1
|
Chen ZK, Liu YY, Zhou JC, Chen GH, Liu CF, Qu WM, Huang ZL. Insomnia-related rodent models in drug discovery. Acta Pharmacol Sin 2024; 45:1777-1792. [PMID: 38671193 PMCID: PMC11335876 DOI: 10.1038/s41401-024-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Chuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li Q, Bai J, Ma Y, Sun Y, Zhou W, Wang Z, Zhou Z, Wang Z, Chen Y, Abliz Z. Pharmacometabolomics and mass spectrometry imaging approach to reveal the neurochemical mechanisms of Polygala tenuifolia. J Pharm Anal 2024; 14:100973. [PMID: 39175609 PMCID: PMC11340588 DOI: 10.1016/j.jpha.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 08/24/2024] Open
Abstract
Polygala tenuifolia, commonly known as Yuanzhi (YZ) in Chinese, has been shown to possess anti-insomnia properties. However, the material basis and the mechanism underlying its sedative-hypnotic effects remain unclear. Herein, we investigated the active components and neurochemical mechanism of YZ extracts using liquid chromatography tandem mass spectrometry (LC-MS/MS)-based pharmacometabolomics and mass spectrometry imaging (MSI)-based spatial resolved metabolomics. According to the results, 17 prototypes out of 101 ingredients in the YZ extract were detected in both the plasma and brain, which might be the major components contributing to the sedative-hypnotic effects. Network pharmacology analysis revealed that these prototypes may exert their effects through neuroactive ligand-receptor interaction, serotonergic synapse, dopaminergic synapse, and dopaminergic synapse, among other pathways. LC-MS/MS-based targeted metabolomics and Western blot (WB) revealed that tryptophan-serotonin-melatonin (Trp-5-HT-Mel) and tyrosine-norepinephrine-adrenaline (Tyr-Ne-Ad) are the key regulated pathways. Dopa decarboxylase (DDC) upregulation and phenylethanolamine N-methyltransferase (PNMT) downregulation further confirmed these pathways. Furthermore, MSI-based spatially resolved metabolomics revealed notable alterations in 5-HT in the pineal gland (PG), and Ad in the brainstem, including the middle brain (MB), pons (PN), and hypothalamus (HY). In summary, this study illustrates the efficacy of an integrated multidimensional metabolomics approach in unraveling the sedative-hypnotic effects and neurochemical mechanisms of a Chinese herbal medicine, YZ.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jinpeng Bai
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuxue Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yu Sun
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Wenbin Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Bartolucci S, Retini M, Fanini F, Paderni D, Piersanti G. Synthesis and Fluorescence Properties of 4-Cyano and 4-Formyl Melatonin as Putative Melatoninergic Ligands. ACS OMEGA 2023; 8:22190-22194. [PMID: 37360469 PMCID: PMC10286092 DOI: 10.1021/acsomega.3c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Fluorescent ligands are imperative to many facets of chemical biology and medicinal chemistry. Herein, we report the syntheses of two fluorescent melatonin-based derivatives as potential ligands of melatonin receptors. The two compounds, namely, 4-cyano and 4-formyl melatonin (4CN-MLT and 4CHO-MLT, respectively), which differ from melatonin by only two/three atoms that are very compact in size, were prepared using the selective C3-alkylation of indoles with N-acetyl ethanolamines involving the "borrowing hydrogen" strategy. These compounds exhibit absorption/emission spectra that are red-shifted from those of melatonin. Binding studies on two melatonin receptor subtypes showed that these derivatives have a modest affinity and selectivity ratio.
Collapse
Affiliation(s)
- Silvia Bartolucci
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Michele Retini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Fabiola Fanini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Daniele Paderni
- Department
of Pure and Applied Sciences, University
of Urbino Carlo Bo, Via della Stazione 4, 61029 Urbino, Pesaro and Urbino, Italy
| | - Giovanni Piersanti
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| |
Collapse
|
4
|
Ivanova N, Nenchovska Z, Atanasova M, Laudon M, Mitreva R, Tchekalarova J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic-Pituitary-Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell Mol Neurobiol 2022; 42:2257-2272. [PMID: 34003403 PMCID: PMC11421606 DOI: 10.1007/s10571-021-01100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
The prenatal stress (PNS) model in rodents can induce different abnormal responses that replicate the pathophysiology of depression. We applied this model to evaluate the efficacy of piromelatine (Pir), a novel melatonin analog developed for the treatment of insomnia, in male and female offspring. Adult PNS rats from both sexes showed comparable disturbance associated with high levels of anxiety and depressive responses. Both males and females with PNS demonstrated impaired feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis compared to the intact offspring and increased glucocorticoid receptors in the hippocampus. However, opposite to female offspring, the male PNS rats showed an increased expression of mineralocorticoid receptors in the hippocampus. Piromelatine (20 mg/kg, i.p., for 21 days injected from postnatal day 60) attenuated the high anxiety level tested in the open field, elevated plus-maze and light-dark test, and depressive-like behavior in the sucrose preference and the forced swimming tests in a sex-specific manner. The drug reversed to control level stress-induced increase of plasma corticosterone 120 min later in both sexes. Piromelatine also corrected to control level the PNS-induced alterations of corticosteroid receptors only in male offspring. Our findings suggest that the piromelatine treatment exerts beneficial effects on impaired behavioral responses and dysregulated HPA axis in both sexes, while it corrects the PNS-induced changes in the hippocampal corticosteroid receptors only in male offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800, Pleven, Bulgaria
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel
| | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Bartoccini F, Regni A, Retini M, Piersanti G. Concise catalytic asymmetric synthesis of (R)-4-amino Uhle's ketone. Org Biomol Chem 2021; 19:2932-2940. [PMID: 33885552 DOI: 10.1039/d1ob00353d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A practical and asymmetric synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an enantiopure framework shared by most ergot alkaloids, was accomplished. Our method involves a Rh(i)-catalyzed 6-exo-trig intramolecular cyclization of an appropriate 4-pinacolboronic ester d-tryptophan aldehyde followed by the oxidation of the resulting secondary benzylic alcohol with a Cu(i)-ABNO catalyst and final deprotection under acidic conditions. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, preservation of chiral integrity, and high overall yield and avoids the use of stoichiometric amounts of strongly basic and pyrophoric organometallic reagents.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy.
| | | | | | | |
Collapse
|
6
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
7
|
Watkins LR, Orlandi C. Orphan G Protein Coupled Receptors in Affective Disorders. Genes (Basel) 2020; 11:E694. [PMID: 32599826 PMCID: PMC7349732 DOI: 10.3390/genes11060694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
G protein coupled receptors (GPCRs) are the main mediators of signal transduction in the central nervous system. Therefore, it is not surprising that many GPCRs have long been investigated for their role in the development of anxiety and mood disorders, as well as in the mechanism of action of antidepressant therapies. Importantly, the endogenous ligands for a large group of GPCRs have not yet been identified and are therefore known as orphan GPCRs (oGPCRs). Nonetheless, growing evidence from animal studies, together with genome wide association studies (GWAS) and post-mortem transcriptomic analysis in patients, pointed at many oGPCRs as potential pharmacological targets. Among these discoveries, we summarize in this review how emotional behaviors are modulated by the following oGPCRs: ADGRB2 (BAI2), ADGRG1 (GPR56), GPR3, GPR26, GPR37, GPR50, GPR52, GPR61, GPR62, GPR88, GPR135, GPR158, and GPRC5B.
Collapse
Affiliation(s)
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
8
|
Sun Z, Xi L, Zheng K, Zhang Z, Baldridge KK, Olson MA. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2020; 16:4788-4799. [PMID: 32400822 DOI: 10.1039/d0sm00424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Lihui Xi
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kai Zheng
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| |
Collapse
|
9
|
Riemann D, Krone LB, Wulff K, Nissen C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020; 45:74-89. [PMID: 31071719 PMCID: PMC6879516 DOI: 10.1038/s41386-019-0411-y] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Since ancient times it is known that melancholia and sleep disturbances co-occur. The introduction of polysomnography into psychiatric research confirmed a disturbance of sleep continuity in patients with depression, revealing not only a decrease in Slow Wave Sleep, but also a disinhibition of REM (rapid eye movement) sleep, demonstrated as a shortening of REM latency, an increase of REM density, as well as total REM sleep time. Initial hopes that these abnormalities of REM sleep may serve as differential-diagnostic markers for subtypes of depression were not fulfilled. Almost all antidepressant agents suppress REM sleep and a time-and-dose-response relationship between total REM sleep suppression and therapeutic response to treatment seemed apparent. The so-called Cholinergic REM Induction Test revealed that REM sleep abnormalities can be mimicked by administration of cholinomimetic agents. Another important research avenue is the study of chrono-medical timing of sleep deprivation and light exposure for their positive effects on mood in depression. Present day research takes the view on insomnia, i.e., prolonged sleep latency, problems to maintain sleep, and early morning awakening, as a transdiagnostic symptom for many mental disorders, being most closely related to depression. Studying insomnia from different angles as a transdiagnostic phenotype has opened many new perspectives for research into mechanisms but also for clinical practice. Thus, the question is: can the early and adequate treatment of insomnia prevent depression? This article will link current understanding about sleep regulatory mechanisms with knowledge about changes in physiology due to depression. The review aims to draw the attention to current and future strategies in research and clinical practice to the benefits of sleep and depression therapeutics.
Collapse
Affiliation(s)
- Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lukas B Krone
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Katharina Wulff
- Departments of Radiation Sciences & Molecular Biology, Umea University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umeå, Sweden
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
10
|
Hsing SC, Jin YT, Tzeng NS, Chung CH, Chen TY, Chang HA, Kao YC, Chien WC. Is Agomelatine Associated with Less Sedative-Hypnotic Usage in Patients with Major Depressive Disorder? A Nationwide, Population-Based Study. Neuropsychiatr Dis Treat 2020; 16:1727-1736. [PMID: 32801707 PMCID: PMC7384877 DOI: 10.2147/ndt.s257723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To examine the association between the usage of agomelatine in patients with major depressive disorder and the usage of sedative-hypnotics. METHODS This population-based, cross-sectional study used Taiwan's National Health Insurance Research Database (NHIRD) between 2012 and 2015. The agomelatine-only group and matched control (1:3) with the usage of other antidepressants were enrolled. The association between the usage of the agomelatine and other antidepressants and the usage of sedative-hypnotics in the patients were also assessed. RESULTS A total of 7961 subjects were enrolled comprising 1985 with the usage of agomelatine only, and 5976 with other antidepressants. In the present study, a total of 3322 subjects who used the sedative-hypnotics were recorded, with 811 (40.86%) from the agomelatine-only group and 2511 (42.02%) from the non-agomelatine group, which have used sedative-hypnotics. After adjusting for covariates, the odds ratio (OR) of the usage of sedative-hypnotics in the agomelatine only-group was 0.892 (95% CI: 0.306-1.601, p = 0.533), in comparison to the controls, and the relative risk (RR) of the usage of sedative-hypnotics in the agomelatine only-group was 0.910 (95% CI: 0.312-1.633, p = 0.520), in comparison to the controls. No matter as to whether the treatment duration was <30 days or ≧ 30 days of agomelatine treatment was not associated with the increased usage of the sedative-hypnotics. The OR or RR for usage of the sedative-hypnotics was associated with the Charlson Comorbidity Index (CCI) scores as 2, 3, and ≧ 4, and the medical care from the medical center and regional hospital. CONCLUSION Patients with the agomelatine-only group were not associated with the usage of sedative-hypnotics in comparison to the group using other antidepressants.
Collapse
Affiliation(s)
- Shih-Chun Hsing
- Center for Healthcare Quality Management, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Heath Sciences, Taipei, Taiwan, Republic of China
| | - Yo-Ting Jin
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Keelung Branch, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, National Defense Medical Center, Keelung, Taiwan
| | - Wu-Chien Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| |
Collapse
|
11
|
Geng CA, Yang TH, Huang XY, Ma YB, Zhang XM, Chen JJ. Antidepressant potential of Uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:39-46. [PMID: 30543912 DOI: 10.1016/j.jep.2018.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are fascinating sources for natural drug candidates. Uncaria rhynchophylla (Gouteng) is a famous TCM used for alleviating central nervous system (CNS) disorders, while its antidepressant constituents are still disputed. AIM OF THE STUDY The present study was designed to assess the antidepressant property of U. rhynchophylla and characterize the active constituents targeting melatonin receptors which are closely related to CNS diseases. MATERIALS AND METHODS The total extract and each fraction of U. rhynchophylla were extensively assessed for their agonistic activity on melatonin receptors in vitro. The following bioassay-guided fractionation yielded the active constituents, whose activity was confirmed by dose-dependent bioassay and antagonistic experiment on HEK293 cells. Their antidepressant effects were evaluated on forced swimming test (FST), tail suspension test (TST) and open-field test (OFT) mice models in vivo. Their metabolic profiles in mice plasma were analyzed by LCMS-IT-TOF. RESULTS The stems and hooks of U. rhynchophylla were revealed with agonistic activity on melatonin receptors (MT1 and MT2). Under the guidance of bioassay, two flavanols, catechin and epicatechin were obtained and showed obviously activity agitating MT1 (EC50 = 25.8 and 156.1 μM) and MT2 (EC50 = 47.3 and 208.8 μM) receptors. The agonistic activity of catechin on melatonin receptors can be antagonized by luzindole at the concentrations of 1.57-100 μM. Catechin could significantly reduce the immobility time in both FST and TST mice models at doses of 80 and 40 mg/kg, without obvious effect on locomotor activity in OFT mice model. Five phase II (M1-M5) and one phase I (M6) metabolites of catechin were detected in mice plasma after intragastric (i.g.) administration. CONCLUSION Catechin is a potent antidepressant candidate from U. rhynchophylla by targeting melatonin receptors. The main metabolic pathways of catechin in mice plasma are glucuronidation (M3) and methylated glucuronidation (M4 and M5). This study provides valuable information for understanding the antidepressant potency of Gouteng and its active constituents.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Tong-Hua Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Holst SC, Werth E, Landolt HP. [Pharmacotherapy of Sleep-Wake Disorders]. PRAXIS 2019; 108:131-138. [PMID: 30722734 DOI: 10.1024/1661-8157/a003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pharmacotherapy of Sleep-Wake Disorders Abstract. Sleep is a complex behavior, coordinated by many different brain regions and neurotransmitters. These neurochemical systems can be pharmacologically influenced to modulate wakefulness and sleep. Excessive daytime sleepiness (EDS) is often treated with dopaminergic drugs, which in mild cases range from caffeine via (ar)modafinil to amphetamine derivatives. Tricyclic antidepressants and melatonin-based drugs are also used to promote alertness, but to a lesser extent. The drugs used to promote sleep include GABA-ergic drugs such as benzodiazepines and Z-hypnotics as well as histamine H1 receptor antagonists. Exogenous melatonin or a pharmacological combination of melatonin receptor agonists and 5-HT2C receptor antagonists are also used in mild cases. Selective and dual orexin (hypocretin) receptor antagonists (DORA) as well as drugs binding to specific 5-HT receptors are currently being investigated as future sleep-promoting drugs. However, pharmacological treatment is not always the primary treatment option, insomnia is treated first-line with cognitive behavioral therapy, and continuous positive airway pressure is used to treat sleep apnea.
Collapse
Affiliation(s)
- Sebastian C Holst
- 1 Copenhagen University Hospital, Rigshospitalet, Department of Neurology and Neurobiology Research Unit, Kopenhagen, Dänemark
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
| | - Esther Werth
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
- 3 Klinik für Neurologie, Universitätsspital Zürich
| | - Hans-Peter Landolt
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
- 4 Institut für Pharmakologie und Toxikologie, Universität Zürich
| |
Collapse
|
13
|
Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc 2018; 118:1177-1186. [PMID: 30316678 DOI: 10.1016/j.jfma.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Sheng-Hsiung Lin
- Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, Taiwan.
| |
Collapse
|
14
|
Wang Z, Cui H, Sun Z, Roch LM, Goldner AN, Nour HF, Sue ACH, Baldridge KK, Olson MA. Melatonin-directed micellization: a case for tryptophan metabolites and their classical bioisosteres as templates for the self-assembly of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2018; 14:2893-2905. [PMID: 29589034 DOI: 10.1039/c8sm00136g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bulk solution properties of amphiphilic formulations are derivative of their self-assembly into higher ordered supramolecular assemblies known as micelles and of their ordering at the air-water interface. Exerting control over the surface-active properties of amphiphiles and their propensity to aggregate in pure water is most often fine-tuned by covalent modification of their molecular structure. Nevertheless structural constraints which limit the performance of amphiphiles do emerge when trying to develop more sophisticated systems which undergo for example, shape-defined controlled assembly and/or respond to external stimuli. In this regard, the template-modulated assembly of the so-called "supramolecular amphiphiles" continues to make progress ordering molecules that otherwise have very little to no driving force to aggregate in a prescribed manner in aqueous solutions. Herein we describe the template-modulated micellization and ordering at the air-water interface of bipyridinium-based supramolecular amphiphiles triggered by host-guest interactions with high specificity for the neurotransmitter melatonin over its biosynthetic synthon l-tryptophan and the thermodynamic parameters governing the template-modulated micellization process. When bound to the bipyridinium units of micellized surfactant molecules, melatonin effectively serves as "molecular glue" capable of lowering the CMC by 52% as compared to untemplated solutions. Analysis of this system suggests that a hallmark of donor-acceptor template-modulated micellization in water is a strong positively correlated temperature dependence of the CMC and the absence of a U-shaped CMC-temperature curve. Our findings make a case for the incorporation of l-tryptophan-based metabolites and their classical synthetic pharmaceutical bioisosteres as potential targets/components of donor-acceptor CT-based supramolecular amphiphile systems/materials operating in water.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Health Sciences Platform, Tianjin University, Building 24, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anti-Oxidative Effects of Melatonin Receptor Agonist and Omega-3 Polyunsaturated Fatty Acids in Neuronal SH-SY5Y Cells: Deciphering Synergic Effects on Anti-Depressant Mechanisms. Mol Neurobiol 2018; 55:7271-7284. [DOI: 10.1007/s12035-018-0899-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
16
|
Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 2017; 175:3209-3219. [PMID: 28967098 DOI: 10.1111/bph.14058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin, the primary indoleamine hormone of the mammalian pineal gland, is known to have a plethora of neuroregulatory, neuroprotective and other properties. Melatonergic signalling is mediated by its two GPCRs, MT1 and MT2 , which are widely expressed in the mammalian CNS. Melatonin levels and receptor expression often show a decrease during normal ageing, and this reduction may be accelerated in some disease states. Depleted melatonergic signalling has been associated with neuropsychiatric dysfunction and impairments in cognition, memory, neurogenesis and neurorestorative processes. The anticonvulsant and mood stabilizer, valproic acid (VPA), up-regulates melatonin MT1 and/or MT2 receptor expression in cultured cells and in the rat brain. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. Interestingly, other HDAC inhibitors, such as trichostatin A, which are structurally distinct from VPA, can also up-regulate melatonin receptor expression, unlike a VPA analogue, valpromide, which lacks HDAC inhibitory activity. Moreover, VPA increases histone H3 acetylation along the length of the MT1 gene promoter in rat C6 cells. These findings indicate that an epigenetic mechanism, linked to histone hyperacetylation/chromatin remodelling and associated changes in gene transcription, is involved in the up-regulation of melatonin receptors by VPA. Epigenetic induction of MT1 and/or MT2 receptor expression, in areas where these receptors are lost because of ageing, injury or disease, may be a promising therapeutic avenue for the management of CNS dysfunction and other disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Sarra G Bahna
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Gupta T, Sahni D, Gupta R, Gupta S. Expanding the horizons of melatonin use: An immunohistochemical neuroanatomic distribution of MT1 and MT2 receptors in human brain and retina. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Pfeffer M, Korf HW, Wicht H. The Role of the Melatoninergic System in Light-Entrained Behavior of Mice. Int J Mol Sci 2017; 18:ijms18030530. [PMID: 28257037 PMCID: PMC5372546 DOI: 10.3390/ijms18030530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/16/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023] Open
Abstract
The role of endogenous melatonin for the control of the circadian system under entrained conditions and for the determination of the chronotype is still poorly understood. Mice with deletions in the melatoninergic system (melatonin deficiency or the lack of melatonin receptors, respectively) do not display any obvious defects in either their spontaneous (circadian) or entrained (diurnal) rhythmic behavior. However, there are effects that can be detected by analyzing the periodicity of the locomotor behaviors in some detail. We found that melatonin-deficient mice (C57Bl), as well as melatonin-proficient C3H mice that lack the melatonin receptors (MT) 1 and 2 (C3H MT1,2 KO), reproduce their diurnal locomotor rhythms with significantly less accuracy than mice with an intact melatoninergic system. However, their respective chronotypes remained unaltered. These results show that one function of the endogenous melatoninergic system might be to stabilize internal rhythms under conditions of a steady entrainment, while it has no effects on the chronotype.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Circadian Rhythm
- Light
- Male
- Melatonin/biosynthesis
- Melatonin/deficiency
- Mice
- Mice, Knockout
- Motor Activity
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Mosińska P, Socała K, Nieoczym D, Laudon M, Storr M, Fichna J, Wlaź P. Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behav Brain Res 2016; 307:199-207. [DOI: 10.1016/j.bbr.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
|
21
|
Holst SC, Valomon A, Landolt HP. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu Rev Pharmacol Toxicol 2016; 56:577-603. [DOI: 10.1146/annurev-pharmtox-010715-103801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian C. Holst
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Amandine Valomon
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| |
Collapse
|
22
|
Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med 2015; 11:1199-236. [PMID: 26414986 DOI: 10.5664/jcsm.5100] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/28/2023]
Abstract
A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed.
Collapse
|
23
|
Buendia I, Gómez-Rangel V, González-Lafuente L, Parada E, León R, Gameiro I, Michalska P, Laudon M, Egea J, López MG. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. Neuropharmacology 2015; 99:187-95. [PMID: 26188145 DOI: 10.1016/j.neuropharm.2015.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
Abstract
Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.
Collapse
Affiliation(s)
- Izaskun Buendia
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Gómez-Rangel
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura González-Lafuente
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Parada
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Gameiro
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Moshe Laudon
- Neurim Pharmaceuticals Ltd., 27 Habarzel St, Tel-Aviv 6971039, Israel
| | - Javier Egea
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Spadoni G, Bedini A, Lucarini S, Mor M, Rivara S. Pharmacokinetic and pharmacodynamic evaluation of ramelteon : an insomnia therapy. Expert Opin Drug Metab Toxicol 2015; 11:1145-56. [PMID: 25956235 DOI: 10.1517/17425255.2015.1045487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Ramelteon , a selective melatonin receptor agonist, is the first member of a novel class of hypnotics. It is approved for the treatment of insomnia characterized by sleep onset difficulties in the US and Japan, but not in Europe. AREAS COVERED The main clinical properties as well as safety issues of ramelteon are described. Relevant publications reporting ramelteon characteristics and its use in insomnia disorder were identified using PubMed and SciFinder databases up to January 2015. Additional information was collected from the US clinical trials database and from Takeda website. EXPERT OPINION Despite its high prevalence and economic burden, insomnia disorder remains mostly untreated. Ramelteon has demonstrated sleep-promoting effects in clinical trials and clinical practice, and it is not associated with the adverse effects typical of other class of hypnotics. Its efficacy appears to be relatively modest compared to current insomnia therapeutics, and its use seems restricted to patients with sleep onset difficulties. Assessment of ramelteon effects on sleep quality and maintenance, daytime function and of improvements in comorbid insomnia conditions deserves further studies. The potential application of ramelteon in other pathological conditions could open the way to novel therapeutic approaches as well as to new market opportunities.
Collapse
Affiliation(s)
- Gilberto Spadoni
- Università degli Studi di Urbino "Carlo Bo", Dipartimento di Scienze Biomolecolari , Piazza Rinascimento 6, I-61029 Urbino , Italy +039 0722 303322 ; +039 0722 303313 ;
| | | | | | | | | |
Collapse
|
25
|
Ma Y, Dong M, Mita C, Sun S, Peng CK, Yang AC. Publication analysis on insomnia: how much has been done in the past two decades? Sleep Med 2015; 16:820-6. [PMID: 25979182 DOI: 10.1016/j.sleep.2014.12.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/07/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022]
Abstract
Insomnia has been a rising public concern in recent years. As one example of a multidisciplinary topic, the theme of insomnia research has gradually shifted over time; however, there is very little quantitative characterization of the research trends in insomnia. The current study aims to quantitatively analyze trends in insomnia publications for the past 20 years. We retrospectively analyzed insomnia-related publications retrieved from PubMed and Google Scholar between 1994 and from a number of different perspectives. We investigated the major areas of research focus for insomnia, journal characteristics, as well as trends in clinical management and treatment modalities. The resulting 5841 publications presented an exponential growth trend over the past two decades, with mean annual growth rates at nearly 10% for each publication type. Analysis of major research focuses indicated that depression, hypnotics and sedatives, questionnaires, and polysomnography are the most common topics at present. Furthermore, we found that while studies on drug therapy and adverse effects decreased in the most recent five years, the greatest expansion of insomnia publications were in the areas of cognitive behavioral therapy for insomnia (CBT-I) and alternative therapies. Collectively, insomnia publications present a continuous trend of increase. While sedative and hypnotic drugs dominated the treatment of insomnia, non-pharmacological therapies may have great potential for advancement in future years. Future research effort is warranted for novel tools and clinical trials, especially on insomnia treatments with inadequate evidence or not-yet-clear efficacy and side effects.
Collapse
Affiliation(s)
- Yan Ma
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Sleep Center, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Dong
- IBM, Software Development Lab, Littleton, Massachusetts, USA
| | - Carol Mita
- Reference & Education Services, Countway Library of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuchen Sun
- Department of Otolaryngology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Psychiatry, Taipei Veterans General Hospital, Taipei City, Taiwan.
| |
Collapse
|
26
|
Bartolucci S, Mari M, Bedini A, Piersanti G, Spadoni G. Iridium-catalyzed direct synthesis of tryptamine derivatives from indoles: exploiting n-protected β-amino alcohols as alkylating agents. J Org Chem 2015; 80:3217-22. [PMID: 25699684 DOI: 10.1021/acs.joc.5b00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.
Collapse
Affiliation(s)
- Silvia Bartolucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
| |
Collapse
|
27
|
Rivara S, Pala D, Bedini A, Spadoni G. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012 – 2014). Expert Opin Ther Pat 2015; 25:425-41. [DOI: 10.1517/13543776.2014.1001739] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Liu YY, Yin D, Chen L, Qu WM, Chen CR, Laudon M, Cheng NN, Urade Y, Huang ZL. Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacology (Berl) 2014; 231:3973-85. [PMID: 24700387 DOI: 10.1007/s00213-014-3530-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE An effective and safe treatment of insomnia in patients with neuropathic pain remains an unmet need. Melatonin and its analogs have been shown to have both analgesic and hypnotic effects; however, capacity of them on sleep disturbance with neuropathic pain as well as the precise mechanism is unclear. OBJECTIVE The present study evaluated effects of piromelatine, a novel melatonin receptor agonist, on sleep disturbance in a neuropathic pain-like condition as well as the underlying mechanisms. METHODS A mouse model of chronic neuropathic pain induced by partial sciatic nerve ligation (PSL) was employed. The antinociceptive and hypnotic effects of piromelatine were evaluated by measurement of thermal hyperalgesia, mechanical allodynia, and electroencephalogram (EEG) recordings in PSL mice. Pharmacological approaches were used to clarify the mechanisms of action of piromelatine. RESULTS PSL significantly lowered thermal and mechanical latencies and decreased non-rapid eye movement (NREM) sleep, and PSL mice exhibited sleep fragmentation. Treatment with 25, 50, or 100 mg/kg of piromelatine significantly prolonged thermal and mechanical latencies and increased NREM sleep. Moreover, the antinociceptive effect of piromelatine was prevented by melatonin antagonist luzindole, opioid receptor antagonist naloxone, or 5HT1A receptor antagonist WAY-100635. The hypnotic effect of piromelatine was blocked by luzindole but neither by naloxone nor WAY-100635. CONCLUSIONS These data indicate that piromelatine is an effective treatment for both neuropathic pain and sleep disturbance in PSL mice. The antinociceptive effect of piromelatine is likely mediated by melatonin, opioid, and 5HT1A receptors; however, the hypnotic effect of piromelatine appears to be mediated by melatonin receptors.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Expression and putative functions of melatonin receptors in malignant cells and tissues. Wien Med Wochenschr 2014; 164:472-8. [PMID: 25023005 DOI: 10.1007/s10354-014-0289-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 01/20/2023]
Abstract
Melatonin, the popular hormone of the darkness, is primarily synthesized in the pineal gland, and acts classically through the G-protein coupled plasma membrane melatonin receptors MT1 and MT2, respectively. Although some of the receptor mediated functions of melatonin, especially those on the (central) circadian system, have been more or less clarified, the functional meaning of MT-receptors in various peripheral organs are still not sufficiently investigated yet. There is, however, accumulating evidence for oncostatic effects of melatonin with both, antioxidative and MT-receptor mediated mechanisms possibly playing a role. This review briefly summarizes the physiology of melatonin and MT-receptors, and discusses the expression and function of MT-receptors in human cancer cells and tissues.
Collapse
|
30
|
Synthetic melatoninergic ligands: achievements and prospects. ISRN BIOCHEMISTRY 2014; 2014:843478. [PMID: 25937968 PMCID: PMC4393004 DOI: 10.1155/2014/843478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 01/17/2023]
Abstract
Pineal hormone melatonin is widely used in the treatment of disorders of circadian rhythms. The presence of melatonin receptors in various animal tissues motivates the use of this hormone in some other diseases. For this reason, in recent years investigators continued the search for synthetic analogues of melatonin which are metabolically stable and selective to receptors. This review includes recent information about the most famous melatonin analogues, their structure, properties, and physiological features of the interaction with melatonin receptors.
Collapse
|
31
|
Thireau J, Marteaux J, Delagrange P, Lefoulon F, Dufourny L, Guillaumet G, Suzenet F. Original Design of Fluorescent Ligands by Fusing BODIPY and Melatonin Neurohormone. ACS Med Chem Lett 2014; 5:158-61. [PMID: 24900790 DOI: 10.1021/ml4004155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 11/29/2022] Open
Abstract
An original design and synthesis of fluorescent ligands for melatonin receptor studies is presented and consists in the fusion of the endogenous ligand with the fluorescent BODIPY core. Probes I-IV show high affinities for MT1 and MT2 melatonin receptors and exhibit fluorescence properties compatible with cell observation.
Collapse
Affiliation(s)
- Jérémy Thireau
- Université d’Orléans, CNRS, ICOA, UMR 7311, F-45067 Orleans, France
| | - Justine Marteaux
- Université d’Orléans, CNRS, ICOA, UMR 7311, F-45067 Orleans, France
| | - Philippe Delagrange
- Unité de
Recherches et Découvertes en Neurosciences, Institut de Recherches Servier, 78290 Croissy-sur-Seine, France
| | | | - Laurence Dufourny
- UMR INRA-CNRS 7247-Univ.
Tours-IFCE, PRC, Centre INRA de Tours, 37380 Nouzilly, France
| | | | - Franck Suzenet
- Université d’Orléans, CNRS, ICOA, UMR 7311, F-45067 Orleans, France
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The present review provides a conceptual introduction to sleep and circadian research in psychiatric illness, and discusses recent experimental and intervention findings in this area. RECENT FINDINGS In this review, studies published since January 2011 on circadian disturbance and psychiatric illness have been summarized. SUMMARY Exciting new results have increasingly utilized objective and validated instruments to measure the circadian system in experimental studies. Since 2011, treatment research has still predominantly utilized self-report measures as outcome variables. However, research in the treatment domain for sleep/circadian disturbances comorbid with psychiatric illness has advanced the field in its work to broaden the validation of existing sleep treatments to additional patient populations with comorbid sleep/circadian disruptions and address how to increase access to and affordability of treatment for sleep and circadian dysfunction for patients with psychiatric disorders, and how to combine psychosocial treatments with psychopharmacology to optimize treatment outcomes.
Collapse
|
33
|
Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin Exp Res 2013; 25:499-510. [PMID: 24046037 PMCID: PMC3788186 DOI: 10.1007/s40520-013-0118-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 01/24/2023]
Abstract
The aim of this article was to perform a systematic review on the role of melatonin in the prevention of cancer tumorigenesis--in vivo and in vitro--as well as in the management of cancer correlates, such as sleep-wake and mood disturbances. The International Agency for Research on Cancer recently classified "shift-work that involves circadian disruption" as "probably carcinogenic to humans" (Group 2A) based on "limited evidence in humans for the carcinogenicity of shift-work that involves night-work", and "sufficient evidence in experimental animals for the carcinogenicity of light during the daily dark period (biological night)". The clinical implications and the potential uses of melatonin in terms of biologic clock influence (e.g. sleep and mood), immune function, cancer initiation and growth, as well as the correlation between melatonin levels and cancer risk, are hereinafter recorded and summarized. Additionally, this paper includes a description of the newly discovered effects that melatonin has on the management of sleep-wake and mood disturbances as well as with regard to cancer patients' life quality. In cancer patients depression and insomnia are frequent and serious comorbid conditions which definitely require a special attention. The data presented in this review encourage the performance of new clinical trials to investigate the possible use of melatonin in cancer patients suffering from sleep-wake and mood disturbances, also considering that melatonin registered a low toxicity in cancer patients.
Collapse
|
34
|
Abstract
AbstractMelatonin is a hormone produced by the pineal gland. In addition to its hormonal effect, it has strong antioxidant properties. Melatonin is probably best known for its ability to control circadian rhythm; it is sold in many countries as a supplement or drug for improving of sleep quality. However, melatonin’s effect is not limited to control of circadian rhythm:. it is involved in other effects, including cell cycle control and regulation of several important enzymes, including inhibition of inducible nitric oxide synthase. Melatonin affects immunity as well. It can modulate the immune response on disparate levels with a significant effect on inflammation. The role of melatonin in body regulatory process is not well understood; only limited conclusions can be drawn from known data. The current review attempts to summarize both basic facts about melatonin’s effects and propose research on the lesser known issues in the future.
Collapse
|
35
|
Taibi DM. Sleep disturbances in persons living with HIV. J Assoc Nurses AIDS Care 2013; 24:S72-85. [PMID: 23290379 DOI: 10.1016/j.jana.2012.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/27/2012] [Indexed: 12/16/2022]
Abstract
Up to 70% of persons living with HIV (PLWH) experience sleep disturbances. Insomnia and obstructive sleep apnea syndrome (OSAS) are common disorders seen in the primary care of PLWH. This paper reviews the current evidence and practice recommendations for treating these conditions. Insomnia is evaluated by clinical interview, questionnaires, and sleep diaries. The recommended first-line treatment is cognitive-behavioral therapy for insomnia (CBT-I) delivered by a trained therapist. Certain sedative medications may be useful, but over-the-counter treatments (particularly those containing antihistamines) are not recommended. OSAS is diagnosed by overnight sleep study but can be screened for in primary care. The STOP-BANG is a useful eight-item screening tool. The gold standard of treatment for OSAS is the use of a continuous positive airway pressure device. Treatment of insomnia and OSAS is important for improving quality of life and preventing associated health problems (especially cardiovascular disease in OSAS) in PLWH.
Collapse
Affiliation(s)
- Diana M Taibi
- Biobehavioral Nursing and Health Systems, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM. Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:209-16. [PMID: 23318689 DOI: 10.1016/j.pnpbp.2012.12.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/18/2022]
Abstract
Sleep-onset and maintenance insomnia is a common symptom in schizophrenic patients regardless of either their medication status (drug-naive or previously treated) or the phase of the clinical course (acute or chronic). Regarding sleep architecture, the majority of studies indicate that non-rapid eye movement (NREM), N3 sleep and REM sleep onset latency are reduced in schizophrenia, whereas REM sleep duration tends to remain unchanged. Many of these sleep disturbances in schizophrenia appear to be caused by abnormalities of the circadian system as indicated by misalignments of the endogenous circadian cycle and the sleep-wake cycle. Circadian disruption, sleep onset insomnia and difficulties in maintaining sleep in schizophrenic patients could be partly related to a presumed hyperactivity of the dopaminergic system and dysfunction of the GABAergic system, both associated with core features of schizophrenia and with signaling in sleep and wake promoting brain regions. Since multiple neurotransmitter systems within the CNS can be implicated in sleep disturbances in schizophrenia, the characterization of the neurotransmitter systems involved remains a challenging dilemma.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, Montevideo, 11600, Uruguay
| | | | | | | | | | | | | |
Collapse
|
37
|
Homology models of melatonin receptors: challenges and recent advances. Int J Mol Sci 2013; 14:8093-121. [PMID: 23584026 PMCID: PMC3645733 DOI: 10.3390/ijms14048093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022] Open
Abstract
Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs), named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models. The ability of these ligand-receptor complexes to rationalize structure-activity relationships of known series of melatonergic compounds will be commented upon.
Collapse
|
38
|
Abstract
Alteration of nocturnal melatonin production, along with circadian rhythm disturbance, has been demonstrated in several psychiatric disorders. It has been postulated that such disturbances might be causal reflecting a more fundamental abnormality of the function of the suprachiasmatic nucleus (SCN). The SCN contains the body's master 'clock' while the pineal-SCN nexus is intricate to the nighttime production of melatonin. The more compelling case for causality is made for major depressive disorder (MDD). Lending weight to this proposition is the introduction of agomelatine as an antidepressant agent. Through its actions on melatonin receptors agomelatine can resynchronise circadian rhythms. The circadian hypothesis would posit that normalisation of disturbance would be sufficient of itself to alleviate the symptoms of MDD. Thus, strategies designed to bring about resynchronisation of circadian rhythms should be therapeutically effective in depression. Critical examination of the efficacy of such interventions in MDD suggests that the circadian alteration may be necessary but is not sufficient for an antidepressant effect. Exogenous melatonin administration and bright light therapy have mixed results in limited controlled clinical evaluations. Furthermore, agomelatine has other actions which pre-clinical studies suggest are as important to its therapeutic effects as are its actions on melatonin receptors ipso facto its resynchronising properties. Whether circadian effects are antidepressant remains a moot point and awaits the clinical evaluation of highly selective resynchronising agents.
Collapse
|
39
|
Shi GB, Wu Q, Zhang B, Sun XH, Zong WT, Zhao XR, Xin Y, Zhao QC, Chen YF. Possible mechanism involved in the sedative activity of jujubasaponins I in mice. CNS Neurosci Ther 2013; 19:282-4. [PMID: 23421937 DOI: 10.1111/cns.12070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
|
40
|
Behavioural actions of two new 1-N substituted analogues of melatonin. Behav Brain Res 2013; 236:148-156. [DOI: 10.1016/j.bbr.2012.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|
41
|
Ann Hughes R, Tølløfsrud M, Bryant N, Kaboli M, Hennum M, Bonge-Hansen T. Diastereoselective synthesis of cyclopropyl melatonin analogues. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Rivara S, Pala D, Lodola A, Mor M, Lucini V, Dugnani S, Scaglione F, Bedini A, Lucarini S, Tarzia G, Spadoni G. MT1-Selective Melatonin Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Dynamics Investigation ofN-{[(3-O-Substituted)anilino]alkyl}amides. ChemMedChem 2012; 7:1954-64. [DOI: 10.1002/cmdc.201200303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Indexed: 11/06/2022]
|
43
|
Paulis L, Simko F, Laudon M. Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs 2012; 21:1661-78. [PMID: 22916799 DOI: 10.1517/13543784.2012.714771] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Melatonin synchronizes circadian rhythms with light/dark period and it was demonstrated to correct chronodisruption. Several melatonin receptor agonists with improved pharmacokinetics or increased receptor affinity are being developed, three of them are already in clinical use. However, the actions of melatonin extend beyond chronobiology to cardiovascular and metabolic systems as well. Given the high prevalence of cardiovascular disease and their common occurrence with chronodisruption, it is of utmost importance to classify the cardiometabolic effects of the newly approved and putative melatoninergic drugs. AREAS COVERED In the present review, the available (although very sparse) data on such effects, in particular by the approved (circadin, ramelteon, agomelatine) or clinically advanced (tasimelteon, piromelatine = Neu-P11, TIK-301) compounds are summarized. The authors have searched for an association with blood pressure, vascular reactivity, ischemia, myocardial and vascular remodeling and metabolic syndrome. EXPERT OPINION The data suggest that cardiovascular effects of melatonin are at least partly mediated via MT(1)/MT(2) receptors and associated with its chronobiotic action. Therefore, despite the sparse direct evidence, it is believed that these effects will be shared by melatonin analogs as well. With the expected approval of novel melatoninergic compounds, it is suggested that the investigation of their cardiovascular effects should no longer be neglected.
Collapse
Affiliation(s)
- Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108, Bratislava, Slovakia.
| | | | | |
Collapse
|
44
|
Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes. Neurotox Res 2012; 23:267-300. [DOI: 10.1007/s12640-012-9337-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
|
45
|
New quinoxaline derivatives as potential MT₁ and MT₂ receptor ligands. Molecules 2012; 17:7737-57. [PMID: 22732886 PMCID: PMC6269071 DOI: 10.3390/molecules17077737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022] Open
Abstract
Ever since the idea arose that melatonin might promote sleep and resynchronize circadian rhythms, many research groups have centered their efforts on obtaining new melatonin receptor ligands whose pharmacophores include an aliphatic chain of variable length united to an N-alkylamide and a methoxy group (or a bioisostere), linked to a central ring. Substitution of the indole ring found in melatonin with a naphthalene or quinoline ring leads to compounds of similar affinity. The next step in this structural approximation is to introduce a quinoxaline ring (a bioisostere of the quinoline and naphthalene rings) as the central nucleus of future melatoninergic ligands.
Collapse
|
46
|
Tosini G, Ye K, Iuvone PM. N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 2012; 18:645-53. [PMID: 22585341 DOI: 10.1177/1073858412446634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Acetylserotonin (NAS) is a naturally occurring chemical intermediate in biosynthesis of melatonin. Previous studies have shown that NAS has different brain distribution patterns from those of serotonin and melatonin, suggesting that NAS might have functions other than as a precursor or metabolite of melatonin. Indeed, several studies have now shown that NAS may play an important role in mood regulation and may have antidepressant activity. Additional studies have shown that NAS stimulates proliferation of neuroprogenitor cells and prevents some of the negative effects of sleep deprivation. It is believed that the antidepressant and neurotrophic actions of NAS are due at least in part to the capability on this molecule to activate the TrkB receptor in a brain-derived neurotrophic factor-independent manner. Emerging evidence also indicates that NAS and its derivatives have neuroprotective properties and protect retinal photoreceptor cells from light-induced degeneration. In this review, the authors discuss the literature about this exciting and underappreciated molecule.
Collapse
|
47
|
Pfeffer M, Rauch A, Korf HW, von Gall C. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int 2012; 29:415-29. [PMID: 22489607 DOI: 10.3109/07420528.2012.667859] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.
Collapse
Affiliation(s)
- Martina Pfeffer
- Dr. Senckenbergische Anatomie, Institut Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
48
|
Hansen MV, Madsen MT, Hageman I, Rasmussen LS, Bokmand S, Rosenberg J, Gögenur I. The effect of MELatOnin on Depression, anxietY, cognitive function and sleep disturbances in patients with breast cancer. The MELODY trial: protocol for a randomised, placebo-controlled, double-blinded trial. BMJ Open 2012; 2:e000647. [PMID: 22240653 PMCID: PMC3278491 DOI: 10.1136/bmjopen-2011-000647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction Breast cancer represents about one-third of all cancer diagnoses and accounts for about 15% of cancer deaths in women. Many of these patients experience depression, anxiety, sleep disturbances and cognitive dysfunction. This may adversely affect quality of life and also contribute to morbidity and mortality. Melatonin is a regulatory circadian hormone having, among others, a hypnotic and an antidepressive effect. It has very low toxicity and very few adverse effects compared with the more commonly used antidepressants and hypnotics. Methods and analysis The objective of this double-blind, randomised, placebo-controlled trial is to investigate whether treatment with oral melatonin has a prophylactic or ameliorating effect on depressive symptoms, anxiety, sleep disturbances and cognitive dysfunction in women with breast cancer. Furthermore, the authors will examine whether a specific clock-gene, PER3, is correlated with an increased risk of depressive symptoms, sleep disturbances or cognitive dysfunction. The MELODY trial is a prospective double-blinded, randomised, placebo-controlled trial in which the authors intend to include 260 patients. The primary outcome is depressive symptoms measured by the Major Depression Inventory. The secondary outcomes are anxiety measured by a Visual Analogue Scale, total sleep time, sleep efficiency, sleep latency and periods awake measured by actigraphy and changes in cognitive function measured by a neuropsychological test battery. Tertiary outcomes are fatigue, pain, well-being and sleep quality/quantity measured by Visual Analogue Scale and sleep diary and sleepiness measured by the Karolinska Sleepiness Scale. The PER3 genotype is also to be determined in blood samples.
Collapse
Affiliation(s)
- Melissa Voigt Hansen
- Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Hageman
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Simon Rasmussen
- Department of Anaesthesia, Centre of Head and Orthopaedics, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Bokmand
- Department of Breast Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Rosenberg
- Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Biochemical basis of circadian rhythms and diseases: With emphasis on post-traumatic stress disorder. Med Hypotheses 2011; 77:605-9. [PMID: 21794988 DOI: 10.1016/j.mehy.2011.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
Circadian rhythms affect several processes in the body physiology. This commentary revisits the topic of 'metabolic basis of diseases' with a view to shed light on how cellular energy requirements feed-forward to a sequential signaling of hormonal response, blood glucose metabolism, antioxidant activities, and pathophysiology. Attempt is made to explain how diseases that may not appear to be closely related, such as bone metabolism and vasculopathy, have an increase in oxidative damage as a common underlying biochemistry. Importantly, this article identifies oxidative damage as an outcome of sleep disturbance and hypothesize that sleep complaint is not merely one of many resulting symptoms of PTSD, but a core feature that arise from trauma and gives rise to the stress biochemistry, which in turn manifests symptomatically. Further, we suggest that the current non-pharmacologic and pharmacologic therapeutic options attenuate oxidative stress. Implication for clinical diagnosis and evaluations is also suggested.
Collapse
|