1
|
Ribieras AJ, Ortiz YY, Li Y, Le NT, Huerta CT, Voza FA, Shao H, Vazquez-Padron RI, Liu ZJ, Velazquez OC. E-Selectin/AAV Gene Therapy Promotes Myogenesis and Skeletal Muscle Recovery in a Mouse Hindlimb Ischemia Model. Cardiovasc Ther 2023; 2023:6679390. [PMID: 37251271 PMCID: PMC10219778 DOI: 10.1155/2023/6679390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The response to ischemia in peripheral artery disease (PAD) depends on compensatory neovascularization and coordination of tissue regeneration. Identifying novel mechanisms regulating these processes is critical to the development of nonsurgical treatments for PAD. E-selectin is an adhesion molecule that mediates cell recruitment during neovascularization. Therapeutic priming of ischemic limb tissues with intramuscular E-selectin gene therapy promotes angiogenesis and reduces tissue loss in a murine hindlimb gangrene model. In this study, we evaluated the effects of E-selectin gene therapy on skeletal muscle recovery, specifically focusing on exercise performance and myofiber regeneration. C57BL/6J mice were treated with intramuscular E-selectin/adeno-associated virus serotype 2/2 gene therapy (E-sel/AAV) or LacZ/AAV2/2 (LacZ/AAV) as control and then subjected to femoral artery coagulation. Recovery of hindlimb perfusion was assessed by laser Doppler perfusion imaging and muscle function by treadmill exhaustion and grip strength testing. After three postoperative weeks, hindlimb muscle was harvested for immunofluorescence analysis. At all postoperative time points, mice treated with E-sel/AAV had improved hindlimb perfusion and exercise capacity. E-sel/AAV gene therapy also increased the coexpression of MyoD and Ki-67 in skeletal muscle progenitors and the proportion of Myh7+ myofibers. Altogether, our findings demonstrate that in addition to improving reperfusion, intramuscular E-sel/AAV gene therapy enhances the regeneration of ischemic skeletal muscle with a corresponding benefit on exercise performance. These results suggest a potential role for E-sel/AAV gene therapy as a nonsurgical adjunct in patients with life-limiting PAD.
Collapse
Affiliation(s)
- Antoine J. Ribieras
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yulexi Y. Ortiz
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Li
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nga T. Le
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T. Huerta
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francesca A. Voza
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Håkansson KEJ, Sollie O, Simons KH, Quax PHA, Jensen J, Nossent AY. Circulating Small Non-coding RNAs as Biomarkers for Recovery After Exhaustive or Repetitive Exercise. Front Physiol 2018; 9:1136. [PMID: 30246800 PMCID: PMC6113669 DOI: 10.3389/fphys.2018.01136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023] Open
Abstract
Circulating microRNAs have proven to be reliable biomarkers, due to their high stability, both in vivo in the circulation, and ex vivo during sample preparation and storage. Small nucleolar RNAs (snoRNAs) are a different type of small non-coding RNAs that can also be reliably measured in plasma, but have only been studied sporadically. In this study, we aimed to identify RNA-biomarkers that can distinguish between different exercise regimes and that entail clues about muscle repair and recovery after prolonged exhaustive endurance exercise. We compared plasma microRNA profiles between two cohorts of elite cyclists, subjected to two different types of exercise regimes, as well as a cohort of patients with peripheral artery disease (PAD) that were scheduled to undergo lower limb amputation, due to critical limb ischemia. In elite athletes, muscle tissue recovers quickly even after exhaustive exercise, whereas in PAD patients, recovery is completely impaired. Furthermore, we measured levels of a specific group of snoRNAs in the plasma of both elite cyclists and PAD patients. Using a multiplex qPCR screening, we detected a total of 179 microRNAs overall, of which, on average, 161 microRNAs were detected per sample. However, only 30 microRNAs were consistently expressed in all samples. Of these, two microRNAs, miR-29a-3p and miR193a-5p, that responded differently two different types of exercise, namely exhaustive exercise and non-exhaustive endurance exercise. Using individual rt/qPCR, we also identified a snoRNA, SNORD114.1, which was significantly upregulated in plasma in response to endurance exercise. Furthermore, two microRNAs, miR-29a-3p and miR-495-3p, were significantly differentially expressed in athletes compared to PAD patients, but only following exercise. We suggest that these two microRNAs could function as markers of impaired muscle repair and recovery. In conclusion, microRNAs miR-29a-3p and miR-193a-5p may help us distinguish between repeated exhaustive and non-exhaustive endurance exercise. MicroRNA miR-29a-3p, as well as miR-495-3p, may further mark impaired muscle recovery in patients with severe critical limb ischemia. Furthermore, we showed for the first time that a circulating snoRNA, SNORD114.1, is regulated in response to exercise and may be used as biomarker.
Collapse
Affiliation(s)
- Kjell E J Håkansson
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Karin H Simons
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - A Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
3
|
Bertozzi N, Simonacci F, Grieco MP, Grignaffini E, Raposio E. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg (Lond) 2017; 20:41-48. [PMID: 28702186 PMCID: PMC5491486 DOI: 10.1016/j.amsu.2017.06.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Worldwide, hard-to-heal lower limb wounds are estimated to affect 1.5–3% of the adult population with a treatment-related annual cost of $10 billion. Thus, chronic skin ulcers of the lower limb are a matter of economic and public concern. Over the years, multiple medical and surgical approaches have been proposed but they are still inadequate, and no effective therapy yet exists. Regenerative medicine and stem cell-based therapies hold great promise for wound healing. Recently, many plastic surgeons have studied the potential clinical application of adipose-derived stem cells (ASCs), which are a readily available adult stem cell population that can undergo multilineage differentiation and secrete growth factors that can enhance wound-healing processes by promoting angiogenesis, and hence increase local blood supply. ASCs have been widely studied in vitro and in vivo in animal models. However, there are few randomized clinical trials on humans, and these are still ongoing or recruiting patients. Moreover, there is no consensus on a common isolation protocol that is clinically feasible and which would ensure reproducible results. The authors aim to provide readers with an overview of the biological properties of ASCs as well as their clinical application, to help better understanding of present and future strategies for the treatment of hard-to-heal wounds by means of stem cell-based therapies. Worldwide, hard-to-heal wounds are a matter of economic and public concern. The emerging fields of regenerative medicine and stem cell-based therapies hold great promise for wound healing. ASCs can potentially give the support necessary for recovery of hard-to-heal wounds. ASCs can be easily harvested from adipose tissue by means of standard wet liposuction technique. ASCs have been widely studied in vitro and in vivo to demonstrate their potential and safety.
Collapse
Affiliation(s)
- Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Via Gramsci, 14, 43126, Parma, Italy
| | - Francesco Simonacci
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Via Gramsci, 14, 43126, Parma, Italy
| | - Michele Pio Grieco
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Via Gramsci, 14, 43126, Parma, Italy
| | - Eugenio Grignaffini
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Via Gramsci, 14, 43126, Parma, Italy
| | - Edoardo Raposio
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Via Gramsci, 14, 43126, Parma, Italy
| |
Collapse
|
4
|
Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo BN, Kita S, O'Donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 2017; 7:3855. [PMID: 28634350 PMCID: PMC5478595 DOI: 10.1038/s41598-017-03994-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 12/16/2022] Open
Abstract
Pericytes are believed to originate from either mesenchymal or neural crest cells. It has recently been reported that pericytes play important roles in the central nervous system (CNS) by regulating blood-brain barrier homeostasis and blood flow at the capillary level. However, the origin of CNS microvascular pericytes and the mechanism of their recruitment remain unknown. Here, we show a new source of cerebrovascular pericytes during neurogenesis. In the CNS of embryonic day 10.5 mouse embryos, CD31+F4/80+ hematopoietic lineage cells were observed in the avascular region around the dorsal midline of the developing midbrain. These cells expressed additional macrophage markers such as CD206 and CD11b. Moreover, the CD31+F4/80+ cells phagocytosed apoptotic cells as functionally matured macrophages, adhered to the newly formed subventricular vascular plexus, and then divided into daughter cells. Eventually, these CD31+F4/80+ cells transdifferentiated into NG2/PDGFRβ/desmin-expressing cerebrovascular pericytes, enwrapping and associating with vascular endothelial cells. These data indicate that a subset of cerebrovascular pericytes derive from mature macrophages in the very early phase of CNS vascular development, which in turn are recruited from sites of embryonic hematopoiesis such as the yolk sac by way of blood flow.
Collapse
Affiliation(s)
- Seiji Yamamoto
- Department of Pathology, University of Toyama, Toyama, Japan.
| | - Masashi Muramatsu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Erika Azuma
- Department of Pathology, University of Toyama, Toyama, Japan
- Department of Technology Development, Astellas Pharma Tech Co., Ltd., Toyama, Japan
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, University of Toyama, Toyama, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, University of Toyama, Toyama, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Bon-Nyeo Koo
- Department of Anesthesiology, Yonsei University College of Medicine, Seoul, Korea
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, USA
| | - Satomi Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Erin O'Donnell
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, USA
| | - Tsuyoshi Osawa
- Laboratry for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takahashi
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Takano
- Departments of Pharmacology, Weill Cornell Medical College, New York, USA
| | - Mitsuko Dohmoto
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Michiya Sugimori
- Department of Integrative Neuroscience, University of Toyama, Toyama, Japan
| | - Isao Usui
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Yasuhide Watanabe
- Faculty of Medicine, School of Nursing, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noboru Hatakeyama
- Department of Anesthesiology, Graduate School of Medicine, Aichi Medical University, Aichi, Japan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, University of Toyama, Toyama, Japan
- Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Shumpei Niida
- Medical Genome Center, Center for Geriatrics and Gerontology, Aichi, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University, Nagoya, Japan
| | - Masabumi Shibuya
- Department of Research and Education, Jobu University, Gunma, Japan
| | | |
Collapse
|
5
|
Zhang H, Wang X, Zhang C, Zhu F, Yu Z, Peng X. Pleiotropic effects of survivin in vascular endothelial cells. Microvasc Res 2016; 108:10-6. [DOI: 10.1016/j.mvr.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
6
|
Matsumoto T, Tanaka M, Yoshiya K, Yoshiga R, Matsubara Y, Horiuchi-Yoshida K, Yonemitsu Y, Maehara Y. Improved quality of life in patients with no-option critical limb ischemia undergoing gene therapy with DVC1-0101. Sci Rep 2016; 6:30035. [PMID: 27418463 PMCID: PMC4945920 DOI: 10.1038/srep30035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
Critical limb ischemia (CLI) has a poor prognosis and adversely affects patients' quality of life (QOL). Therapeutic angiogenesis may improve mobility, mortality, and QOL in CLI patients. However, the effectiveness of gene therapy on such patients' QOL is unknown. DVC1-0101, a non-transmissible recombinant Sendai virus vector expressing human fibroblast growth factor-2 gene, demonstrated safety and efficacy in a phase I/II study of CLI patients. We investigated the effects of DVC1-0101 on QOL in this cohort. QOL was assessed using the Short Form-36 health survey version 2 (SF-36) in 12 patients at pre-administration, 28 days, and 3, 6, and 12 months post-treatment. We examined differences between pre and post-administration QOL scores and correlations between QOL scores and vascular parameters. Patients demonstrated low baselines scores on every SF-36 dimension. Post-treatment scores showed significant improvements in physical functioning at 3 and 6 months (P < 0.05), role-physical at 3, 6, and 12 months (P < 0.05), bodily pain at 1, 3, 6, and 12 months (P < 0.05), vitality at 1, 6, and 12 months (P < 0.05), and physical component summary at 6 and 12 months (P < 0.05). DVC1-0101-based gene therapy may improve QOL in CLI patients over a 6-month period.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michiko Tanaka
- R&D Laboratory for Innovative Biotherapeutics Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm. 601, Collaborative Research Station I, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiji Yoshiya
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryosuke Yoshiga
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Matsubara
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kumi Horiuchi-Yoshida
- R&D Laboratory for Innovative Biotherapeutics Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm. 601, Collaborative Research Station I, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm. 601, Collaborative Research Station I, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Schmidt J, Lee MK, Ko E, Jeong JH, DiPietro LA, Kong H. Alginate Sulfates Mitigate Binding Kinetics of Proangiogenic Growth Factors with Receptors toward Revascularization. Mol Pharm 2016; 13:2148-54. [PMID: 26881299 DOI: 10.1021/acs.molpharmaceut.5b00905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.
Collapse
Affiliation(s)
- John Schmidt
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Min Kyung Lee
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University , Seoul, Korea
| | - Luisa A DiPietro
- College of Dentistry University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Chemical Engineering, Soongsil University , Seoul, Korea
| |
Collapse
|
8
|
Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. Biores Open Access 2015; 4:26-38. [PMID: 26309780 PMCID: PMC4497652 DOI: 10.1089/biores.2014.0042] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine.
Collapse
Affiliation(s)
- Anastasia Yu. Efimenko
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana N. Kochegura
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zhanna A. Akopyan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yelena V. Parfyonova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| |
Collapse
|
9
|
Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N, Kandimalla ER, Quax PH, Nossent AY. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia. Circ Res 2014; 115:696-708. [DOI: 10.1161/circresaha.114.304747] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Effective neovascularization is crucial for recovery after cardiovascular events.
Objective:
Because microRNAs regulate expression of up to several hundred target genes, we set out to identify microRNAs that target genes in all pathways of the multifactorial neovascularization process. Using
www.targetscan.org
, we performed a reverse target prediction analysis on a set of 197 genes involved in neovascularization. We found enrichment of binding sites for 27 microRNAs in a single microRNA gene cluster. Microarray analyses showed upregulation of 14q32 microRNAs during neovascularization in mice after single femoral artery ligation.
Methods and Results:
Gene silencing oligonucleotides (GSOs) were used to inhibit 4 14q32 microRNAs, miR-329, miR-487b, miR-494, and miR-495, 1 day before double femoral artery ligation. Blood flow recovery was followed by laser Doppler perfusion imaging. All 4 GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion versus 15% in control), and those treated with GSO-329 showed a full recovery of perfusion after 7 days (versus 60% in control). Increased collateral artery diameters (arteriogenesis) were observed in adductor muscles of GSO-treated mice, as well as increased capillary densities (angiogenesis) in the ischemic soleus muscle. In vitro, treatment with GSOs led to increased sprout formation and increased arterial endothelial cell proliferation, as well as to increased arterial myofibroblast proliferation.
Conclusions:
The 14q32 microRNA gene cluster is highly involved in neovascularization. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 provides a promising tool for future therapeutic neovascularization.
Collapse
Affiliation(s)
- Sabine M.J. Welten
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Antonius J.N.M. Bastiaansen
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Rob C.M. de Jong
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Margreet R. de Vries
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Erna A.B. Peters
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Martin C. Boonstra
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Søren P. Sheikh
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Nicola La Monica
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Ekambar R. Kandimalla
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Paul H.A. Quax
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - A. Yaël Nossent
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| |
Collapse
|
10
|
Rowe GC, Raghuram S, Jang C, Nagy JA, Patten IS, Goyal A, Chan MC, Liu LX, Jiang A, Spokes KC, Beeler D, Dvorak H, Aird WC, Arany Z. PGC-1α induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ Res 2014; 115:504-17. [PMID: 25009290 DOI: 10.1161/circresaha.115.303829] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Mechanisms of angiogenesis in skeletal muscle remain poorly understood. Efforts to induce physiological angiogenesis hold promise for the treatment of diabetic microvascular disease and peripheral artery disease but are hindered by the complexity of physiological angiogenesis and by the poor angiogenic response of aged and patients with diabetes mellitus. To date, the best therapy for diabetic vascular disease remains exercise, often a challenging option for patients with leg pain. Peroxisome proliferation activator receptor-γ coactivator-1α (PGC-1α), a powerful regulator of metabolism, mediates exercise-induced angiogenesis in skeletal muscle. OBJECTIVE To test whether, and how, PGC-1α can induce functional angiogenesis in adult skeletal muscle. METHODS AND RESULTS Here, we show that muscle PGC-1α robustly induces functional angiogenesis in adult, aged, and diabetic mice. The process involves the orchestration of numerous cell types and leads to patent, nonleaky, properly organized, and functional nascent vessels. These findings contrast sharply with the disorganized vasculature elicited by induction of vascular endothelial growth factor alone. Bioinformatic analyses revealed that PGC-1α induces the secretion of secreted phosphoprotein 1 and the recruitment of macrophages. Secreted phosphoprotein 1 stimulates macrophages to secrete monocyte chemoattractant protein-1, which then activates adjacent endothelial cells, pericytes, and smooth muscle cells. In contrast, induction of PGC-1α in secreted phosphoprotein 1(-/-) mice leads to immature capillarization and blunted arteriolarization. Finally, adenoviral delivery of PGC-1α into skeletal muscle of either young or old and diabetic mice improved the recovery of blood flow in the murine hindlimb ischemia model of peripheral artery disease. CONCLUSIONS PGC-1α drives functional angiogenesis in skeletal muscle and likely recapitulates the complex physiological angiogenesis elicited by exercise.
Collapse
Affiliation(s)
- Glenn C Rowe
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Srilatha Raghuram
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Cholsoon Jang
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Janice A Nagy
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Ian S Patten
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Amrita Goyal
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Mun Chun Chan
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Laura X Liu
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Aihua Jiang
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Katherine C Spokes
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - David Beeler
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Harold Dvorak
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - William C Aird
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Zolt Arany
- From the Department of Medicine, Cardiovascular Institute (G.C.R., S.R., C.J., I.S.P., A.G., M.C.C., L.X.L., A.J., Z.A.), Center for Vascular Biology Research (J.A.N., K.C.S., D.B., H.D., W.C.A., Z.A.), and Department of Pathology (J.A.N., H.D.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Biochemical and immunomorphological evaluation of hepatocyte growth factor and c-Met pathway in patients with critical limb ischemia. Eur J Vasc Endovasc Surg 2014; 48:430-7. [PMID: 24947080 DOI: 10.1016/j.ejvs.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/02/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Hepatocyte growth factor (HGF), the c-Met receptor, and hypoxia-inducible factor (HIF) are crucial for regenerative processes including ischemic wound healing. The aims of the present study are (a) to analyze the tissue c-Met and HIF-1α expression in skin from patients with critical limb ischemia (CLI); (b) to compare the serum HGF levels of CLI and control subjects. METHODS This is a prospective, controlled, single-center study. Thirty-seven patients were enrolled. A skin sample adjacent to the ischemic lesion was taken from 20 patients with CLI; skin samples were taken from the surgical wounds of 17 patients surgically treated for abdominal aortic aneurysm as healthy controls. Serum samples were taken in all cases. Samples were formalin fixed, paraffin embedded, and routinely processed. Tissue inflammation was histologically assessed. Immunohistochemistry was performed with antibodies against total c-Met receptor, activated Met (p-Met), and HIF-1α. RT-polymerase chain reaction was used to quantify HIF-1α mRNA. The enzyme-linked immunosorbent assay was performed to evaluate serum HGF levels. RESULTS With immunohistochemistry, while total c-Met was unchanged, different patterns of p-Met positivity were observed between CLI and control cases (p < .001). In particular, CLI skin showed a total negativity or membrane positivity for p-Met (19/20 cases), while control skin mainly showed cytoplasmic positivity in the epidermal basal layer (16/17 cases). HIF-1α was diffusely lost in CLI, but HIF-1α mRNA was threefold higher than in controls. Finally, mean serum HGF levels were 590.5 pg/mL and 2380.0 pg/mL in CLI and control groups respectively (p < .001). CONCLUSIONS In CLI patients a significant decrease in serum HGF levels, concomitant with a loss of skin HIF-1α stabilization and a lack of c-Met phosphorylation were seen, probably driving a decrease in wound-healing functions. The next hypothesis is that HGF application might reactivate the c-Met receptor, stabilizing the normal wound healing process.
Collapse
|
12
|
Ballotta V, Driessen-Mol A, Bouten CV, Baaijens FP. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 2014; 35:4919-28. [DOI: 10.1016/j.biomaterials.2014.03.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
|
13
|
The endothelial ADMA/NO pathway in hypoxia-related chronic respiratory diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:501612. [PMID: 24719871 PMCID: PMC3955646 DOI: 10.1155/2014/501612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/18/2014] [Indexed: 01/20/2023]
Abstract
Since its discovery, many adhere to the view that asymmetric dimethylarginine (ADMA), as an inhibitor of the synthesis of nitric oxide (NO), contributes to the pathogenesis of various diseases. Particularly, this is evident in disease of the cardiovascular system, in which endothelial dysfunction results in an imbalance between vasoconstriction and vasodilatation. Even if increased ADMA concentrations are closely related to an endothelial dysfunction, several studies pointed to a potential beneficial effect of ADMA, mainly in the context of angioproliferative disease such as cancer and fibrosis. Antiproliferative properties of ADMA independent of NO have been identified in this context. In particular, the regulation of ADMA by its degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH) is the object of many studies. DDAH is discussed as a promising therapeutic target for the indirect regulation of NO. In hypoxia-related chronic respiratory diseases, this controversy discussion of ADMA and DDAH is particularly evident and is therefore subject of this review.
Collapse
|
14
|
Takeda K, Duan LJ, Takeda H, Fong GH. Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:686-96. [PMID: 24440788 DOI: 10.1016/j.ajpath.2013.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Deficiencies in prolyl hydroxylase domain proteins (PHDs) may lead to the accumulation of hypoxia-inducible factor-α proteins, the latter of which activate local angiogenic responses by paracrine mechanisms. Here, we investigate whether a keratinocyte-specific PHD deficiency may promote vascular survival and growth in a distantly located ischemic tissue by a remote signaling mechanism. We generated mice that carry a keratinocyte-specific Phd2 knockout (kPhd2KO) and performed femoral artery ligation. Relative to wild-type controls, kPhd2KO mice displayed improved vascular survival and arteriogenesis in ischemic hind limbs, leading to the accelerated recovery of hindlimb perfusion and superior muscle regeneration. Similar protective effects were also seen in type 1 and type 2 diabetic mice. Molecularly, both abundance of hypoxia-inducible factor-1α protein and expression of vascular endothelial growth factor-A were increased in epidermal tissues of kPhd2KO mice, accompanied by increased plasma concentration of vascular endothelial growth factor-A. Contrary to kPhd2KO mice, which are PHD2 deficient in all skin tissues, localized kPhd2KO in hindlimb skin tissues did not have similar effects, excluding paracrine signaling as a major mechanism. Confirming the existence of remote effects, hepatocyte-specific Phd2 knockout also protected hind limbs from ischemia injury. These data indicate that vascular survival and growth in ischemia-injured tissue may be stimulated by suppressing PHD2 in a remotely located tissue and may provide highly effective angiogenesis therapies without the need for directly accessing target tissues.
Collapse
Affiliation(s)
- Kotaro Takeda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Li-Juan Duan
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Hiromi Takeda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|
15
|
Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V, Guerra G, Tanzi F. How to utilize Ca²⁺ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg 2013; 13 Suppl 2:S46. [PMID: 24267290 PMCID: PMC3851045 DOI: 10.1186/1471-2482-13-s2-s46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization. Unfortunately, ageing patients are not the most amenable candidates for such interventions, due to high operative risk or unfavourable vascular involvement. It has recently been suggested that the transplantation of autologous bone marrow-derived endothelial progenitor cells (EPCs) might constitute an alternative and viable therapeutic option for these individuals. Albeit pre-clinical studies demonstrated the feasibility of EPC-based therapy to recapitulate the diseased vasculature of young and healthy animals, clinical studies provided less impressive results in old ischemic human patients. One hurdle associated to this kind of approach is the senescence of autologous EPCs, which are less abundant in peripheral blood and display a reduced pro-angiogenic activity. Conversely, umbilical cord blood (UCB)-derived EPCs are more suitable for cellular therapeutics due to their higher frequency and sensitivity to growth factors, such as vascular endothelial growth factor (VEGF). An increase in intracellular Ca2+ concentration is central to EPC activation by VEGF. We have recently demonstrated that the Ca2+ signalling machinery driving the oscillatory Ca2+ response to this important growth factor is different in UCB-derived EPCs as compared to their peripheral counterparts. In particular, we focussed on the so-called endothelial colony forming cells (ECFCs), which are the only EPC population belonging to the endothelial lineage and able to form capillary-like structures in vitro and stably integrate with host vasculature in vivo. The present review provides a brief description of how exploiting the Ca2+ toolkit of juvenile EPCs to restore the repairative phenotype of senescent EPCs to enhance their regenerative outcome in therapeutic settings.
Collapse
|
16
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013; 22:2561-80. [PMID: 23682725 DOI: 10.1089/scd.2013.0032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). VEGF-induced Ca(2+) spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca(2+) entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca(2+) response to VEGF. We found that VEGF induces oscillations in [Ca(2+)]i that are patterned by the interaction between InsP3-dependent Ca(2+) release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca(2+) oscillations do not arise in the absence of extracellular Ca(2+) entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca(2+) spikes. Therefore, the Ca(2+) response to VEGF in UCB-ECFCs is shaped by a different Ca(2+) machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.
Collapse
Affiliation(s)
- Silvia Dragoni
- 1 Department of Biology and Biotechnology "Lazzaro Spallanzani,", University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med 2013; 11:138. [PMID: 23742074 PMCID: PMC3680170 DOI: 10.1186/1479-5876-11-138] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023] Open
Abstract
Background Modified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue. Materials and methods Human ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied. Results We obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation. Conclusions Transplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Evgeny K Shevchenko
- Laboratory of angiogenesis, Russian Cardiology Research and Production Complex, 3rd Cherepkovskaya 15A, Moscow, 121552, Russia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Endothelial progenitor cells: the promise of cell-based therapies for acute lung injury. Inflamm Res 2012; 62:3-8. [PMID: 23138575 DOI: 10.1007/s00011-012-0570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/03/2012] [Accepted: 10/22/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are defined as a special type of stem cell that have been found to directly incorporate into injured vessels and that participate in angiogenesis and reconstruction by differentiation into endothelial cells. EPCs are widely used to therapeutically treat cardiovascular disease, limb ischemia and vascular repair. However, the role of EPCs in inflammatory diseases, especially in lung injury, is less studied. OBJECTIVE To investigate the application of EPCs to vascular repair, and the role of EPCs in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). METHODS A computer-based online search was performed in the PubMed database and Web of Science database for articles published, concerning EPCs, angiogenesis, ALI/ARDS and stem cell transplantation CONCLUSION EPCs have a therapeutic potential for vascular regeneration and may emerge as novel strategy for the diseases that are associated with ALI/ARDS.
Collapse
|
19
|
Kurobe H, Maxfield MW, Breuer CK, Shinoka T. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl Med 2012. [PMID: 23197861 DOI: 10.5966/sctm.2012-0044] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In surgical repair for heart or vascular disease, it is often necessary to implant conduits or correct tissue defects. The most commonly used graft materials to date are (a) artificial grafts; (b) autologous tissues, such as pericardium and saphenous vein; (c) allografts; and (d) xenografts. However, none of these four options offer growth potential, and all are associated with varying levels of thrombogenicity and susceptibility to infection. The lack of growth potential of these four options is particularly important in pediatric cardiac surgery, where patients will often outgrow their vascular grafts and require additional operations. Thus, developing a material with sufficient durability and growth potential that will function as the child grows older will eliminate the need for reoperation and significantly reduce morbidity and mortality of some types of congenital heart defects. Vascular tissue engineering is a relatively new field that has undergone enormous growth over the last decade. The goal of vascular tissue engineering is to produce neovessels and neo-organ tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. Once the seeded autologous cells have deposited an extracellular matrix and the original scaffold is biodegraded, the tissue resembles and behaves as native tissue. When tissue-engineered vascular grafts are eventually put to use in the clinical arena, the quality of life in patients after surgery will be drastically improved.
Collapse
Affiliation(s)
- Hirotsugu Kurobe
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520-8039, USA
| | | | | | | |
Collapse
|
20
|
Musilli C, Karam JP, Paccosi S, Muscari C, Mugelli A, Montero-Menei CN, Parenti A. Pharmacologically active microcarriers for endothelial progenitor cell support and survival. Eur J Pharm Biopharm 2012; 81:609-16. [PMID: 22561954 DOI: 10.1016/j.ejpb.2012.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 12/29/2022]
Abstract
The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells.
Collapse
Affiliation(s)
- Claudia Musilli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Bassi R, Trevisani A, Tezza S, Ben Nasr M, Gatti F, Vergani A, Farina A, Fiorina P. Regenerative therapies for diabetic microangiopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:916560. [PMID: 22536216 PMCID: PMC3321284 DOI: 10.1155/2012/916560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.
Collapse
Affiliation(s)
- Roberto Bassi
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | | | - Sara Tezza
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moufida Ben Nasr
- Department of Biophysical and Medical Science, Higher Institute of Medical Technology, 1006 Tunis, Tunisia
| | - Francesca Gatti
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonio Farina
- Department of Obstetrics and Gynecology, University of Bologna, 40138 Bologna, Italy
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
22
|
Setacci C, de Donato G, Teraa M, Moll F, Ricco JB, Becker F, Robert-Ebadi H, Cao P, Eckstein H, De Rango P, Diehm N, Schmidli J, Dick F, Davies A, Lepäntalo M, Apelqvist J. Chapter IV: Treatment of Critical Limb Ischaemia. Eur J Vasc Endovasc Surg 2011; 42 Suppl 2:S43-59. [DOI: 10.1016/s1078-5884(11)60014-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Amsden BG. Delivery approaches for angiogenic growth factors in the treatment of ischemic conditions. Expert Opin Drug Deliv 2011; 8:873-90. [DOI: 10.1517/17425247.2011.577412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377:1929-37. [PMID: 21621834 DOI: 10.1016/s0140-6736(11)60394-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with critical limb ischaemia have a high rate of amputation and mortality. We tested the hypothesis that non-viral 1 fibroblast growth factor (NV1FGF) would improve amputation-free survival. METHODS In this phase 3 trial (EFC6145/TAMARIS), 525 patients with critical limb ischaemia unsuitable for revascularisation were enrolled from 171 sites in 30 countries. All had ischaemic ulcer in legs or minor skin gangrene and met haemodynamic criteria (ankle pressure <70 mm Hg or a toe pressure <50 mm Hg, or both, or a transcutaneous oxygen pressure <30 mm Hg on the treated leg). Patients were randomly assigned to either NV1FGF at 0·2 mg/mL or matching placebo (visually identical) in a 1:1 ratio. Randomisation was done with a central interactive voice response system by block size 4 and was stratified by diabetes status and country. Investigators, patients, and study teams were masked to treatment. Patients received eight intramuscular injections of their assigned treatment in the index leg on days 1, 15, 29, and 43. The primary endpoint was time to major amputation or death at 1 year analysed by intention to treat with a log-rank test using a multivariate Cox proportional hazard model. This trial is registered with ClinicalTrials.gov, number NCT00566657. FINDINGS 259 patients were assigned to NV1FGF and 266 to placebo. All 525 patients were analysed. The mean age was 70 years (range 50-92), 365 (70%) were men, 280 (53%) had diabetes, and 248 (47%) had a history of coronary artery disease. The primary endpoint or components of the primary did not differ between treatment groups, with major amputation or death in 86 patients (33%) in the placebo group, and 96 (36%) in the active group (hazard ratio 1·11, 95% CI 0·83-1·49; p=0·48). No significant safety issues were recorded. INTERPRETATION TAMARIS provided no evidence that NV1FGF is effective in reduction of amputation or death in patients with critical limb ischaemia. Thus, this group of patients remains a major therapeutic challenge for the clinician. FUNDING Sanofi-Aventis, Paris, France.
Collapse
Affiliation(s)
- Jill Belch
- The Institute of Cardiovascular Research, Vascular and Inflammatory Diseases Research Unit, Ninewells Hospital and Medical School, Dundee, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clin Sci (Lond) 2011; 120:307-19. [PMID: 21488224 DOI: 10.1042/cs20100389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiotensin II type 1 receptor antagonists [ARBs (angiotensin receptor blockers)] are indicated for BP (blood pressure)-lowering, renal protection and cardioprotection in patients unable to tolerate ACEIs (angiotensin-converting enzyme inhibitors). A recent meta-analysis revealed an association between ARBs and tumour development, possibly due to enhancement of angiogenesis. However, published evidence is conflicting on the effects of ARBs on angiogenesis or the expansion of the existing vascular network. ARBs have been shown to exert primarily anti-angiogenic effects in basic science studies of cancer, retinopathy, peripheral artery disease and some models of cardiovascular disease. In animal and cellular models of myocardial infarction and stroke, however, ARB administration has been associated with robust increases in vascular density and improved recovery. The aim of the present review is to examine the angiogenic effects of ARBs in animal and cellular models of relevant disease states, including proposed molecular mechanisms of action of ARBs and the clinical consequences of ARB use.
Collapse
|
26
|
Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9:29. [PMID: 21418664 PMCID: PMC3070641 DOI: 10.1186/1479-5876-9-29] [Citation(s) in RCA: 505] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 03/22/2011] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience) or potential/theoretical risks (i.e. risks observed in animal studies) include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC). Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation) are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC) in regenerative medicine applications has not reported major health concerns, suggesting that MSC therapies could be relatively safe. However, in some clinical trials serious adverse events have been reported, which emphasizes the need for additional knowledge, particularly with regard to biological mechanisms and long term safety.
Collapse
Affiliation(s)
- Carla A Herberts
- Centre for Biological Medicines and Medical Technology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | |
Collapse
|
27
|
Saif J, Schwarz TM, Chau DYS, Henstock J, Sami P, Leicht SF, Hermann PC, Alcala S, Mulero F, Shakesheff KM, Heeschen C, Aicher A. Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 2010; 30:1897-904. [PMID: 20689075 DOI: 10.1161/atvbaha.110.207928] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Vasculogenic progenitor cell therapy for ischemic diseases bears great potential but still requires further optimization for justifying its clinical application. Here, we investigated the effects of in vivo tissue engineering by combining vasculogenic progenitors with injectable scaffolds releasing controlled amounts of proangiogenic growth factors. METHODS AND RESULTS We produced biodegradable, injectable polylactic coglycolic acid-based scaffolds releasing single factors or combinations of vascular endothelial growth factor, hepatocyte growth factor, and angiopoietin-1. Dual and triple combinations of scaffold-released growth factors were superior to single release. In murine hindlimb ischemia models, scaffolds releasing dual (vascular endothelial growth factor and hepatocyte growth factor) or triple combinations improved effects of cord blood-derived vasculogenic progenitors. Increased migration, homing, and incorporation of vasculogenic progenitors into the vasculature augmented capillary density, translating into improved blood perfusion. Most importantly, scaffold-released triple combinations including the vessel stabilizer angiopoietin-1 enhanced the number of perivascular smooth muscle actin(+) vascular smooth muscle cells, indicating more efficient vessel stabilization. CONCLUSIONS Vasculogenic progenitor cell therapy is significantly enhanced by in vivo tissue engineering providing a proangiogenic and provasculogenic growth factor-enriched microenvironment. Therefore, combined use of scaffold-released growth factors and cell therapy improves neovascularization in ischemic diseases and may translate into more pronounced clinical effects.
Collapse
Affiliation(s)
- Jaimy Saif
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|