1
|
Zheng L, Xin J, Ye H, Sun N, Gan B, Gong X, Bao S, Xiang M, Wang H, Ni X, Li H, Zhang T. Lactobacillus Johnsonii YH1136 alleviates schizophrenia-like behavior in mice: a gut-microbiota-brain axis hypothesis study. BMC Microbiol 2025; 25:191. [PMID: 40175911 PMCID: PMC11963707 DOI: 10.1186/s12866-025-03893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Based on the microbiota-gut-brain axis (MGBA) hypothesis, probiotics play an increasingly important role in treating various psychiatric disorders. Schizophrenia (SCZ) is a common mental disease with a complex pathogenesis and is challenging to treat. Although studies have elucidated the mechanisms associated with the interactions between the microbiota-gut-brain axis and SCZ, few have specifically used probiotics as a therapeutic intervention for SCZ. Accordingly, the current study determines whether L. johnsonii YH1136 effectively prevents SCZ-like behavior in mice and identifies the associated key microbes and metabolites. An SCZ mouse model was established by intraperitoneal injection of MK-801; L. johnsonii YH1136 was administered via oral gavage. L. johnsonii YH1136 significantly improves abnormal behaviors, including psychomotor hyperactivity and sociability and alleviates aberrant enzyme expression associated with tryptophan metabolism in SCZ mice. Additionally, L. johnsonii YH1136 upregulates hippocampal brain-derived neurotrophic factor (BDNF) levels while downregulating tryptophan 2,3-dioxygenase (TDO2), indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1), kynurenine aminotransferase 1 (KAT1). Subsequent 16S rRNA sequencing of intestinal contents suggests that L. johnsonii YH1136 modulates the gut flora structure and composition by increasing the relative abundance of Lactobacillus and decreasing Dubosiella in SCZ mice. N-acetylneuraminic acid and hypoxanthine are the key serum metabolites mediating the interaction between the MGBA and SCZ. These results partially reveal the mechanism underlying the effects of L. johnsonii YH1136 on SCZ-like behavior in mice, supporting the development of therapeutic L. johnsonii probiotic formulations against SCZ.
Collapse
Affiliation(s)
- Liqin Zheng
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiqian Ye
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China
| | - Ning Sun
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shusheng Bao
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China
| | - Min Xiang
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqin Ni
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China.
| | - Tao Zhang
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China.
| |
Collapse
|
2
|
Korchia T, Faugere M, Tastevin M, Quaranta S, Guilhaumou R, Blin O, Lereclus A, Joober R, Shah J, Palaniyappan L, Lançon C, Fond G, Richieri R. CYP2D6 and CYP2C19 ultrarapid metabolisms are associated with suicide attempts in schizophrenia. L'ENCEPHALE 2024:S0013-7006(24)00205-7. [PMID: 39547922 DOI: 10.1016/j.encep.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Genetic polymorphisms in genes encoding enzymes metabolizing psychotropics drugs result in various isoenzymes with different catalytic efficacies. Of particular interest, some of these isoenzymes are highly catalytic leading to an ultrarapid metabolism (UM) of their substrate medication, which in turn results in lower medication concentrations and possibly poor clinical outcomes, including a higher risk for suicidal behavior. In this study, we investigate the role of CYP2D6 (metabolizing most antidepressant medications) and CYP2C19 (important in metabolizing antipsychotics) UM isoenzymes on suicidal behavior among a cohort of patients with schizophrenia. METHODS One hundred and seventy-eight patients diagnosed with schizophrenia were recruited from the day hospital of a regional psychiatric academic hospital. Lifetime suicide attempts were compared between groups of patients stratified according to their enzymatic profile. Several socio-demographics and clinical covariates were controlled for. RESULTS Among the 178 patients, 16 and 44 were UM as determined by their CYP2D6 and CYP2C19 genotype respectively. Univariate analysis showed a significant association between suicidal attempts and CYP2D6 and CYP2C19 UM status (P=0.041 and P=0.029 respectively). These associations remained significant in multivariate analyses (adjusted for age, sex, dose exposure and antidepressant use…) for both CYP2D6 (P=0.020, OR=4.096, 95% CI [1.25-13.48]) and CYP2C19 (P=0.016, OR=2.680, 95% CI [1.21-5.95]). CONCLUSION This study suggests that the UM phenotypes for both CYP2D6 and CYP2C19 are associated with an increased risk for suicide attempts in patients with schizophrenia.
Collapse
Affiliation(s)
- Théo Korchia
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France; School of Medicine - La Timone Medical Campus, EA 3279, CEReSS-Health Services Research and Quality of Life Center, Aix-Marseille University, Marseille, France; CNRS, centrale Marseille, institut Fresnel, Aix-Marseille University, Marseille, France; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Melanie Faugere
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France; School of Medicine - La Timone Medical Campus, EA 3279, CEReSS-Health Services Research and Quality of Life Center, Aix-Marseille University, Marseille, France
| | - Maud Tastevin
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France
| | - Sylvie Quaranta
- Pharmacokinetics and Toxicology Laboratory, Timone Hospital, AP-HM, Marseille, France
| | - Romain Guilhaumou
- Pharmacokinetics and Toxicology Laboratory, Timone Hospital, AP-HM, Marseille, France
| | - Olivier Blin
- Pharmacokinetics and Toxicology Laboratory, Timone Hospital, AP-HM, Marseille, France
| | - Aurélie Lereclus
- Pharmacokinetics and Toxicology Laboratory, Timone Hospital, AP-HM, Marseille, France
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jai Shah
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Christophe Lançon
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France; School of Medicine - La Timone Medical Campus, EA 3279, CEReSS-Health Services Research and Quality of Life Center, Aix-Marseille University, Marseille, France; CNRS, centrale Marseille, institut Fresnel, Aix-Marseille University, Marseille, France
| | - Guillaume Fond
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France; School of Medicine - La Timone Medical Campus, EA 3279, CEReSS-Health Services Research and Quality of Life Center, Aix-Marseille University, Marseille, France
| | - Raphaëlle Richieri
- Department of University Psychiatry, Sainte-Marguerite University Hospital, AP-HM, 13009 Marseille, France; School of Medicine - La Timone Medical Campus, EA 3279, CEReSS-Health Services Research and Quality of Life Center, Aix-Marseille University, Marseille, France; CNRS, centrale Marseille, institut Fresnel, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Luo Y, Dong D, Huang H, Zhou J, Zuo X, Hu J, He H, Jiang S, Duan M, Yao D, Luo C. Associating Multimodal Neuroimaging Abnormalities With the Transcriptome and Neurotransmitter Signatures in Schizophrenia. Schizophr Bull 2023; 49:1554-1567. [PMID: 37607339 PMCID: PMC10686354 DOI: 10.1093/schbul/sbad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is a multidimensional disease. This study proposes a new research framework that combines multimodal meta-analysis and genetic/molecular architecture to solve the consistency in neuroimaging biomarkers of schizophrenia and whether these link to molecular genetics. STUDY DESIGN We systematically searched Web of Science, PubMed, and BrainMap for the amplitude of low-frequency fluctuations (ALFF) or fractional ALFF, regional homogeneity, regional cerebral blood flow, and voxel-based morphometry analysis studies investigating schizophrenia. The pooled-modality, single-modality, and illness duration-dependent meta-analyses were performed using the activation likelihood estimation algorithm. Subsequently, Spearman correlation and partial least squares regression analyses were conducted to assess the relationship between identified reliable convergent patterns of multimodality and neurotransmitter/transcriptome, using prior molecular imaging and brain-wide gene expression. STUDY RESULTS In total, 203 experiments comprising 10 613 patients and 10 461 healthy controls were included. Multimodal meta-analysis showed that brain regions of significant convergence in schizophrenia were mainly distributed in the frontotemporal cortex, anterior cingulate cortex, insula, thalamus, striatum, and hippocampus. Interestingly, the analyses of illness-duration subgroups identified aberrant functional and structural evolutionary patterns: Lines from the striatum to the cortical core networks to extensive cortical and subcortical regions. Subsequently, we found that these robust multimodal neuroimaging abnormalities were associated with multiple neurobiological abnormalities, such as dopaminergic, glutamatergic, serotonergic, and GABAergic systems. CONCLUSIONS This work links transcriptome/neurotransmitters with reliable structural and functional signatures of brain abnormalities underlying disease effects in schizophrenia, which provides novel insight into the understanding of schizophrenia pathophysiology and targeted treatments.
Collapse
Affiliation(s)
- Yuling Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Mental Health Center of Chengdu, The fourth people’s Hospital of Chengdu, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Mental Health Center of Chengdu, The fourth people’s Hospital of Chengdu, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
4
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
5
|
Xiang M, Zheng L, Pu D, Lin F, Ma X, Ye H, Pu D, Zhang Y, Wang D, Wang X, Zou K, Chen L, Zhang Y, Sun Z, Zhang T, Wu G. Intestinal Microbes in Patients With Schizophrenia Undergoing Short-Term Treatment: Core Species Identification Based on Co-Occurrence Networks and Regression Analysis. Front Microbiol 2022; 13:909729. [PMID: 35783418 PMCID: PMC9247572 DOI: 10.3389/fmicb.2022.909729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia, a common mental disorder, has a tremendous impact on the health and economy of people worldwide. Evidence suggests that the microbial-gut-brain axis is an important pathway for the interaction between the gut microbiome and the development of schizophrenia. What is not clear is how changes in the gut microbiota composition and structure during antipsychotic treatment improve the symptoms of schizophrenia. In this study, 25 patients with schizophrenia were recruited. Their fecal samples were collected before and after hospital treatment for 14–19 days. The composition and structure of the intestinal microbiota were evaluated by 16S rRNA sequencing analysis, and the results showed significant differences in fecal microbiota before and after treatment. Firmicutes (relative abundances of 82.60 and 86.64%) and Gemminger (relative abundances of 14.17 and 13.57%) were the first dominant species at the phylum and genus levels, respectively. The random forest algorithm and co-occurrence network analysis demonstrated that intestinal flora (especially the core species ASV57) could be used as biomarkers to distinguish different clinical states and match treatment regimens accordingly. In addition, after fecal microbiota transplantation, antibiotic-treated recipient mice showed multiple behavioral improvements. These included decreased psychomotor hyperactivity, increased social interaction, and memory. In conclusion, this study suggests that differences in the composition and structure of gut microbiota after treatment are associated with the development and severity of schizophrenia. Results may provide a potential target for the treatment of this disorder.
Collapse
Affiliation(s)
- Min Xiang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Liqin Zheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoshen Pu
- The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Feng Lin
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaodong Ma
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Huiqian Ye
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Daoqiong Pu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Ying Zhang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Dong Wang
- Psychiatry Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaoli Wang
- Internal Medicine, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Kaiqing Zou
- The Outpatient Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Linqi Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanjiang Sun
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Tao Zhang
| | - Guolin Wu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
- *Correspondence: Guolin Wu
| |
Collapse
|
6
|
NKCC1 to KCC2 mRNA Ratio in Schizophrenia and Its Psychopathology: a Case-Control Study. J Mol Neurosci 2022; 72:1670-1681. [PMID: 35624355 DOI: 10.1007/s12031-021-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/21/2021] [Indexed: 10/18/2022]
Abstract
Schizophrenia (SCZ) is a debilitating, destructive, and chronic mental disorder and affects approximately one percent of the human population. Diagnosis in psychiatry is based on the patient's descriptions of his/her symptoms, interviewer's observations, history of disorder over time, and response to treatment. All of these data measure phenotype-based functions. But it appears that accurate diagnosis of such a complex disorder must be based on valid and reliable factors. In the present study, gene selection was based on the possible role of γ-aminobutyric acid (GABA) in psychopathology of SCZ and expression in blood. We evaluated the association of Na+-K+-Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) genes' messenger ribonucleic acid (mRNA) levels, and also the NKCC1/KCC2 ratio with positive and negative syndrome scale (PANSS) and brief psychiatric rating scale (BPRS) scores in an SCZ group. By using real-time PCR (RT-PCR), the present study is the first attempt to explore levels of NKCC1 and KCC2 expression at mRNA level and their relative expression in human peripheral blood of patients with SCZ. Our results showed that the NKCC1 to KCC2 mRNA ratio is significantly increased (but based on the delta cycle of threshold [∆Ct] is significantly lower) in the total sample of cases rather than controls (p = 0.045) and also higher in male sample cases rather than male controls (p = 0.016). In female samples, we found a trend toward a significant effect between the case and control participants (p = 0.075). We also found statistically significant association between mRNA of NKCC1 and KCC2 genes and NKCC1/KCC2 mRNA ratio with the positive and negative syndrome scale (PANSS) and brief psychiatric rating scale (BPRS) scores.
Collapse
|
7
|
Jones SW, Ball AL, Chadwick AE, Alfirevic A. The Role of Mitochondrial DNA Variation in Drug Response: A Systematic Review. Front Genet 2021; 12:698825. [PMID: 34484295 PMCID: PMC8416105 DOI: 10.3389/fgene.2021.698825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The triad of drug efficacy, toxicity and resistance underpins the risk-benefit balance of all therapeutics. The application of pharmacogenomics has the potential to improve the risk-benefit balance of a given therapeutic via the stratification of patient populations based on DNA variants. A growth in the understanding of the particulars of the mitochondrial genome, alongside the availability of techniques for its interrogation has resulted in a growing body of literature examining the impact of mitochondrial DNA (mtDNA) variation upon drug response. Objective: To critically evaluate and summarize the available literature, across a defined period, in a systematic fashion in order to map out the current landscape of the subject area and identify how the field may continue to advance. Methods: A systematic review of the literature published between January 2009 and December 2020 was conducted using the PubMed database with the following key inclusion criteria: reference to specific mtDNA polymorphisms or haplogroups, a core objective to examine associations between mtDNA variants and drug response, and research performed using human subjects or human in vitro models. Results: Review of the literature identified 24 articles reporting an investigation of the association between mtDNA variant(s) and drug efficacy, toxicity or resistance that met the key inclusion criteria. This included 10 articles examining mtDNA variations associated with antiretroviral therapy response, 4 articles examining mtDNA variants associated with anticancer agent response and 4 articles examining mtDNA variants associated with antimicrobial agent response. The remaining articles covered a wide breadth of medications and were therefore grouped together and referred to as "other." Conclusions: Investigation of the impact of mtDNA variation upon drug response has been sporadic to-date. Collective assessment of the associations identified in the articles was inconclusive due to heterogeneous methods and outcomes, limited racial/ethnic groups, lack of replication and inadequate statistical power. There remains a high degree of idiosyncrasy in drug response and this area has the potential to explain variation in drug response in a clinical setting, therefore further research is likely to be of clinical benefit.
Collapse
Affiliation(s)
- Samantha W. Jones
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Ball
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Association of DRD2 gene polymorphisms with schizophrenia in the young Bangladeshi population: A pilot study. Heliyon 2020; 6:e05125. [PMID: 33043160 PMCID: PMC7536371 DOI: 10.1016/j.heliyon.2020.e05125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose DRD2 gene is considered one of the most important candidate genes for the schizophrenia (SCZ) development due to its role in dopamine signaling and no genetic association study has been conducted yet on the Bangladeshi SCZ patients. The objective of the present study was to investigate the association of DRD2 genetic polymorphisms (rs4648317, rs4936270, and rs7131056) with SCZ in the Bangladeshi population. Patients and methods This case-control study consisted of 101 SCZ patients and 101 controls. Genotyping was performed by the polymerase chain reaction and restriction fragment length polymorphism (PCR–RFLP) method. Results The average ages were 22.15 and 22.09 years in patients and controls, respectively (p > 0.05). CT genotype of rs4936270 showed a significantly higher risk for the development of SCZ compared to CC genotype (OR = 2.0, p = 0.023), whereas no association was found for TT genotype. For the dominant model and T allele, rs4936270 showed a higher risk for the development of SCZ (OR = 2.01, p = 0.020; OR = 1.76, p = 0.021, respectively), while the recessive model had no association with SCZ. A statistically significant (OR = 2.70, p = 0.036) higher risk was found for the AA genotype, but no association was found for GA genotype of rs4648317 SNP compared to GG genotype. In case of dominant and recessive models, rs4648317 showed no association with SCZ. ‘A’ allele of rs4648317 SNP was found to be significantly associated with the elevated risk of SCZ (OR = 1.50, p = 0.044). No association with SCZ of rs7131056 SNP was found for AC, CC genotypes, dominant, recessive, and allele models. Furthermore, from the haplotyping analysis, we found that CAA and TAA haplotypes of rs4936270, rs7131056 and rs4648317 SNPs are associated with SCZ (χ2 = 8.26, p = 0.004; χ2 = 5.31, p = 0.021, respectively). After Bonferroni correction, the association of SCZ did not withstand with any genotype, allele and haplotype (p < 0.017) except CAA haplotype. Conclusion Our results suggest that DRD2 gene polymorphisms may be associated with the susceptibility of SCZ in the young Bangladeshi population.
Collapse
|
9
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
10
|
Hrovatin K, Kunej T, Dolžan V. Genetic variability of serotonin pathway associated with schizophrenia onset, progression, and treatment. Am J Med Genet B Neuropsychiatr Genet 2020; 183:113-127. [PMID: 31674148 DOI: 10.1002/ajmg.b.32766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SZ) onset and treatment outcome have important genetic components, however individual genes do not have strong effects on SZ phenotype. Therefore, it is important to use the pathway-based approach and study metabolic and signaling pathways, such as dopaminergic and serotonergic. Serotonin pathway has an important role in brain signaling, nevertheless, its role in SZ is not as thoroughly examined as that of dopamine pathway. In this study, we reviewed serotonin pathway genes and genetic variations associated with SZ, including variations at DNA, RNA, and epigenetic level. We obtained 30 serotonin pathway genes from Kyoto encyclopedia of genes and genomes and used these genes for the literature review. We extracted 20 protein coding serotonin pathway genes with genetic variations associated with SZ onset, development, and treatment from 31 research papers. Genes associated with SZ are present on all levels of serotonin pathway: serotonin synthesis, transport, receptor binding, intracellular signaling, and reuptake; however, regulatory genes are poorly researched. We summarized common challenges of genetic association studies and presented some solutions. The analysis of reported serotonin pathway-SZ associations revealed lack of information about certain serotonin pathway genes potentially associated with SZ. Furthermore, it is becoming clear that interactions among serotonin pathway genes and their regulators may bring further knowledge about their involvement in SZ.
Collapse
Affiliation(s)
- Karin Hrovatin
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Vita Dolžan
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Pharmacogenetics Laboratory, Ljubljana, Slovenia
| |
Collapse
|
11
|
Luo A, Jung J, Longley M, Rosoff DB, Charlet K, Muench C, Lee J, Hodgkinson CA, Goldman D, Horvath S, Kaminsky ZA, Lohoff FW. Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology 2020; 45:327-336. [PMID: 31466081 PMCID: PMC6901591 DOI: 10.1038/s41386-019-0500-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
To investigate the potential role of alcohol use disorder (AUD) in aging processes, we employed Levine's epigenetic clock (DNAm PhenoAge) to estimate DNA methylation age in 331 individuals with AUD and 201 healthy controls (HC). We evaluated the effects of heavy, chronic alcohol consumption on epigenetic age acceleration (EAA) using clinical biomarkers, including liver function test enzymes (LFTs) and clinical measures. To characterize potential underlying genetic variation contributing to EAA in AUD, we performed genome-wide association studies (GWAS) on EAA, including pathway analyses. We followed up on relevant top findings with in silico expression quantitative trait loci (eQTL) analyses for biological function using the BRAINEAC database. There was a 2.22-year age acceleration in AUD compared to controls after adjusting for gender and blood cell composition (p = 1.85 × 10-5). This association remained significant after adjusting for race, body mass index, and smoking status (1.38 years, p = 0.02). Secondary analyses showed more pronounced EAA in individuals with more severe AUD-associated phenotypes, including elevated gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT), and higher number of heavy drinking days (all ps < 0.05). The genome-wide meta-analysis of EAA in AUD revealed a significant single nucleotide polymorphism (SNP), rs916264 (p = 5.43 × 10-8), in apolipoprotein L2 (APOL2) at the genome-wide level. The minor allele A of rs916264 was associated with EAA and with increased mRNA expression in hippocampus (p = 0.0015). Our data demonstrate EAA in AUD and suggest that disease severity further accelerates epigenetic aging. EAA was associated with genetic variation in APOL2, suggesting potential novel biological mechanisms for age acceleration in AUD.
Collapse
Affiliation(s)
- Audrey Luo
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jeesun Jung
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Martha Longley
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Daniel B. Rosoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Katrin Charlet
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charite – Universitaetsmedizin Berlin, Berlin, Germany
| | - Christine Muench
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jisoo Lee
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Colin A. Hodgkinson
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - David Goldman
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Steve Horvath
- 0000 0000 9632 6718grid.19006.3eDepartment of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA ,0000 0000 9632 6718grid.19006.3eDepartment of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA USA
| | - Zachary A. Kaminsky
- 0000 0001 2182 2255grid.28046.38The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Falk W. Lohoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
12
|
Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol 2019; 12:407-442. [DOI: 10.1080/17512433.2019.1597706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
13
|
Nasyrova RF, Schnaider NA, Mironov KO, Shipulin GA, Dribnokhodova OP, Golosov EA, Tolmachev MY, Andreev BV, Kurylev AA, Akhmetova LS, Limankin ОV, Neznanov NG. Pharmacogenetics of schizophrenia in real clinical practice: a clinical case. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2018. [DOI: 10.14412/2074-2711-2018-4-88-93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Schizophrenia is a socially significant mental disorder characterized by early onset and high time and financial expenditure on treatment. The basic drugs in these patients are antipsychotics that are highly effective against the positive and negative symptoms of schizophrenia, but at the same time have a wide range of adverse reactions (ARs). The clinical effect and tolerability of antipsychotics are variable and depend on the characteristics of genetically determined mechanisms (transportation, biotransformation, and elimination).The paper describes a clinical case of a female patient with schizophrenia who has been noted to be unresponsive to antipsychotic therapy for some years after the onset of the disease. After pharmacogenetic testing, she was found to be homozygous for the nonfunctional allelic variant CYP2D6*4 (1934 G>A, rs3892097), which was the reason for the complete shutdown of isoenzyme 2D6 activity and the development of ARs in the use of initial doses of antipsychotic drugs, as well as for an increase in the severity of ARs with aggravation of psycho-producing symptoms with an even slow titration of the daily dose.
Collapse
Affiliation(s)
- R. F. Nasyrova
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia; P.P. Kashchenko Saint Petersburg City Mental Hospital One
| | - N. A. Schnaider
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia
| | - K. O. Mironov
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being
| | - G. A. Shipulin
- Center for Strategic Planning and Management of Biomedical Health Risks, Ministry of Health of Russia
| | - O. P. Dribnokhodova
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being
| | - E. A. Golosov
- P.P. Kashchenko Saint Petersburg City Mental Hospital One
| | - M. Yu. Tolmachev
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia
| | - B. V. Andreev
- P.P. Kashchenko Saint Petersburg City Mental Hospital One; Saint Petersburg State University
| | - A. A. Kurylev
- P.P. Kashchenko Saint Petersburg City Mental Hospital One; Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - L. Sh. Akhmetova
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia
| | - О. V. Limankin
- P.P. Kashchenko Saint Petersburg City Mental Hospital One
| | - N. G. Neznanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia; Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| |
Collapse
|
14
|
Franco-Martin MA, Sans F, García-Berrocal B, Blanco C, Llanes-Alvarez C, Isidoro-García M. Usefulness of Pharmacogenetic Analysis in Psychiatric Clinical Practice: A Case Report. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:349-357. [PMID: 30121988 PMCID: PMC6124872 DOI: 10.9758/cpn.2018.16.3.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 05/19/2017] [Indexed: 01/16/2023]
Abstract
There are many factors involved in the effectiveness and efficiency of psychiatric drug treatment. One of them is psychotropic drug metabolism, which takes place mostly in the liver through the P450 enzyme system. However, there are genotypic variants of this system’s enzymes that can directly affect both the efficacy and the onset of side effects of a given therapeutic regimen. These genotypic changes could partly explain the lack of efficacy of treatment in certain patients. We report the case of a patient diagnosed with bipolar type I disorder that presented multiple and frequent manic episodes in which the efficacy and tolerability of several pharmacological regimens with mood stabilizers and antipsychotics was scarce. The choice of medical treatment should be based on its efficacy and side effect profile. This decision can be made more accurately using the information provided by pharmacogenetic analysis. This case illustrates the importance of pharmacogenetic studies in clinical practice. The results of pharmacogenetic analysis helped to decide on a better treatment plan to achieve clinical improvement and reduce drug-induced adverse effects.
Collapse
Affiliation(s)
- Manuel A Franco-Martin
- Department of Psychiatry and Mental Health, Zamora Hospital, Zamora, Spain.,Biosciences Institute of Salamanca, University of Salamanca, Salamanca, Spain
| | - Francisco Sans
- Department of Psychiatry and Mental Health, Zamora Hospital, Zamora, Spain
| | - Belen García-Berrocal
- Biosciences Institute of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
| | - Cristina Blanco
- Department of Psychiatry and Mental Health, Zamora Hospital, Zamora, Spain
| | | | - María Isidoro-García
- Biosciences Institute of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Jagannath V, Marinova Z, Monoranu CM, Walitza S, Grünblatt E. Expression of D-Amino Acid Oxidase ( DAO/ DAAO) and D-Amino Acid Oxidase Activator ( DAOA/G72) during Development and Aging in the Human Post-mortem Brain. Front Neuroanat 2017; 11:31. [PMID: 28428746 PMCID: PMC5382383 DOI: 10.3389/fnana.2017.00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
In the brain, D-amino acid oxidase (DAO/DAAO) mainly oxidizes D-serine, a co-agonist of the N-methyl-D-aspartate (NMDA) receptors. Thus, DAO can regulate the function of NMDA receptors via D-serine breakdown. Furthermore, DAO activator (DAOA)/G72 has been reported as both DAOA and repressor. The co-expression of DAO and DAOA genes and proteins in the human brain is not yet elucidated. The aim of this study was to understand the regional and age span distribution of DAO and DAOA (mRNA and protein) in a concomitant manner. We determined DAO and DAOA mRNA and protein expression across six brain regions in normal human post-mortem brain samples (16 weeks of gestation to 91 years) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. We found higher expression of DAO mRNA in the cerebellum, whereas lower expression of DAO protein in the cerebellum compared to the other brain regions studied, which suggests post-transcriptional regulation. We detected DAOA protein but not DAOA mRNA in all brain regions studied, suggesting a tightly regulated expression. To understand this regulation at the transcriptional level, we analyzed DNA methylation levels at DAO and DAOA CpG sites in the cerebellum and frontal cortex of control human post-mortem brain obtained from Gene Expression Omnibus datasets. Indeed, DAO and DAOA CpG sites in the cerebellum were significantly more methylated than those in the frontal cortex. While investigating lifespan effects, we found that DAO mRNA levels were positively correlated with age <2 years in the cerebellum and amygdala. We also detected a significant positive correlation (controlled for age) between DAO and DAOA protein in all of the brain regions studied except for the frontal cortex. In summary, DAO and DAOA expression in the human brain are both age and brain region dependent.
Collapse
Affiliation(s)
- Vinita Jagannath
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland
| | - Zoya Marinova
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of WürzburgWürzburg, Germany
| | - Susanne Walitza
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH ZurichZurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
| | - Edna Grünblatt
- Molecular and Neurobiochemistry Laboratory, Centre for Child and Adolescent Psychiatry Research, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of ZurichZurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH ZurichZurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
| |
Collapse
|
16
|
Srinivasan S, Bettella F, Mattingsdal M, Wang Y, Witoelar A, Schork AJ, Thompson WK, Zuber V, Winsvold BS, Zwart JA, Collier DA, Desikan RS, Melle I, Werge T, Dale AM, Djurovic S, Andreassen OA. Genetic Markers of Human Evolution Are Enriched in Schizophrenia. Biol Psychiatry 2016; 80:284-292. [PMID: 26681495 PMCID: PMC5397584 DOI: 10.1016/j.biopsych.2015.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking, and cognitive abilities. METHODS We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. RESULTS Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. CONCLUSIONS Our results suggest that there is a polygenic overlap between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human.
Collapse
Affiliation(s)
- Saurabh Srinivasan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Morten Mattingsdal
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Multimodal Imaging Laboratory, University of California at San Diego, La Jolla, CA, USA
| | - Aree Witoelar
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Andrew J. Schork
- Multimodal Imaging Laboratory, University of California at San Diego, La Jolla, CA, USA,Cognitive Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA,Center for Human Development, University of California at San Diego, La Jolla, CA, USA
| | - Wesley K. Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Verena Zuber
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | - Bendik S. Winsvold
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology and FORMI, Oslo University Hospital, Ullevål, Oslo, Norway
| | - John-Anker Zwart
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology and FORMI, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Rahul S. Desikan
- Multimodal Imaging Laboratory, University of California at San Diego, La Jolla, CA, USA,Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
| | - Anders M. Dale
- Multimodal Imaging Laboratory, University of California at San Diego, La Jolla, CA, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Lilly UK, Erl Wood Manor, Windlesham, Surrey, UK,Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Corresponding author: , NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital - Ullevål, Kirkeveien 166, PO Box 4956 Nydalen, 0424 Oslo, Norway; Tel.: +47- 22 11 98 90, Fax: +47- 22 11 98 99
| |
Collapse
|
17
|
Chung E, Cromby J, Papadopoulos D, Tufarelli C. Social epigenetics: a science of social science? ACTA ACUST UNITED AC 2016. [DOI: 10.1002/2059-7932.12019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res 2015; 75:348-65. [PMID: 25195579 DOI: 10.1002/ddr.21219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different epigenetic alterations (DNA methylation, histone modifications, chromatin remodeling, noncoding RNA dysregulation) are associated with the phenotypic expression of complex disorders in which genomic, epigenomic, proteomic, and metabolomic changes, in conjunction with environmental factors, are involved. As epigenetic modifications are reversible and can be potentially targeted by pharmacological and dietary interventions, a series of epigenetic drugs have been developed, including DNA methyltransferase inhibitors (nucleoside analogs, small molecules, bioproducts, antisense oligonucleotides, miRNAs), histone deacetylase inhibitors (short-chain fatty acids, hydroxamic acids, cyclic peptides, benzamides, ketones, sirtuin inhibitors, sirtuin activators), histone acetyltransferase modulators, histone methyltransferase inhibitors, histone demethylase inhibitors, and noncoding RNAs (miRNAs), with potential effects against myelodysplastic syndromes, different types of cancer, and neurodegenerative disorders. Pharmacogenetic and pharmacoepigenetic studies are required for the proper evaluation of efficacy and safety issues in clinical trials with epigenetic drugs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Genomic Medicine, Camilo José Cela University, Madrid, 28692, Spain; EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, 15165, Spain
| |
Collapse
|
19
|
Pharmacogenetics of Neurodegenerative Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Santoro ML, Santos CM, Ota VK, Gadelha A, Stilhano RS, Diana MC, Silva PN, Spíndola LMN, Melaragno MI, Bressan RA, Han SW, Abílio VC, Belangero SI. Expression profile of neurotransmitter receptor and regulatory genes in the prefrontal cortex of spontaneously hypertensive rats: relevance to neuropsychiatric disorders. Psychiatry Res 2014; 219:674-9. [PMID: 25041985 DOI: 10.1016/j.psychres.2014.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/22/2014] [Accepted: 05/18/2014] [Indexed: 12/12/2022]
Abstract
The spontaneously hypertensive rat (SHR) strain was shown to be a useful animal model to study several behavioral, pathophysiological and pharmacological aspects of schizophrenia and attention-deficit/hyperactivity disorder. To further understand the genetic underpinnings of this model, our primary goal in this study was to compare the gene expression profile of neurotransmitter receptors and regulators in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) of SHR and Wistar rats (control group). In addition, we investigated DNA methylation pattern of promoter region of the genes differentially expressed. We performed gene expression analysis using a PCRarray technology, which simultaneously measures the expression of 84 genes related to neurotransmission. Four genes were significantly downregulated in the PFC of SHR compared to Wistar rats (Gad2, Chrnb4, Slc5a7, and Qrfpr) and none in nucleus accumbens. Gad2 and Qrfpr have CpG islands in their promoter region. For both, the promoter region was hypomethylated in SHR group, and probably this mechanism is not related with the downregulation of these genes. In summary, we identified genes that are downregulated in the PFC of SHR, and might be related to the behavioral abnormalities exhibited by this strain.
Collapse
Affiliation(s)
- Marcos Leite Santoro
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil
| | - Camila Maurício Santos
- Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil
| | - Ary Gadelha
- Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Roberta Sessa Stilhano
- Department of Biophysics and Investigation Center for Gene Therapy, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Mariana Cepollaro Diana
- Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Pharmacology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Patrícia Natália Silva
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Letícia Maria Nery Spíndola
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sang Won Han
- Department of Biophysics and Investigation Center for Gene Therapy, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vanessa Costhek Abílio
- Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Pharmacology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LiNC), Sao Paulo, Brazil; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
21
|
Abstract
The paper aims to review current evidence that supports the application of genetic information in the management and use of psychotropic medication. Although the importance of an individual's genetic makeup in the metabolism of drugs has been known for at least 50 years, it is only recently that such information is finding clinical application. A literature review of recent studies suggest that there are clear variations in the way people respond to psychotropic medication. These variations can be seen across racial and ethnic lines, and are genetically determined. The hope is that, in future we will be able to use genetic information to predict which patient will benefit from which drug and at what dose. In other fields of health care such as anticoagulant therapy, the application of pharmacogenetics is now established in routine clinical care. Several psychiatric pharmacogenetic tests are currently available, including tests for the determination of metabolic status, risk of agranulocytosis and metabolic syndrome, and selection of beneficial medications. Since nurses are the centrepiece of mental health care, these advances are likely to alter significantly future mental health nurse education and practice.
Collapse
Affiliation(s)
- S Mutsatsa
- Senior Lecturer Senior Lecturer, Faculty of Health and Social Care, London South Bank University, Romford, UK.
| | | |
Collapse
|
22
|
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center; Institute for CNS Disorders and Genomic Medicine; EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University; Bergondo; Corunna; Spain
| |
Collapse
|