1
|
Seribelli AA, Gonzales JC, de Almeida F, Benevides L, Cazentini Medeiros MI, Dos Prazeres Rodrigues D, de C Soares S, Allard MW, Falcão JP. Phylogenetic analysis revealed that Salmonella Typhimurium ST313 isolated from humans and food in Brazil presented a high genomic similarity. Braz J Microbiol 2020; 51:53-64. [PMID: 31728978 PMCID: PMC7058764 DOI: 10.1007/s42770-019-00155-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
Salmonella Typhimurium sequence type 313 (S. Typhimurium ST313) has caused invasive disease mainly in sub-Saharan Africa. In Brazil, ST313 strains have been recently described, and there is a lack of studies that assessed by whole genome sequencing (WGS)-the relationship of these strains. The aims of this work were to study the phylogenetic relationship of 70 S. Typhimurium genomes comparing strains of ST313 (n = 9) isolated from humans and food in Brazil among themselves, with other STs isolated in this country (n = 31) and in other parts of the globe (n = 30) by 16S rRNA sequences, the Gegenees software, whole genome multilocus sequence typing (wgMLST), and average nucleotide identity (ANI) for the genomes of ST313. Additionally, pangenome analysis was performed to verify the heterogeneity of these genomes. The phylogenetic analyses showed that the ST313 genomes were very similar among themselves. However, the ST313 genomes were usually clustered more distantly to other STs of strains isolated in Brazil and in other parts of the world. By pangenome calculation, the core genome was 2,880 CDSs and 4,171 CDSs singletons for all the 70 S. Typhimurium genomes studied. Considering the 10 ST313 genomes analyzed the core genome was 4,112 CDSs and 76 CDSs singletons. In conclusion, the ST313 genomes from Brazil showed a high similarity among them which information might eventually help in the development of vaccines and antibiotics. The pangenome analysis showed that the S. Typhimurium genomes studied presented an open pangenome, but specifically tending to become close for the ST313 strains.
Collapse
Affiliation(s)
- Amanda Ap Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Júlia C Gonzales
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernanda de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leandro Benevides
- National Laboratory of Scientific Computation - LNCC, Petrópolis, Brazil
| | | | | | | | - Marc W Allard
- Food and Drug Administration - FDA, College Park, MA, USA
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
2
|
Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Clin Microbiol Infect 2016; 22:968-974. [PMID: 27506509 DOI: 10.1016/j.cmi.2016.07.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 11/21/2022]
Abstract
Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then.
Collapse
|
3
|
Horton R, Card R, Randall L, Teale C. Differentiation of UK endemic strains of Salmonella enterica serovar Newport from epidemic North American strains by PCR detection of a truncated bapA chromosomal gene. Res Vet Sci 2016; 104:113-6. [DOI: 10.1016/j.rvsc.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022]
|
4
|
Abraham S, Groves MD, Trott DJ, Chapman TA, Turner B, Hornitzky M, Jordan D. Salmonella enterica isolated from infections in Australian livestock remain susceptible to critical antimicrobials. Int J Antimicrob Agents 2014; 43:126-30. [DOI: 10.1016/j.ijantimicag.2013.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 11/25/2022]
|
5
|
Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, Sharma M, van Essen-Zandbergen A, Rodríguez I, Dierikx C, Kadlec K, Schink AK, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Woodford N, Coldham N, Mevius D. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 2013; 8:e75392. [PMID: 24086522 PMCID: PMC3784421 DOI: 10.1371/journal.pone.0075392] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022] Open
Abstract
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring blaCTX-M-group-1 dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both blaCTX-M-group-1 and blaOXA-1-like genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6’)-Ib, catB3, blaOXA-1-like and blaCTX-M-group-1. forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.
Collapse
Affiliation(s)
- Guanghui Wu
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
- * E-mail:
| | | | - Muriel T. Mafura
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Javier Nunez-Garcia
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Jackie J. Fenner
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Meenaxi Sharma
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Alieda van Essen-Zandbergen
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| | - Irene Rodríguez
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Cindy Dierikx
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Anne-Kathrin Schink
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - John Wain
- Public Health England, London, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Reiner Helmuth
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Beatriz Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | | | - Martin J. Woodward
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | | | - Nick Coldham
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Dik Mevius
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| |
Collapse
|
6
|
Wu G, Ehricht R, Mafura M, Stokes M, Smith N, Pritchard GC, Woodward MJ. Escherichia coli isolates from extraintestinal organs of livestock animals harbour diverse virulence genes and belong to multiple genetic lineages. Vet Microbiol 2012; 160:197-206. [PMID: 22766078 DOI: 10.1016/j.vetmic.2012.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/20/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
Abstract
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Collapse
Affiliation(s)
- Guanghui Wu
- Epidemiology, Surveilance and Risk Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Optical genetic mapping defines regions of chromosomal variation in serovars of S. enterica subsp. enterica of concern for human and animal health. Epidemiol Infect 2010; 139:1065-74. [PMID: 20860874 DOI: 10.1017/s0950268810002086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Collapse
|