1
|
Willmes M, Sturrock AM, Cordoleani F, Hugentobler S, Meek MH, Whitman G, Evans K, Palkovacs EP, Stauffer-Olsen NJ, Johnson RC. Integrating otolith and genetic tools to reveal intraspecific biodiversity in a highly impacted salmon population. JOURNAL OF FISH BIOLOGY 2024; 105:412-430. [PMID: 38982714 DOI: 10.1111/jfb.15847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Intraspecific biodiversity is vital for species persistence in an increasingly volatile world. By embracing methods that integrate information at different spatiotemporal scales, we can directly monitor and reconstruct changes in intraspecific biodiversity. Here we combined genetics and otolith biochronologies to describe the genotypic and phenotypic diversity of Chinook salmon (Oncorhynchus tshawytscha) in the Yuba River, California, comparing cohorts that experienced a range of hydroclimatic conditions. Yuba River salmon have been heavily impacted by habitat loss and degradation, and large influxes of unmarked hatchery fish each year have led to concern about introgression and uncertainty around the viability of its wild populations, particularly the rarer spring-run salmon. Otolith strontium isotopes showed that Yuba River origin fish represented, on average, 42% (range 7%-73%) of spawners across six return years (2009-2011, 2018-2020), with large interannual variability. The remainder of adult Chinook salmon in the river were primarily strays from the nearby Feather River hatchery, and since 2018 from the Mokelumne River hatchery. Among the Yuba-origin spawners, on average, 30% (range 14%-50%) exhibited the spring-run genotype. The Yuba-origin fish also displayed a variety of outmigration phenotypes that differed in the timing and size at which they left the Yuba river. Early-migrating fry dominated the returns (mean 59%, range 33%-89%), and their contribution rates were negatively correlated with freshwater flows. It is unlikely that fry survival rates are elevated during droughts, suggesting that this trend reflects disproportionately low survival of larger later migrating parr, smolts, and yearlings along the migratory corridor in drier years. Otolith daily increments indicated generally faster growth rates in non-natal habitats, emphasizing the importance of continuing upstream restoration efforts to improve in-river growing conditions. Together, these findings show that, despite a long history of habitat degradation and hatchery introgression, the Yuba River maintains intraspecific biodiversity that should be taken into account in future management, restoration, and reintroduction plans. The finding that genotypic spring-run are reproducing, surviving, and returning to the Yuba River every year suggests that re-establishment of an independent population is possible, although hatchery-wild interactions would need to be carefully considered. Integrating methods is critical to monitor changes in key genetic, physiological, and behavioral traits to assess population viability and resilience.
Collapse
Affiliation(s)
- Malte Willmes
- Norwegian Institute for Nature Research, Trondheim, Norway
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Anna M Sturrock
- Center for Watershed Sciences, University of California Davis, Davis, California, USA
- School of Life Sciences, University of Essex, Colchester, UK
| | - Flora Cordoleani
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
- National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Sara Hugentobler
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Mariah H Meek
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- The Wilderness Society, Bozeman, Montana, USA
| | - George Whitman
- Center for Watershed Sciences, University of California Davis, Davis, California, USA
| | - Kimberly Evans
- Center for Watershed Sciences, University of California Davis, Davis, California, USA
| | - Eric P Palkovacs
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Rachel C Johnson
- Center for Watershed Sciences, University of California Davis, Davis, California, USA
- National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| |
Collapse
|
2
|
Gross IP, Wilson AE, Wolak ME. The fitness consequences of wildlife conservation translocations: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:348-371. [PMID: 37844577 DOI: 10.1111/brv.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Conservation translocation is a common strategy to offset mounting rates of population declines through the transfer of captive- or wild-origin organisms into areas where conspecific populations are imperilled or completely extirpated. Translocations that supplement existing populations are referred to as reinforcements and can be conducted using captive-origin animals [ex situ reinforcement (ESR)] or wild-origin animals without any captive ancestry [in situ reinforcement (ISR)]. These programs have been criticized for low success rates and husbandry practices that produce individuals with genetic and performance deficits, but the post-release performance of captive-origin or wild-origin translocated groups has not been systematically reviewed to quantify success relative to wild-resident control groups. To assess the disparity in post-release performance of translocated organisms relative to wild-resident conspecifics and examine the association of performance disparity with organismal and methodological factors across studies, we conducted a systematic review and meta-analysis of 821 performance comparisons from 171 studies representing nine animal classes (101 species). We found that translocated organisms have 64% decreased odds of out-performing their wild-resident counterparts, supporting claims of systemic issues hampering conservation translocations. To help identify translocation practices that could maximize program success in the future, we further quantified the impact of broad organismal and methodological factors on the disparity between translocated and wild-resident conspecific performance. Pre-release animal enrichment significantly reduced performance disparities, whereas our results suggest no overall effects of taxonomic group, sex, captive generation time, or the type of fitness surrogate measured. This work is the most comprehensive systematic review to date of animal conservation translocations in which wild conspecifics were used as comparators, thereby facilitating an evaluation of the overall impact of this conservation strategy and identifying specific actions to increase success. Our review highlights the need for conservation managers to include both sympatric and allopatric wild-reference groups to ensure the post-release performance of translocated animals can be evaluated. Further, our analyses identify pre-release animal enrichment as a particular strategy for improving the outcomes of animal conservation translocations, and demonstrate how meta-analysis can be used to identify implementation choices that maximize translocated animal contributions to recipient population growth and viability.
Collapse
Affiliation(s)
- Iwo P Gross
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 382 Mell Street, Auburn, AL, 36849, USA
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| |
Collapse
|
3
|
Gamble MM, Calsbeek RG. Sex-specific heritabilities for length at maturity among Pacific salmonids and their consequences for evolution in response to artificial selection. Evol Appl 2023; 16:1458-1471. [PMID: 37622093 PMCID: PMC10445087 DOI: 10.1111/eva.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 08/26/2023] Open
Abstract
Artificial selection, whether intentional or coincidental, is a common result of conservation policies and natural resource management. To reduce unintended consequences of artificial selection, conservation practitioners must understand both artificial selection gradients on traits of interest and how those traits are correlated with others that may affect population growth and resilience. We investigate how artificial selection on male body size in Pacific salmon (Oncorhynchus spp.) may influence the evolution of female body size and female fitness. While salmon hatchery managers often assume that selection for large males will also produce large females, this may not be the case-in fact, because the fastest-growing males mature earliest and at the smallest size, and because female age at maturity varies little, small males may produce larger females if the genetic architecture of growth rate is the same in both sexes. We explored this possibility by estimating sex-specific heritability values of and natural and artificial selection gradients on length at maturity in four populations representing three species of Pacific salmon. We then used the multivariate breeder's equation to project how artificial selection against small males may affect the evolution of female length and fecundity. Our results indicate that the heritability of length at maturity is greater within than between the sexes and that sire-daughter heritability values are especially small. Salmon hatchery policies should consider these sex-specific quantitative genetic parameters to avoid potential unintended consequences of artificial selection.
Collapse
Affiliation(s)
- Madilyn M. Gamble
- Graduate Program in Ecology, Evolution, Ecosystems, and SocietyDartmouth CollegeHanoverNew HampshireUSA
| | - Ryan G. Calsbeek
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
4
|
Hoffman NF, Medeiros LR, Graham ND, Nuetzel HM, Pierce AL, Nagler JJ. Partial-year continuous light treatment reduces precocious maturation in age 1+ hatchery-reared male spring Chinook Salmon (O ncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2023; 11:coac085. [PMID: 36694597 PMCID: PMC9868527 DOI: 10.1093/conphys/coac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Hatchery programs designed to conserve and increase the abundance of natural populations of spring Chinook Salmon Oncorhynchus tshawytscha have reported high proportions of males precociously maturing at age 2, called minijacks. High proportions of minijacks detract from hatchery supplementation, conservation and production goals. This study tested the effects of rearing juvenile Chinook Salmon under continuous light (LL) on minijack maturation in two trials. The controls were maintained on a simulated natural photoperiod for both trials. For trial 1, LL treatment began on the summer solstice 2019 or the autumn equinox 2019 and ended in late March 2020 (LL-Jun-Apr and LL-Sep-Apr, respectively). A significant reduction in the mean percent of minijacks (%MJ) was observed versus control (28.8%MJ) in both LL-Jun-Apr (5.4%MJ) and LL-Sep-Apr (9.3%MJ). Trial 2 was designed to evaluate whether stopping LL treatment sooner was still effective at reducing maturation proportions relative to controls. LL treatments began on the summer solstice 2020 and continued until the winter solstice (LL-Jun-Dec) or the final sampling in April 2021 (LL-June-Apr). LL-Jun-Dec tanks were returned to a simulated natural photoperiod after the winter solstice. Both photoperiod treatments showed a significant reduction in mean %MJ from the control (66%MJ): LL-Jun-Dec (11.6%MJ), LL-Jun-Apr (10.3%MJ). In both trials, minijacks had higher body weights, were longer and had increased condition factor when compared to females and immature males in all treatment groups at the final sampling. In both trials, there was little or no effect of LL treatment on fork length or body weight in immature males and females versus controls, but an increase in condition factor versus controls was observed. This study shows that continuous light treatment reduces minijack maturation in juvenile male spring Chinook Salmon and could provide an effective method for Spring Chinook Salmon hatcheries interested in reducing minijack production.
Collapse
Affiliation(s)
- Nick F Hoffman
- Corresponding author: Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, ID 83844-3051, USA. Telephone: (208) 749-7522.
| | - Lea R Medeiros
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA
| | - Neil D Graham
- Columbia River Inter-Tribal Fish Commission, Fishery Science Department, 700 NE Multnomah St., Suite 1200, Portland, OR 97232, USA
| | - Hayley M Nuetzel
- Columbia River Inter-Tribal Fish Commission, Fishery Science Department, 700 NE Multnomah St., Suite 1200, Portland, OR 97232, USA
| | - Andrew L Pierce
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA
- Columbia River Inter-Tribal Fish Commission, Fishery Science Department, 700 NE Multnomah St., Suite 1200, Portland, OR 97232, USA
| | - James J Nagler
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA
| |
Collapse
|
5
|
Genomic divergence of hatchery- and natural-origin Chinook salmon (Oncorhynchus tshawytscha) in two supplemented populations. CONSERV GENET 2023. [DOI: 10.1007/s10592-022-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Shedd KR, Lescak EA, Habicht C, Knudsen EE, Dann TH, Hoyt HA, Prince DJ, Templin WD. Reduced relative fitness in hatchery-origin Pink Salmon in two streams in Prince William Sound, Alaska. Evol Appl 2022; 15:429-446. [PMID: 35386398 PMCID: PMC8965367 DOI: 10.1111/eva.13356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies generally report that hatchery-origin Pacific Salmon (Oncorhynchus spp.) have lower relative reproductive success (RRS) than their natural-origin counterparts. We estimated the RRS of Pink Salmon (O. gorbuscha) in Prince William Sound (PWS), Alaska using incomplete pedigrees. In contrast to other RRS studies, Pink Salmon have a short freshwater life history, freshwater habitats in PWS are largely unaltered by development, and sampling was conducted without the aid of dams or weirs resulting in incomplete sampling of spawning individuals. Pink Salmon released from large-scale hatchery programs in PWS have interacted with wild populations for more than 15 generations. Hatchery populations were established from PWS populations but have subsequently been managed as separate broodstocks. Gene flow is primarily directional, from hatchery strays to wild populations. We used genetic-based parentage analysis to estimate the RRS of a single generation of stray hatchery-origin Pink Salmon in two streams, and across the odd- and even-year lineages. Despite incomplete sampling, we assigned 1745 offspring to at least one parent. Reproductive success (RS), measured as sampled adult offspring that returned to their natal stream, was significantly lower for hatchery- vs. natural-origin parents in both lineages, with RRS ranging from 0.03 to 0.47 for females and 0.05 to 0.86 for males. Generalized linear modeling for the even-year lineage indicated that RRS was lower for hatchery-origin fish, ranging from 0.42 to 0.60, after accounting for sample date (run timing), sample location within the stream, and fish length. Our results strongly suggest that hatchery-origin strays have lower fitness in the wild. The consequences of reduced RRS on wild productivity depend on whether the mechanisms underlying reduced RRS are environmentally driven, and likely ephemeral, or genetically driven, and likely persistent across generations.
Collapse
|
7
|
Blouin MS, Wrey MC, Bollmann SR, Skaar JC, Twibell RG, Fuentes C. Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon. PLoS One 2021; 16:e0257407. [PMID: 34914737 PMCID: PMC8675725 DOI: 10.1371/journal.pone.0257407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonid fish raised in hatcheries often have lower fitness (number of returning adult offspring) than wild fish when both spawn in the wild. Body size at release from hatcheries is positively correlated with survival at sea. So one explanation for reduced fitness is that hatcheries inadvertently select for trait values that enhance growth rate under the unnatural environment of a hatchery, but that are maladaptive in the wild environment. A simple prediction of this hypothesis is that juveniles of hatchery origin should grow more quickly than fish of wild origin under hatchery conditions, but should have lower survival under wild conditions. We tested that hypothesis using multiple full sibling families of steelhead (Oncorhynchus mykiss) that were spawned using either two wild parents (WxW) or two first-generation hatchery (HxH) parents. Offspring from all the families were grown together under hatchery conditions and under semi-natural conditions in artificial streams. HxH families grew significantly faster in the hatchery, but had significantly lower survival in the streams. That we see this tradeoff after only a single generation of selection suggests that the traits involved are under very strong selection. We also considered one possible alteration to the hatchery environment that might reduce the intensity of selection among families in size at release. Here we tested whether reducing the fat content of hatchery feed would reduce the variance among families in body size. Although fish raised under a low-fat diet were slightly smaller, the variation among families in final size was unchanged. Thus, there is no evidence that reducing the fat content of hatchery feed would reduce the opportunity for selection among families on size at release.
Collapse
Affiliation(s)
- Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Madeleine C. Wrey
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - James C. Skaar
- Trask Hatchery, Oregon Department of Fish and Wildlife, Tillamook, Oregon, United States of America
| | - Ronald G. Twibell
- Abernathy Fish Technology Center, Longview, Washington, United States of America
| | - Claudio Fuentes
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
8
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
9
|
Gazsi G, Ivánovics B, Izabella RB, Szabó T, Daniel Z, Kucska B, Urbányi B, Horváth L, Müller F, Müller T. Artificial sperm insemination in externally fertilised fish as a novel tool for ex situ and in situ conservation of valuable populations. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Loss of genetic diversity and accumulation of deleterious mutations may lead to inbreeding depression in captive breeding. To address the problem of maintaining genetic diversity, we developed a new fish spawning method which offers flexibility in crossing diverse species when in vitro fertilisation (IVF) is not available. This method involves the collection of sperm from several males of ovuliparous fish; the sperm mix is then injected by catheter into the ovarian cavity of a female through the oviduct. We demonstrate, using zebrafish as a model for externally fertilised fish, that the sperm survives the ovarian conditions and can fertilise ovulated eggs, which are released from the body cavity during natural spawning. Wild type females were injected with reporter transgenic sperm from homozygous transgenic males before intended spawning with wild type males. The sperm injection method did not have an impact on reproductive parameters such as egg production or fertilisation rate compared to controls. In 25 successful spawning experiments, 20 females produced mixed genotype offspring comprising both transgenic and wild type larvae in varying ratios, indicating that the injected transgenic sperm efficiently competed with sperm released by non-transgenic wild type mating males, and both sperm types contributed to the fertilisation of the released eggs. This experiment provides proof of principle for increasing the genetic base of offspring of fish species, including that of many endangered fish species for which IVF is not available due to lack of timed induction of ovulation or when gametic release cannot be synchronised.
Collapse
Affiliation(s)
- G Gazsi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - B Ivánovics
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - RB Izabella
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - T Szabó
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Department of Aquaculture, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - Z Daniel
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - B Kucska
- Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences 7400 Kaposvár, Guba S. u. 40, Hungary
| | - B Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Department of Aquaculture, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - L Horváth
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Department of Aquaculture, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - F Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, B15 2TT Birmingham, UK
| | - T Müller
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter K. u. 1, Hungary
| |
Collapse
|
10
|
Finger AJ, Mahardja B, Fisch KM, Benjamin A, Lindberg J, Ellison L, Ghebremariam T, Hung TC, May B. A Conservation Hatchery Population of Delta Smelt Shows Evidence of Genetic Adaptation to Captivity After 9 Generations. J Hered 2019; 109:689-699. [PMID: 30016452 DOI: 10.1093/jhered/esy035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Genetic adaptation to captivity is a concern for threatened and endangered species held in conservation hatcheries. Here, we present evidence of genetic adaptation to captivity in a conservation hatchery for the endangered delta smelt (Fish Conservation and Culture Laboratory, University of California Davis; FCCL). The FCCL population is genetically managed with parentage analysis and the addition of wild fish each year. Molecular monitoring indicates little loss of genetic variation and low differentiation between the wild and conservation populations. Yet, we found an increase in offspring survival to reproductive maturity during the subsequent spawning season (recovery rate) in crosses that included one or both cultured parents. Crosses with higher levels of hatchery ancestry tend to produce a greater number of offspring that are recovered the following year. The recovery rate of a cross decreases when offspring are raised in a tank with fish of high levels of hatchery ancestry. We suggest changes in fish rearing practices at the FCCL to reduce genetic adaptation to captivity, as delta smelt numbers in the wild continue to decline and the use of FCCL fish for reintroduction becomes more likely.
Collapse
Affiliation(s)
- Amanda J Finger
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| | - Brian Mahardja
- Division of Environmental Services, California Department of Water Resources, West Sacramento, CA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Alyssa Benjamin
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| | - Joan Lindberg
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Luke Ellison
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Tewdros Ghebremariam
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Bernie May
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| |
Collapse
|
11
|
Fraser DJ, Walker L, Yates MC, Marin K, Wood JLA, Bernos TA, Zastavniouk C. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol Appl 2019; 12:1305-1317. [PMID: 31417616 PMCID: PMC6691219 DOI: 10.1111/eva.12649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding the extent to which captivity generates maladaptation in wild species can inform species recovery programs and elucidate wild population responses to novel environmental change. Although rarely quantified, effective population size (N e ) and genetic diversity should influence the magnitude of plastic and genetic changes manifested in captivity that reduce wild fitness. Sexually dimorphic traits might also mediate consequences of captivity. To evaluate these relationships, we generated >600 full- and half-sibling families from nine wild brook trout populations, reared them for one generation under common, captive environmental conditions and contrasted several fitness-related traits in wild versus captive lines. We found substantial variation in lifetime success (lifetime survival and reproductive success) and life history traits among wild populations after just one captive generation (fourteen- and threefold ranges across populations, respectively). Populations with lower heterozygosity showed lower captive lifetime success, suggesting that captivity generates maladaptation within one generation. Greater male-biased mortality in captivity occurred in populations having disproportionately higher growth rates in males than females. Wild population N e and allelic diversity had little or no influence on captive trait expression and lifetime success. Our results have four conservation implications: (i) Trait values and lifetime success were highly variable across populations following one generation of captivity. (ii) Maladaptation induced by captive breeding might be particularly intense for the very populations practitioners are most interested in conserving, such as those with low heterozygosity. (iii) Maladaptive sex differences in captivity might be associated with population-dependent growth costs of reproduction. (iv) Heterozygosity can be a good indicator of short-term, intraspecific responses to novel environmental change.
Collapse
Affiliation(s)
| | - Lisa Walker
- Institute of ParasitologyMcGill UniversityMontrealQCCanada
| | | | - Kia Marin
- Golder Associés LtéeMontréalQCCanada
| | | | - Thais A. Bernos
- Professionals for Fair DevelopmentProtected Areas ProgramParisFrance
| | | |
Collapse
|
12
|
Larsen DA, Harstad DL, Fuhrman AE, Knudsen CM, Schroder SL, Bosch WJ, Galbreath PF, Fast DE, Beckman BR. Maintaining a wild phenotype in a conservation hatchery program for Chinook salmon: The effect of managed breeding on early male maturation. PLoS One 2019; 14:e0216168. [PMID: 31091265 PMCID: PMC6519831 DOI: 10.1371/journal.pone.0216168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
In many salmonid species, age and size at maturation is plastic and influenced by the interaction between genetic and environmental factors. Hatchery reared salmon often mature at an earlier age and smaller size than wild fish. Modern salmon conservation efforts have focused on managing the level of gene flow between hatchery and natural origin fish to minimize potential genotypic and phenotypic change. In salmonids, maturation probability is dependent on exceeding a genetically set threshold in growth rate and energetic status (and by association, body size) referred to as the probabalisitic maturation reaction norm (PMRN). Over fourteen years, we monitored the frequency of age-2 precocious male maturation (common term: age-2 minijack rate) and the PMRN of natural founder (FNDR), integrated natural-hatchery (INT), and segregated hatchery (SEG) broodlines of spring Chinook salmon, Oncorhynchus tshawytscha. The average age-2 minijack rate (± SEM) of the FNDR, INT and SEG broodlines was 48.2 ± 5.2%, 41.9 ± 3.6% and 30.9 ± 4.7%, respectively. Additionally, the PMRN WP50 (predicted weight at 50% maturation) of the SEG broodline was significantly greater (20.5 g) than that of the FNDR/INT broodlines (18.2 g). We also conducted a common garden experiment exploring the effects of less than one [INT (0–1)], one [SEG (1)] or two [SEG (2)] generations of hatchery culture on the age-2 minijack rate and PMRN WP50. Growth was not significantly different among broodlines, but age-2 minijack rates were significantly lower following two consecutive generations of hatchery culture: [INT (0–1): 68.3 ± 1.7%], [SEG (1): 70.3 ± 1.8%] and [SEG (2): 58.6 ± 0.4%] and the PMRN WP50 was significantly higher by 6.1 g after two generations of SEG culture. These results indicate that managed gene flow reduces phenotypic divergence, but may serve to maintain potentially undesirably high age-2 minijack rates in salmon conservation hatchery programs.
Collapse
Affiliation(s)
- Donald A. Larsen
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
- * E-mail:
| | - Deborah L. Harstad
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Abby E. Fuhrman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | | | - Steven L. Schroder
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - William J. Bosch
- Yakama Nation Fisheries, Toppenish, Washington, United States of America
| | - Peter F. Galbreath
- Columbia River Inter-Tribal Fish Commission, Portland, Oregon, United States of America
| | - David E. Fast
- Yakama Nation Fisheries, Toppenish, Washington, United States of America
| | - Brian R. Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Janowitz‐Koch I, Rabe C, Kinzer R, Nelson D, Hess MA, Narum SR. Long-term evaluation of fitness and demographic effects of a Chinook Salmon supplementation program. Evol Appl 2019; 12:456-469. [PMID: 30828367 PMCID: PMC6383734 DOI: 10.1111/eva.12725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
While the goal of supplementation programs is to provide positive, population-level effects for species of conservation concern, these programs can also present an inherent fitness risk when captive-born individuals are fully integrated into the natural population. In order to evaluate the long-term effects of a supplementation program and estimate the demographic and phenotypic factors influencing the fitness of a threatened population of Chinook Salmon (Oncorhynchus tshawytscha), we genotyped tissue samples spanning a 19-year period (1998-2016) to generate pedigrees from adult fish returning to Johnson Creek, Idaho, USA. We expanded upon previous estimates of relative reproductive success (RRS) to include grandparentage analyses and used generalized linear models to determine whether origin (hatchery or natural) or phenotypic traits (timing of arrival to spawning grounds, body length, and age) significantly predicted reproductive success (RS) across multiple years. Our results provide evidence that this supplementation program with 100% natural-origin broodstock provided a long-term demographic boost to the population (mean of 4.56 times in the first generation and mean of 2.52 times in the second generation). Overall, when spawning in nature, hatchery-origin fish demonstrated a trend toward lower RS compared to natural-origin fish (p < 0.05). However, when hatchery-origin fish successfully spawned with natural-origin fish, they had similar RS compared to natural by natural crosses (first-generation mean hatchery by natural cross RRS = 1.11 females, 1.13 males; second-generation mean hatchery by natural cross RRS = 1.03 females, 1.08 males). While origin, return year, and body length were significant predictors of fitness for both males and females (p < 0.05), return day was significant for males but not females (p > 0.05). These results indicate that supplementation programs that reduce the potential for genetic adaptation to captivity can be effective at increasing population abundance while limiting long-term fitness effects on wild populations.
Collapse
Affiliation(s)
| | - Craig Rabe
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | - Ryan Kinzer
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | - Doug Nelson
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | | | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdaho
| |
Collapse
|
14
|
Ford MJ, Murdoch AR, Hughes MS, Seamons TR, LaHood ES. Broodstock History Strongly Influences Natural Spawning Success in Hatchery Steelhead (Oncorhynchus mykiss). PLoS One 2016; 11:e0164801. [PMID: 27737000 PMCID: PMC5063464 DOI: 10.1371/journal.pone.0164801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
We used genetic parentage analysis of 6200 potential parents and 5497 juvenile offspring to evaluate the relative reproductive success of hatchery and natural steelhead (Onchorhynchus mykiss) when spawning in the wild between 2008 and 2011 in the Wenatchee River, Washington. Hatchery fish originating from two prior generation hatchery parents had <20% of the reproductive success of natural origin spawners. In contrast, hatchery females originating from a cross between two natural origin parents of the prior generation had equivalent or better reproductive success than natural origin females. Males originating from such a cross had reproductive success of 26–93% that of natural males. The reproductive success of hatchery females and males from crosses consisting of one natural origin fish and one hatchery origin fish was 24–54% that of natural fish. The strong influence of hatchery broodstock origin on reproductive success confirms similar results from a previous study of a different population of the same species and suggests a genetic basis for the low reproductive success of hatchery steelhead, although environmental factors cannot be entirely ruled out. In addition to broodstock origin, fish size, return time, age, and spawning location were significant predictors of reproductive success. Our results indicate that incorporating natural fish into hatchery broodstock is clearly beneficial for improving subsequent natural spawning success, even in a population that has a decades-long history of hatchery releases, as is the case in the Wenatchee River.
Collapse
Affiliation(s)
- Michael J. Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
- * E-mail:
| | - Andrew R. Murdoch
- Supplementation Research Team, Washington Department of Fish and Wildlife, Wenatchee, Washington, United States of America
| | - Michael S. Hughes
- Supplementation Research Team, Washington Department of Fish and Wildlife, Wenatchee, Washington, United States of America
| | - Todd R. Seamons
- Molecular Genetics Laboratory, Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Eric S. LaHood
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Ford MJ, Murdoch A, Hughes M. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 2015; 24:1109-21. [DOI: 10.1111/mec.13091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Michael J. Ford
- Northwest Fisheries Science Center; National Marine Fisheries Service; 2725 Montlake Blvd E Seattle WA 98112 USA
| | - Andrew Murdoch
- Washington Department of Fish and Wildlife; 3515 Chelan Highway 97A Wenatchee WA 98801 USA
| | - Michael Hughes
- Washington Department of Fish and Wildlife; 3515 Chelan Highway 97A Wenatchee WA 98801 USA
| |
Collapse
|
16
|
Christie MR, Ford MJ, Blouin MS. On the reproductive success of early-generation hatchery fish in the wild. Evol Appl 2014; 7:883-96. [PMID: 25469167 PMCID: PMC4211718 DOI: 10.1111/eva.12183] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Large numbers of hatchery salmon spawn in wild populations each year. Hatchery fish with multiple generations of hatchery ancestry often have heritably lower reproductive success than wild fish and may reduce the fitness of an entire population. Whether this reduced fitness also occurs for hatchery fish created with local- and predominantly wild-origin parents remains controversial. Here, we review recent studies on the reproductive success of such ‘early-generation’ hatchery fish that spawn in the wild. Combining 51 estimates from six studies on four salmon species, we found that (i) early-generation hatchery fish averaged only half the reproductive success of their wild-origin counterparts when spawning in the wild, (ii) the reduction in reproductive success was more severe for males than for females, and (iii) all species showed reduced fitness due to hatchery rearing. We review commonalities among studies that point to possible mechanisms (e.g., environmental versus genetic effects). Furthermore, we illustrate that sample sizes typical of these studies result in low statistical power to detect fitness differences unless the differences are substantial. This review demonstrates that reduced fitness of early-generation hatchery fish may be a general phenomenon. Future research should focus on determining the causes of those fitness reductions and whether they lead to long-term reductions in the fitness of wild populations.
Collapse
Affiliation(s)
- Mark R Christie
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA ; Department of Biological Sciences and Department of Forestry and Natural Resources, Purdue University West Lafayette, IN, USA
| | - Michael J Ford
- Conservation Biology Division, National Marine Fisheries Service, Northwest Fisheries Science Center Seattle, WA, USA
| | - Michael S Blouin
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
17
|
Maintenance of Genetic Diversity in Natural Spawning of Captively-Reared Endangered Sockeye Salmon, Oncorhynchus nerka. DIVERSITY 2014. [DOI: 10.3390/d6020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|