental model. Analyses of the digital images revealed that S. europaea preserved the axis of division of basal keratinocytes from UVB-induced perturbations. Our findings uncover a new mechanism by which S. europaea responds to the spindle misorientation induced by UVB.
Collapse
|
18
|
Olinski LE, Lin EM, Oancea E. Illuminating insights into opsin 3 function in the skin. Adv Biol Regul 2020; 75:100668. [PMID: 31653550 PMCID: PMC7059126 DOI: 10.1016/j.jbior.2019.100668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Because sunlight is essential for human survival, we have developed complex mechanisms for detecting and responding to light stimuli. The eyes and skin are major organs for sensing light and express several light-sensitive opsin receptors. These opsins mediate cellular responses to spectrally-distinct wavelengths of visible and ultraviolet light. How the eyes mediate visual phototransduction is well understood, but less is known about how the skin detects light. Both human and murine skin express a wide array of opsins, with one of the most highly expressed being the functionally elusive opsin 3 (OPN3). In this review we explore light reception, opsin expression and signaling in skin cells; we compile data elucidating potential functions for human OPN3 in skin, with emphasis on recent studies investigating OPN3 regulation of melanin within epidermal melanocytes.
Collapse
Affiliation(s)
- Lauren E Olinski
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA.
| | - Erica M Lin
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA.
| |
Collapse
|
19
|
Tobramycin Promotes Melanogenesis by Upregulating p38 MAPK Protein Phosphorylation in B16F10 Melanoma Cells. Antibiotics (Basel) 2019; 8:antibiotics8030140. [PMID: 31491963 PMCID: PMC6783951 DOI: 10.3390/antibiotics8030140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Tobramycin is an aminoglycoside-based natural antibiotic derived from Streptomyces tenebrarius, which is primarily used for Gram-negative bacterial infection treatment. Although tobramycin has been utilized in clinical practice for a long time, it has exhibited several side effects, leading to the introduction of more effective antibiotics. Therefore, we conducted our experiments focusing on new possibilities for the clinical use of tobramycin. How tobramycin affects skin melanin formation is unknown. This study used B16F10 melanoma cells to assess the effect of tobramycin on melanin production. After cytotoxicity was assessed by MTT assay, melanin content and tyrosinase activity analyses revealed that tobramycin induces melanin synthesis in B16F10 cells. Next, Western blot analyses were performed to elucidate the mechanism by which tobramycin increases melanin production; phosphorylated p38 protein expression was upregulated. Protein inhibitors have been used to elucidate the mechanism of tobramycin. Kanamycin A and B are structurally similar to tobramycin, and 2-DOS represents the central structure of these antibiotics. The effects of these substances on melanogenesis were evaluated. Kanamycin A reduced melanin production, whereas kanamycin B and 2-DOS had no effect. Overall, our data indicated that tobramycin increases melanin production by promoting p38 protein phosphorylation in B16F10 melanoma cells.
Collapse
|
20
|
Chiang TC, Koss B, Su LJ, Washam CL, Byrum SD, Storey A, Tackett AJ. Effect of Sulforaphane and 5-Aza-2'-Deoxycytidine on Melanoma Cell Growth. MEDICINES 2019; 6:medicines6030071. [PMID: 31252639 PMCID: PMC6789461 DOI: 10.3390/medicines6030071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Background: UV exposure-induced oxidative stress is implicated as a driving mechanism for melanoma. Increased oxidative stress results in DNA damage and epigenetic dysregulation. Accordingly, we explored whether a low dose of the antioxidant sulforaphane (SFN) in combination with the epigenetic drug 5-aza-2’-deoxycytidine (DAC) could slow melanoma cell growth. SFN is a natural bioactivated product of the cruciferous family, while DAC is a DNA methyltransferase inhibitor. Methods: Melanoma cell growth characteristics, gene transcription profiles, and histone epigenetic modifications were measured after single and combination treatments with SFN and DAC. Results: We detected melanoma cell growth inhibition and specific changes in gene expression profiles upon combinational treatments with SFN and DAC, while no significant alterations in histone epigenetic modifications were observed. Dysregulated gene transcription of a key immunoregulator cytokine—C-C motif ligand 5 (CCL-5)—was validated. Conclusions: These results indicate a potential combinatorial effect of a dietary antioxidant and an FDA-approved epigenetic drug in controlling melanoma cell growth.
Collapse
Affiliation(s)
- Tung-Chin Chiang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Brian Koss
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - L Joseph Su
- Winthrop P. Rockefeller Cancer Institute, Cancer Prevention and Population Sciences Program & Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charity L Washam
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Stephanie D Byrum
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Aaron Storey
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
21
|
Evaluation of Anti-Tyrosinase and Antioxidant Properties of Four Fern Species for Potential Cosmetic Applications. FORESTS 2019. [DOI: 10.3390/f10020179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ferns are poorly explored species from a pharmaceutical perspective compared to other terrestrial plants. In this work, the antioxidant and tyrosinase inhibitory activities of hydrophilic and lipophilic extracts, together with total polyphenol content, were evaluated in order to explore the potential cosmetic applications of four Spanish ferns collected in the Prades Mountains (Polypodium vulgare L., Asplenium adiantum-nigrum L., Asplenium trichomanes L., and Ceterach officinarum Willd). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC) and xanthine/xanthine oxidase (X/XO) assays. The potential to avoid skin hyperpigmentation was tested by inhibiting the tyrosinase enzyme, as this causes melanin synthesis in the epidermis. All ferns were confirmed as antioxidant and anti-tyrosinase agents, but interestingly hydrophilic extracts (obtained with methanol) were more potent and effective compared to lipophilic extracts (obtained with hexane). Polypodium vulgare, Asplenium adiantum-nigrum, and Ceterach officinarum methanolic extracts performed the best as antioxidants. Polypodium vulgare methanolic extract also showed the highest activity as a tyrosinase inhibitor.
Collapse
|
22
|
Shirato K, Takanari J, Koda T, Sakurai T, Ogasawara J, Ohno H, Kizaki T. A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study. Environ Health Prev Med 2018; 23:40. [PMID: 30131067 PMCID: PMC6104003 DOI: 10.1186/s12199-018-0730-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022] Open
Abstract
Background Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs). Methods NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm2). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively. Results UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1–6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs. Conclusions EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts. Electronic supplementary material The online version of this article (10.1186/s12199-018-0730-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Jun Takanari
- Amino Up Chemical Co. Ltd, 363-32 Shin-ei, Kiyota, Sapporo, Hokkaido, 004-0839, Japan
| | - Tomoko Koda
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Junetsu Ogasawara
- Department of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hideki Ohno
- Social Medical Corporation, The Yamatokai Foundation, 1-13-12 Nangai, Higashiyamato, Tokyo, 207-0014, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
23
|
Nguyen NT, Fisher DE. MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res 2018; 32:224-236. [PMID: 30019545 DOI: 10.1111/pcmr.12726] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
Ultraviolet radiation (UVR) has numerous effects on skin, including DNA damage, tanning, vitamin D synthesis, carcinogenesis, and immunomodulation. Keratinocytes containing damaged DNA secrete both α-melanocyte-stimulating hormone (α-MSH), which stimulates pigment production by melanocytes, and the opioid β-endorphin, which can trigger addiction-like responses to UVR. The pigmentation (tanning) response is an adaptation that provides some delayed protection against further DNA damage and carcinogenesis, while the opioid response may be an evolutionary adaptation for promoting sun-seeking behavior to prevent vitamin D deficiency. Here, we review the pigmentation response to UVR, driven by melanocytic microphthalmia-associated transcription factor (MITF), and evidence for UVR-induced melanomagenesis and addiction. We also discuss potential applications of a novel approach to generate protective pigmentation in the absence of UVR (sunless tanning) using a topical small-molecule inhibitor of the salt-inducible kinase (SIK) family.
Collapse
Affiliation(s)
- Nhu T Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Cizauskaite U, Bernatoniene J. Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation. Molecules 2018; 23:molecules23061428. [PMID: 29895799 PMCID: PMC6100419 DOI: 10.3390/molecules23061428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
The increased interest in natural cosmetics has resulted in a higher market demand for preservative-free products based on herbal ingredients. An innovative W/O/W type emulsions containing herbal extracts were prepared directly; its cation form was induced by an ethanolic rosemary extract and stabilized using weak herbal gels. Due to the wide phytochemical composition of herbal extracts and the presence of alcohol in the emulsion system, which can cause skin irritation, sensitization or dryness when applied topically, the safety of the investigated drug delivery system is necessary. The aim of our study was to estimate the potential of W/O/W emulsions based on natural ingredients for skin irritation and phototoxicity using reconstructed 3D epidermis models in vitro and to evaluate in vivo its effect on human skin moisture, sebum content and pigmentation by biomedical examination using a dermatoscopic camera and corneometer. According to the results obtained after in vitro cell viability test the investigated emulsion was neither irritant nor phototoxic to human skin keratinocytes. W/O/W emulsion did not cause skin dryness in vivo, despite the fact that it contained ethanol. We can conclude that the emulsion is safe for use as a leave-on product due to the positive effect on human skin characteristics or as a semisolid pharmaceutical base where active compounds could be encapsulated.
Collapse
Affiliation(s)
- Ugne Cizauskaite
- Institute of Pharmaceutical Technology, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technology, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
| |
Collapse
|
25
|
Muzaffer U, Paul VI, Prasad NR, Karthikeyan R, Agilan B. Protective effect of Juglans regia L. against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:100-111. [PMID: 29655676 DOI: 10.1016/j.phymed.2018.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/01/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Juglans regia L. has a history of traditional medicinal use for the treatment of various maladies and have been documented with significant antioxidant and antiinflammatory properties. Although all parts of the plant are medicinally important, but male the flower of the plant has not been yet investigated against the photo-damage. PURPOSE The present study, we sought to determine the photoprotective effect of the male flower of J. regia L. against ultraviolet-B radiation-induced inflammatory responses in human skin cells. METHODS The profile of pharmacological active compounds present in the male flower of J. regia was analyzed by GC-MS. Then, the antioxidant property of methanolic extract of J. regia (MEJR) was analyzed by in vitro free radical scavenging assays. Further, we analyzed the sun protection factor of this extract by spectrophotometry. Moreover, we investigated the photoprotective effect of MEJR against UVB induced inflammatory signaling in human epidermal cells. Human skin epidermal keratinocytes (HaCaT) were pretreated with the MEJR (80 µg/ml), 30 min prior to UVB-irradiation at a dose of 20 mJ/cm2 and were investigated for lipid peroxidation, enzymatic antioxidants activity, apoptosis and inflammatory markers expression level. RESULTS The GC-MS results showed the presence of good amount of pharmacologically active compounds in the MEJR. We observed that the MEJR possess significant free radical scavenging activity and it was comparable with standard antioxidants. Further, the MEJR exhibits 8.8 sun-protection-factor (SPF) value. Pretreatment with MEJR, 30 min prior to UVB-irradiation, prevented ROS generation, lipid peroxidation and restored the activity of antioxidant status in HaCaT cells. Moreover, MEJR pretreatment significantly prevented UVB activated inflammatory markers like TNF-α, IL-1, IL-6, NF-κB, COX-2 in HaCaT. CONCLUSION The present findings suggest that MEJR exhibit photoprotective effects and hence it may be useful for the treatment of inflammation related responses. The pharmacological mechanism of MEJR partly associated with its UV absorbance, modulation of inflammatory signaling as well as due to its free radical scavenging capability.
Collapse
Affiliation(s)
- Umar Muzaffer
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India.
| | - V I Paul
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India.
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| | - Ramasamy Karthikeyan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| | - Balupillai Agilan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| |
Collapse
|
26
|
Akaberi M, Emami SA, Vatani M, Tayarani-Najaran Z. Evaluation of Antioxidant and Anti-Melanogenic Activity of Different Extracts of Aerial Parts of N. Sintenisii in Murine Melanoma B16F10 Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:225-235. [PMID: 29755554 PMCID: PMC5937093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nepeta (Lamiaceae) is an important genus with beneficial medicinal properties. N. sintenisii Bornm. has been used in folk medicine of Iran to cure various diseases. We investigated the anti-melanogenesis effects of n-hexane, MeOH, CH2Cl2, n-BuOH, EtOAc, and H2O extracts isolated from the plant in B16 melanoma cells. Various assays including cytotoxicity, mushroom tyrosinase inhibition, inhibition of cellular tyrosinase, melanin content, the amount of reactive oxygen species and western blotting were done to assess the plant activities on melanogenesis inhibition. All extracts of N. sintenisii could significantly reduce both tyrosinase activity and the cellular melanin content. Reactive oxygen species were also significantly decreased following the treatment of cell with n-BuOH and EtOAc extracts with no cytotoxicity. The plant significantly decreased the amount of microphthalmia-associated transcription factor proteins. Collectively, N. sintenisii inhibited melanin synthesis and tyrosinase activity in B16 melanoma cells with no cytotoxic effects. Hence, it might merit further investigations for elucidation of anti-hyperpigmentation agents.
Collapse
Affiliation(s)
- Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. ,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Vatani
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. ,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Corresponding author: E-mail:
| |
Collapse
|
27
|
Song HJ, Lee SH, Choi GS, Shin J. Repeated ultraviolet irradiation induces the expression of Toll-like receptor 4, IL-6, and IL-10 in neonatal human melanocytes. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:145-151. [PMID: 29063638 DOI: 10.1111/phpp.12359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human melanocytes express Toll-like receptor 4 (TLR4), which regulates ultraviolet (UV)-induced cutaneous immunosuppression in Langerhans cells. Lipopolysaccharide (LPS) stimulation increases melanocyte pigmentation and TLR4 expression, while inducing local innate inflammatory responses. AIMS We investigated whether UV radiation induces TLR4 expression in neonatal human melanocytes (NHMs) and how this affects the immune system. METHODS We cultured NHMs with LPS treatment or with one-time or repeated UVA or UVB exposure, and investigated and compared the effects on TLR4 expression, melanin contents, and cytokine production. RESULTS NHMs in the resting state did not express TLR4. LPS stimulation induced TLR4 expression and increased pigmentation. TLR4 expression was not detected after single-dose UVA or UVB treatment, but pigmentation increased. Repeated UV treatment induced TLR4 expression and increased pigmentation. LPS stimulation and repeated UV treatment increased IL-6 secretion, and repeated UVB treatment increased IL-10 secretion. CONCLUSION These results suggest that human melanocytes may actively participate in UV-induced immune modulation.
Collapse
Affiliation(s)
- Hee Jin Song
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Si Hyub Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Gwang Seong Choi
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Jeonghyun Shin
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
28
|
The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose. Arch Dermatol Res 2017; 309:217-223. [DOI: 10.1007/s00403-017-1717-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/11/2016] [Accepted: 01/17/2017] [Indexed: 11/27/2022]
|
29
|
Yamate Y, Hiramoto K, Sato EF. The Preventive Effect of Coffee Compounds on Dermatitis and Epidermal Pigmentation after Ultraviolet Irradiation in Mice. Skin Pharmacol Physiol 2017; 30:24-35. [PMID: 28152530 DOI: 10.1159/000455237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation is well known to promote inflammation and pigmentation of skin. UVB mainly affects dermatitis and pigmentation. Coffee contains a number of polyphenols, such as caffeic acid (CA) and chlorogenic acid (CGA) but their in vivo bioactivity for photobiology remains unclear. METHODS C57BL/6j male mice were irradiated with UVB (1.0 kJ/m2/day) for 3 days. Five days after the final session of UVB irradiation, the dorsal skin, ear epidermis, and blood samples were analyzed to investigate the inflammatory factors, melanogenesis factors and related hormones. RESULTS After the oral administration of CA (100 mg/day) or CGA (100 mg/day) for 8 days, only CA was found to inhibit dermatitis and pigmentation. The pathway by which CA inhibits dermatitis is related to the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)1/2/cAMP response element binding protein (CREB) pathway. Otherwise, the pathway by which CA inhibits pigmentation is related to the activation of the β-endorphin-μ-opioid receptor and suppresses the cAMP-microphthalmia-associated transcription factor (MITF) pathway. CONCLUSION It is suggested that the oral administration of CA prevented dermatitis and pigmentation after UVB irradiation in mice.
Collapse
Affiliation(s)
- Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | | | |
Collapse
|
30
|
Abbas S, Alam S, Singh KP, Kumar M, Gupta SK, Ansari KM. Aryl Hydrocarbon Receptor Activation Contributes to Benzanthrone-Induced Hyperpigmentation via Modulation of Melanogenic Signaling Pathways. Chem Res Toxicol 2017; 30:625-634. [PMID: 28029781 DOI: 10.1021/acs.chemrestox.6b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzanthrone (BA), an oxidized polycyclic aromatic hydrocarbon (PAH), has been found to be a potential health threat to occupational workers involved in dye manufacturing factories. It has been observed that occupational workers become exposed to BA either during manufacturing, pulverization, or storage and developed various kinds of skin diseases like contact dermatitis, itching, erythema, roughness, and foremost, hyperpigmentation. It has been shown that some environmental organic pollutants (POPs) like dioxins, furans, and polychlorinated biphenyls (PCBs) may act as ligands for the aryl hydrocarbon receptor (AhR) and regulate hyperpigmentation. Here, we hypothesized that BA may also act as a ligand for AhR and possibly regulate the melanogenic pathway to induced hyperpigmentation. Our computation results indicate that BA has a high binding affinity toward AhR for the initiation of melanogenic signaling. Following the in silico predictions, we used primary mouse melanocytes (PMMs) and confirmed that exposure to BA (5, 10, and 25 μM) resulted in an increase in AhR expression, tyrosinase activity, and melanin synthesis. Moreover, to study the physiological relevance of these findings, C57BL/6 mice were topically exposed to BA, and enhanced pigmentation and melanin synthesis were observed. Furthermore, the study was extended to assess the mechanistic aspects involved in BA-induced hyperpigmentation in PMMs as well as in mouse skin. Our results suggest that BA exposure initiates AhR signaling and increases tyrosinase enzyme activity and melanin synthesis. Moreover, the genes that regulate the melanin synthesis, such as TRP-1, TRP-2 and the transcription factor MITF, were also found to be increased. Thus, altogether, we suggest that BA-AhR interactions are critical for BA-induced hyperpigmentation.
Collapse
Affiliation(s)
- Sabiya Abbas
- Department of Biochemistry, School of Dental Sciences, Babu Banarsi Das University (BBDU) , Faizabad Road, Lucknow, Uttar Pradesh 226028, India
| | | | | | | | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock , 18051 Rostock, Germany
| | | |
Collapse
|
31
|
Curiel-Olmo S, García-Castaño A, Vidal R, Pisonero H, Varela I, León-Castillo A, Trillo E, González-Vela C, García-Diaz N, Almaraz C, Moreno T, Cereceda L, Madureira R, Martinez N, Ortiz-Romero P, Valdizán E, Piris MA, Vaqué JP, Piris M, Vaqué J. Individualized strategies to target specific mechanisms of disease in malignant melanoma patients displaying unique mutational signatures. Oncotarget 2016; 6:25452-65. [PMID: 26327537 PMCID: PMC4694844 DOI: 10.18632/oncotarget.4545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Targeted treatment of advanced melanoma could benefit from the precise molecular characterization of melanoma samples. Using a melanoma-specific selection of 217 genes, we performed targeted deep sequencing of a series of biopsies, from advanced melanoma cases, with a Breslow index of ≥4 mm, and/or with a loco-regional infiltration in lymph nodes or presenting distant metastasis, as well of a collection of human cell lines. This approach detected 3–4 mutations per case, constituting unique mutational signatures associated with specific inhibitor sensitivity. Functionally, case-specific combinations of inhibitors that simultaneously targeted MAPK-dependent and MAPK-independent mechanisms were most effective at inhibiting melanoma growth, against each specific mutational background. These observations were challenged by characterizing a freshly resected biopsy from a metastatic lesion located in the skin and soft tissue and by testing its associated therapy ex vivo and in vivo using melanocytes and patient-derived xenografted mice, respectively. The results show that upon mutational characterization of advanced melanoma patients, specific mutational profiles can be used for selecting drugs that simultaneously target several deregulated genes/pathways involved in tumor generation or progression.
Collapse
Affiliation(s)
- Soraya Curiel-Olmo
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | | | - Rebeca Vidal
- Department of Pharmacology, University of Cantabria (UC), Santander, Spain, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC, Universidad de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.,Department of Pharmacology, Medicine School, Complutense University, Madrid, Spain
| | - Helena Pisonero
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC, Universidad de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Alicia León-Castillo
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain.,Pathology Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Eugenio Trillo
- Plastic Surgery Service Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carmen González-Vela
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain.,Pathology Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria García-Diaz
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Carmen Almaraz
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Thaidy Moreno
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC, Universidad de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Cereceda
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Rebeca Madureira
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Nerea Martinez
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Pablo Ortiz-Romero
- Dermatology Service, Instituto I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elsa Valdizán
- Department of Pharmacology, University of Cantabria (UC), Santander, Spain, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC, Universidad de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Miguel A Piris
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - José P Vaqué
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Miguel Piris
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain.,Pathology Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - José Vaqué
- Cancer Genomics Group, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC, Universidad de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
32
|
Greinert R, de Vries E, Erdmann F, Espina C, Auvinen A, Kesminiene A, Schüz J. European Code against Cancer 4th Edition: Ultraviolet radiation and cancer. Cancer Epidemiol 2015; 39 Suppl 1:S75-83. [PMID: 26096748 DOI: 10.1016/j.canep.2014.12.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/10/2014] [Accepted: 12/14/2014] [Indexed: 12/31/2022]
Abstract
Ultraviolet radiation (UVR) is part of the electromagnetic spectrum emitted naturally from the sun or from artificial sources such as tanning devices. Acute skin reactions induced by UVR exposure are erythema (skin reddening), or sunburn, and the acquisition of a suntan triggered by UVR-induced DNA damage. UVR exposure is the main cause of skin cancer, including cutaneous malignant melanoma, basal-cell carcinoma, and squamous-cell carcinoma. Skin cancer is the most common cancer in fair-skinned populations, and its incidence has increased steeply over recent decades. According to estimates for 2012, about 100,000 new cases of cutaneous melanoma and about 22,000 deaths from it occurred in Europe. The main mechanisms by which UVR causes cancer are well understood. Exposure during childhood appears to be particularly harmful. Exposure to UVR is a risk factor modifiable by individuals' behaviour. Excessive exposure from natural sources can be avoided by seeking shade when the sun is strongest, by wearing appropriate clothing, and by appropriately applying sunscreens if direct sunlight is unavoidable. Exposure from artificial sources can be completely avoided by not using sunbeds. Beneficial effects of sun or UVR exposure, such as for vitamin D production, can be fully achieved while still avoiding too much sun exposure and the use of sunbeds. Taking all the scientific evidence together, the recommendation of the 4th edition of the European Code Against Cancer for ultraviolet radiation is: "Avoid too much sun, especially for children. Use sun protection. Do not use sunbeds."
Collapse
Affiliation(s)
- Rüdiger Greinert
- Center of Dermatology, Department of Molecular Cell Biology, Elbekliniken Stade/Buxtehude, Am Krankenhaus 1, D-21614 Buxtehude, Germany
| | - Esther de Vries
- Department of Public Health, Erasmus MC/Section of Cancer Information, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Friederike Erdmann
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Anssi Auvinen
- School of Health Sciences, University of Tampere, FI-33014 Tampere, Finland; STUK - Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki, Finland
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
33
|
Detert H, Hedlund S, Anderson CD, Rodvall Y, Festin K, Whiteman DC, Falk M. Validation of sun exposure and protection index (SEPI) for estimation of sun habits. Cancer Epidemiol 2015; 39:986-93. [PMID: 26547793 DOI: 10.1016/j.canep.2015.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In both Sweden and Australia high incidence rates of skin cancer have become a major health problem. In prevention and risk communication, it is important to have reliable ways for identifying people with risky sun habits. In this study the validity and reliability of the questionnaire Sun Exposure Protection Index (SEPI), developed to assess individual's sun habits and their propensity to increase sun protection during routine, often brief, clinical encounters, has been evaluated. The aim of our study was to evaluate validity and reliability of the proposed SEPI scoring instrument, in two countries with markedly different ultraviolet radiation environments (Sweden and Australia). METHOD Two subpopulations in Sweden and Australia respectively were asked to fill out the SEPI together with the previously evaluated Readiness to Alter Sun Protective Behaviour questionnaire (RASP-B) and the associated Sun-protective Behaviours Questionnaire. To test reliability, the SEPI was again filled out by the subjects one month later. RESULTS Comparison between SEPI and the questions in the Sun-protective Behaviours Questionnaire, analyzed with Spearman's Rho, showed good correlations regarding sun habits. Comparison between SEPI and RASP-B regarding propensity to increase sun protection showed concurrently lower SEPI mean scores for action stage, but no difference between precontemplation and contemplation stages. The SEPI test-retest analysis indicated stability over time. Internal consistency of the SEPI, assessed with Cronbach's alpha estimation showed values marginally lower than the desired >0.70 coefficient value generally recommended, and was somewhat negatively affected by the question on sunscreen use, likely related to the classic "sunscreen paradox". There were some differences in the performance of the SEPI between the Swedish and Australian samples, possibly due to the influence of "available" sunlight and differing attitudes to behaviour and protection "at home" and on vacation. CONCLUSIONS SEPI appears to be a stable instrument with an overall acceptable validity and reliability, applicable for use in populations exposed to different UVR environments, in order to evaluate individual sun exposure and protection.
Collapse
Affiliation(s)
- H Detert
- Division of Community Medicine, Primary Care, Department of Medicine and Health Sciences, Linköping University, S-581 83 Linköping, Sweden.
| | - S Hedlund
- Division of Community Medicine, Primary Care, Department of Medicine and Health Sciences, Linköping University, S-581 83 Linköping, Sweden.
| | - C D Anderson
- Division of Dermatology, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden.
| | - Y Rodvall
- Department of Public Health Sciences, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - K Festin
- Division of Community Medicine, Primary Care, Department of Medicine and Health Sciences, Linköping University, S-581 83 Linköping, Sweden.
| | - D C Whiteman
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Qld 4029 Herston, Australia.
| | - M Falk
- Division of Community Medicine, Primary Care, Department of Medicine and Health Sciences, Linköping University, S-581 83 Linköping, Sweden.
| |
Collapse
|
34
|
Lee JJ, Sholl LM, Lindeman NI, Granter SR, Laga AC, Shivdasani P, Chin G, Luke JJ, Ott PA, Hodi FS, Mihm MC, Lin JY, Werchniak AE, Haynes HA, Bailey N, Liu R, Murphy GF, Lian CG. Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naïve patient melanomas. Clin Epigenetics 2015; 7:59. [PMID: 26221190 PMCID: PMC4517542 DOI: 10.1186/s13148-015-0091-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent developments in genomic sequencing have advanced our understanding of the mutations underlying human malignancy. Melanoma is a prototype of an aggressive, genetically heterogeneous cancer notorious for its biologic plasticity and predilection towards developing resistance to targeted therapies. Evidence is rapidly accumulating that dysregulated epigenetic mechanisms (DNA methylation/demethylation, histone modification, non-coding RNAs) may play a central role in the pathogenesis of melanoma. Therefore, we sought to characterize the frequency and nature of mutations in epigenetic regulators in clinical, treatment-naïve, patient melanoma specimens obtained from one academic institution. RESULTS Targeted next-generation sequencing for 275 known and investigative cancer genes (of which 41 genes, or 14.9 %, encoded an epigenetic regulator) of 38 treatment-naïve patient melanoma samples revealed that 22.3 % (165 of 740) of all non-silent mutations affected an epigenetic regulator. The most frequently mutated genes were BRAF, MECOM, NRAS, TP53, MLL2, and CDKN2A. Of the 40 most commonly mutated genes, 12 (30.0 %) encoded epigenetic regulators, including genes encoding enzymes involved in histone modification (MECOM, MLL2, SETD2), chromatin remodeling (ARID1B, ARID2), and DNA methylation and demethylation (TET2, IDH1). Among the 38 patient melanoma samples, 35 (92.1 %) harbored at least one mutation in an epigenetic regulator. The genes with the highest number of total UVB-signature mutations encoded epigenetic regulators, including MLL2 (100 %, 16 of 16) and MECOM (82.6 %, 19 of 23). Moreover, on average, epigenetic genes harbored a significantly greater number of UVB-signature mutations per gene than non-epigenetic genes (3.7 versus 2.4, respectively; p = 0.01). Bioinformatics analysis of The Cancer Genome Atlas (TCGA) melanoma mutation dataset also revealed a frequency of mutations in the 41 epigenetic genes comparable to that found within our cohort of patient melanoma samples. CONCLUSIONS Our study identified a high prevalence of somatic mutations in genes encoding epigenetic regulators, including those involved in DNA demethylation, histone modification, chromatin remodeling, and microRNA processing. Moreover, UVB-signature mutations were found more commonly among epigenetic genes than in non-epigenetic genes. Taken together, these findings further implicate epigenetic mechanisms, particularly those involving the chromatin-remodeling enzyme MECOM/EVI1 and histone-modifying enzyme MLL2, in the pathobiology of melanoma.
Collapse
Affiliation(s)
- Jonathan J. Lee
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Lynette M. Sholl
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Neal I. Lindeman
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Scott R. Granter
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Alvaro C. Laga
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Priyanka Shivdasani
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Gary Chin
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Jason J. Luke
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Patrick A. Ott
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - F. Stephen Hodi
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Martin C. Mihm
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Jennifer Y. Lin
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Andrew E. Werchniak
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Harley A. Haynes
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Nancy Bailey
- />Melanoma Center, Dana–Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215-5450 USA
| | - Robert Liu
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - George F. Murphy
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| | - Christine G. Lian
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, EBRC Suite 401, Boston, MA 02115 USA
| |
Collapse
|
35
|
Zdybel M, Chodurek E, Pilawa B. Free radicals in ultraviolet irradiated melanins and melanin complexes with Cd(II) and Cu(II) - EPR examination. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
Jayanthy A, Setaluri V. Light-regulated microRNAs. Photochem Photobiol 2014; 91:163-72. [PMID: 25389067 DOI: 10.1111/php.12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation-induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.
Collapse
Affiliation(s)
- Ashika Jayanthy
- Department of Dermatology and Graduate Program in Comparative Biomedical Sciences, School of Medicine and Public Health & School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | | |
Collapse
|
37
|
Vogel RI, Ahmed RL, Nelson HH, Berwick M, Weinstock MA, Lazovich D. Exposure to indoor tanning without burning and melanoma risk by sunburn history. J Natl Cancer Inst 2014; 106:dju219. [PMID: 25031276 DOI: 10.1093/jnci/dju219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Indoor tanning is carcinogenic to humans. Individuals report that they tan indoors before planning to be in the sun to prevent sunburns, but whether skin cancer is subsequently reduced is unknown. Using a population-based case-control study, we calculated the association between melanoma and indoor tanning after excluding exposed participants reporting indoor tanning-related burns, stratified by their number of lifetime sunburns (0, 1-2, 3-5, >5). Confounding was addressed using propensity score analysis methods. All statistical tests were two-sided. We observed increased risk of melanoma across all sunburn categories for participants who had tanned indoors without burning compared with those who never tanned indoors, including those who reported zero lifetime sunburns (odds ratio = 3.87; 95% confidence interval = 1.68 to 8.91; P = .002). These data provide evidence that indoor tanning is a risk factor for melanoma even among persons who reported never experiencing burns from indoor tanning or outdoor sun exposure.
Collapse
Affiliation(s)
- Rachel Isaksson Vogel
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Rehana L Ahmed
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Heather H Nelson
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Marianne Berwick
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Martin A Weinstock
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - DeAnn Lazovich
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW).
| |
Collapse
|
38
|
Vogel RI, Ahmed RL, Nelson HH, Berwick M, Weinstock MA, Lazovich D. Exposure to indoor tanning without burning and melanoma risk by sunburn history. J Natl Cancer Inst 2014; 106:dju112. [PMID: 24872541 DOI: 10.1093/jnci/dju112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indoor tanning is carcinogenic to humans. Individuals report that they tan indoors before planning to be in the sun to prevent sunburns, but whether skin cancer is subsequently reduced is unknown. Using a population-based case-control study, we calculated the association between melanoma and indoor tanning after excluding exposed participants reporting indoor tanning-related burns, stratified by their number of lifetime sunburns (0, 1-2, 3-5, >5). Confounding was addressed using propensity score analysis methods. All statistical tests were two-sided. We observed increased risk of melanoma across all sunburn categories for participants who had tanned indoors without burning compared with those who never tanned indoors, including those who reported zero lifetime sunburns (odds ratio = 3.87; 95% confidence interval = 1.68 to 8.91; P = .002). These data provide evidence that indoor tanning is a risk factor for melanoma even among persons who reported never experiencing burns from indoor tanning or outdoor sun exposure.
Collapse
Affiliation(s)
- Rachel Isaksson Vogel
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Rehana L Ahmed
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Heather H Nelson
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Marianne Berwick
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - Martin A Weinstock
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW)
| | - DeAnn Lazovich
- Affiliations of authors: Masonic Cancer Center (RIV, HHN, DL), Department of Dermatology (RLA), and Division of Epidemiology and Community Health (HHN, DL), University of Minnesota, Minneapolis, MN; Department of Internal Medicine and University of New Mexico Cancer Center, Albuquerque, NM (MB); Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM (MB); Dermatoepidemiology Unit, VA Medical Center, Providence, RI (MAW); Department of Dermatology, Rhode Island Hospital, Providence, RI (MAW); Departments of Dermatology and Community Health, Brown University, Providence, RI (MAW).
| |
Collapse
|
39
|
UV signaling pathways within the skin. J Invest Dermatol 2014; 134:2080-2085. [PMID: 24759085 PMCID: PMC4102648 DOI: 10.1038/jid.2014.161] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/25/2014] [Accepted: 03/12/2014] [Indexed: 11/08/2022]
Abstract
The effects of UVR on the skin include tanning, carcinogenesis, immunomodulation, and synthesis of vitamin D, among others. Melanocortin 1 receptor polymorphisms correlate with skin pigmentation, UV sensitivity, and skin cancer risk. This article reviews pathways through which UVR induces cutaneous stress and the pigmentation response. Modulators of the UV tanning pathway include sunscreen agents, MC1R activators, adenylate cyclase activators, phosphodiesterase 4D3 inhibitors, T oligos, and MITF regulators such as histone deacetylase (HDAC)-inhibitors. UVR, as one of the most ubiquitous carcinogens, represents both a challenge and enormous opportunity in skin cancer prevention.
Collapse
|
40
|
O'Sullivan NA, Tait CP. Tanning bed and nail lamp use and the risk of cutaneous malignancy: A review of the literature. Australas J Dermatol 2014; 55:99-106. [DOI: 10.1111/ajd.12145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/25/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | - Clare P Tait
- Dermatology Department; Royal Perth Hospital; Perth Western Australia Australia
- Dermatology Specialist Group; Perth Western Australia Australia
| |
Collapse
|
41
|
Kim MJ, Johnson WA. ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 2014; 15:14. [PMID: 24433322 PMCID: PMC3898224 DOI: 10.1186/1471-2202-15-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background The complex Drosophila larval peripheral nervous system, capable of monitoring sensory input from the external environment, includes a family of multiple dendritic (md) neurons with extensive dendritic arbors tiling the inner surface of the larval body wall. The class IV multiple dendritic (mdIV) neurons are the most complex with dendritic nerve endings forming direct intimate contacts with epithelial cells of the larval body wall. Functioning as polymodal mechanonociceptors with the ability to respond to both noxious mechanical stimulation and noxious heat, the mdIV neurons are also activated by nanomolar levels of the endogenous reactive oxygen species (ROS), H2O2. Although often associated with tissue damage related to oxidative stress, endogenous ROS have also been shown to function as signaling molecules at lower concentrations. The overall role of ROS in sensory signaling is poorly understood but the acutely sensitive response of mdIV neurons to ROS-mediated activation is consistent with a routine role in the regulation of mdIV neuronal activity. Larvae respond to short wavelength ultraviolet (UVC) light with an immediate and visual system-independent writhing and twisting of the body previously described as a nociceptive response. Molecular and cellular mechanisms mediating this response and potential relationships with ROS generation are not well understood. We have used the UVC-induced writhing response as a model for investigation of the proposed link between endogenous ROS production and mdIV neuron function in the larval body wall. Results Transgenic inactivation of mdIV neurons caused a strong suppression of UVC-induced writhing behavior consistent with a key role for the mdIV neurons as mediators of the behavioral response. Direct imaging of ROS-activated fluorescence showed that UVC irradiation caused a significant increase in endogenous ROS levels in the larval body wall and transgenic overexpression of antioxidant enzymes strongly suppressed the UVC-induced writhing response. Direct electrophysiological recordings demonstrated that UVC irradiation also increased neuronal activity of the mdIV neurons. Conclusions Results obtained using UVC irradiation to induce ROS generation provide evidence that UVC-induced writhing behavior is mediated by endogenous production of ROS capable of activating mdIV mechanonociceptors in the larval body wall.
Collapse
Affiliation(s)
| | - Wayne A Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J, and Lucille A, Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
42
|
Jatana S, DeLouise LA. Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:61-79. [PMID: 24123977 DOI: 10.1002/wnan.1244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever-expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review, we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultraviolet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to understand how UVR skin exposure can influence nanomaterial skin penetration, alter nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique dichotomy that UVR has on inducing both deleterious and therapeutic effects in skin. The subject matter covered in this review is broadly informative and will raise awareness of potential increased risks from nanomaterial skin exposure associated with specific occupational and life style choices. The UVR-induced immunosuppressive response in skin raises intriguing questions that motivate future research directions in the nanotoxicology and nanomedicine fields.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
43
|
Application of EPR spectroscopy to examination of free radicals in melanins from A-375 and G-361 human melanoma malignum cells. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0023-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Smalley KS. Mutant BRAF: A Novel Mediator of Microenvironmental Escape in Melanoma? J Invest Dermatol 2013; 133:1135-7. [DOI: 10.1038/jid.2012.474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
|
46
|
Ghosh S, Bishayee K, Paul A, Mukherjee A, Sikdar S, Chakraborty D, Boujedaini N, Khuda-Bukhsh AR. Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase–mediated signaling via reactive oxygen species elevation. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:116-24. [DOI: 10.3736/jintegrmed2013014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Budden T, Bowden NA. The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int J Mol Sci 2013; 14:1132-51. [PMID: 23303275 PMCID: PMC3565312 DOI: 10.3390/ijms14011132] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023] Open
Abstract
UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth's surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER) pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V). XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.
Collapse
Affiliation(s)
- Timothy Budden
- Centre for Information Based Medicine, Hunter Medical Research Institute, and School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW 2289, Australia.
| | | |
Collapse
|
48
|
Juzeniene A, Moan J. Beneficial effects of UV radiation other than via vitamin D production. DERMATO-ENDOCRINOLOGY 2012; 4:109-17. [PMID: 22928066 PMCID: PMC3427189 DOI: 10.4161/derm.20013] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most of the positive effects of solar radiation are mediated via ultraviolet-B (UVB) induced production of vitamin D in skin. However, several other pathways may exist for the action of ultraviolet (UV) radiation on humans as focused on in this review. One is induction of cosmetic tanning (immediate pigment darkening, persistent pigment darkening and delayed tanning). UVB-induced, delayed tanning (increases melanin in skin after several days), acts as a sunscreen. Several human skin diseases, like psoriasis, vitiligo, atopic dermatitis and localized scleroderma, can be treated with solar radiation (heliotherapy) or artificial UV radiation (phototherapy). UV exposure can suppress the clinical symptoms of multiple sclerosis independently of vitamin D synthesis. Furthermore, UV generates nitric oxide (NO), which may reduce blood pressure and generally improve cardiovascular health. UVA-induced NO may also have antimicrobial effects and furthermore, act as a neurotransmitter. Finally, UV exposure may improve mood through the release of endorphins.
Collapse
|
49
|
Jablonski NG, Chaplin G. Human skin pigmentation, migration and disease susceptibility. Philos Trans R Soc Lond B Biol Sci 2012; 367:785-92. [PMID: 22312045 DOI: 10.1098/rstb.2011.0308] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human skin pigmentation evolved as a compromise between the conflicting physiological demands of protection against the deleterious effects of ultraviolet radiation (UVR) and photosynthesis of UVB-dependent vitamin D(3). Living under high UVR near the equator, ancestral Homo sapiens had skin rich in protective eumelanin. Dispersals outside of the tropics were associated with positive selection for depigmentation to maximize cutaneous biosynthesis of pre-vitamin D(3) under low and highly seasonal UVB conditions. In recent centuries, migrations and high-speed transportation have brought many people into UVR regimes different from those experienced by their ancestors and, accordingly, exposed them to new disease risks. These have been increased by urbanization and changes in diet and lifestyle. Three examples-nutritional rickets, multiple sclerosis (MS) and cutaneous malignant melanoma (CMM)-are chosen to illustrate the serious health effects of mismatches between skin pigmentation and UVR. The aetiology of MS in particular provides insight into complex and contingent interactions of genetic and environmental factors necessary to trigger lethal disease states. Low UVB levels and vitamin D deficiencies produced by changes in location and lifestyle pose some of the most serious disease risks of the twenty-first century.
Collapse
Affiliation(s)
- Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
50
|
Chodurek E, Orchel A, Orchel J, Kurkiewicz S, Gawlik N, Dzierżewicz Z, Stępień K. Evaluation of melanogenesis in A-375 cells in the presence of DMSO and analysis of pyrolytic profile of isolated melanin. ScientificWorldJournal 2012; 2012:854096. [PMID: 22654640 PMCID: PMC3354665 DOI: 10.1100/2012/854096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022] Open
Abstract
The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk.
Collapse
Affiliation(s)
- Ewa Chodurek
- Department of Biopharmacy, Medical University of Silesia, Narcyzów 1, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | |
Collapse
|