1
|
Luo X, Huang L, Cai X, Zhou L, Zhou S, Yuan Y. Structure and core taxa of bacterial communities involved in extracellular electron transfer in paddy soils across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157196. [PMID: 35810886 DOI: 10.1016/j.scitotenv.2022.157196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities with extracellular electron transfer (EET) activity are capable of driving geochemical changes and cycles, but a comprehensive understanding of the key microbiota responsible for EET in complex soil matrices is still lacking. Herein, the EET activities, in terms of maximum current density (jmax) and accumulated charge output (Cout), of 41 paddy soils across China were evaluated from the exoelectrogenic properties with a conventional bioelectrochemical system (BES). The jmax with a range of 8.85 × 10-4 to 0.41 A/m2 and Cout with a range of 0.27 to 172.21C were obtained from these soil-based BESs. The bacterial community analyses revealed that the most abundant phylum, order, and genus were Firmicutes, Clostridiales, and Clostridum-sensus-stricto 10, respectively. Bacterial network analysis displayed the positive correlations between the majority of electroactive bacteria-containing genera and multiple other genera, indicating their underlying cooperation for the EET. Partial least squares regression (PLSR) model showed remarkable performance in describing the EET activity with 75 most abundant genera as input variables, identified that 32 genera were very important for governing the EET activities. Multiple linear regression (MLR) analyses further prioritized that the genera norank-c-Berkelbacteria and Fonticella were the key contributors, while the genus Paenibacillus was the key competitor against bacterial exoelectrogenesis in paddy soils. Moreover, the spearman analysis showed that the abundance of these keystone taxa was mainly influenced by the carbon content and pH. This approach provides a promising avenue to monitor the microbial activities in paddy soils as well as the links between microbial community composition and ecological function.
Collapse
Affiliation(s)
- Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lingyan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Yun J, Crombie AT, Ul Haque MF, Cai Y, Zheng X, Wang J, Jia Z, Murrell JC, Wang Y, Du W. Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environ Microbiol 2021; 23:6520-6535. [PMID: 34390603 DOI: 10.1111/1462-2920.15697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
3
|
Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett 2020; 367:5804726. [PMID: 32166327 DOI: 10.1093/femsle/fnaa045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic methane-oxidizing bacteria of the Alphaproteobacteria have been found to express a novel ribosomally synthesized post-translationally modified polypeptide (RiPP) termed methanobactin (MB). The primary function of MB in these microbes appears to be for copper uptake, but MB has been shown to have multiple capabilities, including oxidase, superoxide dismutase and hydrogen peroxide reductase activities, the ability to detoxify mercury species, as well as acting as an antimicrobial agent. Herein, we describe the diversity of known MBs as well as the genetics underlying MB biosynthesis. We further propose based on bioinformatics analyses that some methanotrophs may produce novel forms of MB that have yet to be characterized. We also discuss recent findings documenting that MBs play an important role in controlling copper availability to the broader microbial community, and as a result can strongly affect the activity of microbes that require copper for important enzymatic transformations, e.g. conversion of nitrous oxide to dinitrogen. Finally, we describe procedures for the detection/purification of MB, as well as potential medical and industrial applications of this intriguing RiPP.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | | | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| |
Collapse
|
4
|
Variations in the Compositions of Soil Bacterial and Fungal Communities Due to Microhabitat Effects Induced by Simulated Nitrogen Deposition of a Bamboo Forest in Wetland. FORESTS 2019. [DOI: 10.3390/f10121098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although numerous studies have been published on nitrogen (N) deposition, little is known about its impact on microbial communities in wetland forests. Here, we used simulated nitrogen deposition (SND) to analyze the importance of differences in soil microhabitats in promoting the diversity of soil bacteria and fungi. We compared various levels of SND (control (CK), low N (N30), medium N (N60), and high N (N90)) and found that these were associated with changes in soil microhabitats. Additionally, SND affected soil pH, clay and sand content of the soil, and specific surface area (SSA). Bacteria and fungi responded differently to increased SND levels. The alpha diversity of bacteria decreased with an increased SND level, while fungal abundance, diversity, and community evenness reached their maximum values at the N60 threshold. Principal coordinates analysis (PCoA), nonparametric multivariate analysis of variance (PERMANOVA), and linear discriminant analysis (LDA) coupled with effect size measurements (LefSe) also confirmed that the bacterial composition was different at N90 compared to other levels of SND while that of fungi was different at N60. A higher discriminant level (LDA score ≥4) may be a valuable index of selecting indicator microbial clades sensitive to SND for wetland management. Further, an increased pH was associated with a greater abundance of bacteria and fungi. In addition, the volume contents of clay and SSA were negatively correlated with bacteria but fungi are associated with soil specific gravity (SSG). Overall, in a neutral soil pH environment, pH fluctuation is the main influencing factor in terms of bacterial and fungal abundance and diversity. The diversity of fungi is more dependent on the type and relative content of solid phase components in soil than that of bacteria, implying the presence of species-specific niches for bacteria and fungi. These results demonstrate that changes in SND can induce short-term microbial and microhabitat changes.
Collapse
|
5
|
Environmental legacy contributes to the resilience of methane consumption in a laboratory microcosm system. Sci Rep 2018; 8:8862. [PMID: 29892072 PMCID: PMC5995846 DOI: 10.1038/s41598-018-27168-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 05/08/2018] [Indexed: 12/04/2022] Open
Abstract
The increase of extreme drought and precipitation events due to climate change will alter microbial processes. Perturbation experiments demonstrated that microbes are sensitive to environmental alterations. However, only little is known on the legacy effects in microbial systems. Here, we designed a laboratory microcosm experiment using aerobic methane-consuming communities as a model system to test basic principles of microbial resilience and the role of changes in biomass and the presence of non-methanotrophic microbes in this process. We focused on enrichments from soil, sediment, and water reflecting communities with different legacy with respect to exposure to drought. Recovery rates, a recently proposed early warning indicator of a critical transition, were utilized as a measure to detect resilience loss of methane consumption during a series of dry/wet cycle perturbations. We observed a slowed recovery of enrichments originating from water samples, which suggests that the community’s legacy with a perturbation is a contributing factor for the resilience of microbial functioning.
Collapse
|
6
|
Ge T, Wu X, Liu Q, Zhu Z, Yuan H, Wang W, Whiteley AS, Wu J. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils. Sci Rep 2016; 6:19784. [PMID: 26795428 PMCID: PMC4726159 DOI: 10.1038/srep19784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.
Collapse
Affiliation(s)
- Tida Ge
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Jiangshu, 210008, China
| | - Xiaohong Wu
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qiong Liu
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China
| | - Zhenke Zhu
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China
| | - Hongzhao Yuan
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China
| | - Wei Wang
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - A S Whiteley
- ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China.,School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jinshui Wu
- Changsha Research Station for Agricultural and Environmental Monitoring &Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.,ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China
| |
Collapse
|
7
|
Ho A, van den Brink E, Reim A, Krause SMB, Bodelier PLE. Recurrence and Frequency of Disturbance have Cumulative Effect on Methanotrophic Activity, Abundance, and Community Structure. Front Microbiol 2016; 6:1493. [PMID: 26779148 PMCID: PMC4700171 DOI: 10.3389/fmicb.2015.01493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/11/2015] [Indexed: 11/18/2022] Open
Abstract
Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II) were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by twofold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter) methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis) methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a ‘tipping point’ where activity no longer recovered if disturbance persists and increase in frequency.
Collapse
Affiliation(s)
- Adrian Ho
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Erik van den Brink
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Andreas Reim
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Sascha M B Krause
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
8
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PLE. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:335-45. [PMID: 23754714 DOI: 10.1111/j.1758-2229.2012.00370.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 05/11/2023]
Abstract
Methane-oxidizing bacteria (MOB) possess the ability to use methane for energy generation and growth, thereby, providing a key ecosystem service that is highly relevant to the regulation of the global climate. MOB subgroups have different responses to key environmental controls, reflecting on their functional traits. Their unique features (C1-metabolism, unique lipids and congruence between the 16S rRNA and pmoA gene phylogeny) have facilitated numerous environmental studies, which in combination with the availability of cultured representatives, yield the most comprehensive ecological picture of any known microbial functional guild. Here, we focus on the broad MOB subgroups (type I and type II MOB), and aim to conceptualize MOB functional traits and observational characteristics derived primarily from these environmental studies to be interpreted as microbial life strategies. We focus on the functional traits, and the conditions under which these traits will render different MOB subgroups a selective advantage. We hypothesize that type I and type II MOB generally have distinct life strategies, enabling them to predominate under different conditions and maintain functionality. The ecological characteristics implicated in their adopted life strategies are discussed, and incorporated into the Competitor-Stress tolerator-Ruderal functional classification framework as put forward for plant communities. In this context, type I MOB can broadly be classified as competitor-ruderal while type II MOB fit more within the stress tolerator categories. Finally, we provide an outlook on MOB applications by exemplifying two approaches where their inferred life strategies could be exploited thereby, putting MOB into the context of microbial resource management.
Collapse
Affiliation(s)
- Adrian Ho
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Bailey VL, Fansler SJ, Stegen JC, McCue LA. Linking microbial community structure to β-glucosidic function in soil aggregates. ISME JOURNAL 2013; 7:2044-53. [PMID: 23719152 DOI: 10.1038/ismej.2013.87] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/07/2013] [Accepted: 04/23/2013] [Indexed: 11/09/2022]
Abstract
To link microbial community 16S structure to a measured function in a natural soil, we have scaled both DNA and β-glucosidase assays down to a volume of soil that may approach a unique microbial community. β-Glucosidase activity was assayed in 450 individual aggregates, which were then sorted into classes of high or low activities, from which groups of 10 or 11 aggregates were identified and grouped for DNA extraction and pyrosequencing. Tandem assays of ATP were conducted for each aggregate in order to normalize these small groups of aggregates for biomass size. In spite of there being no significant differences in the richness or diversity of the microbial communities associated with high β-glucosidase activities compared with the communities associated with low β-glucosidase communities, several analyses of variance clearly show that the communities of these two groups differ. The separation of these groups is partially driven by the differential abundances of members of the Chitinophagaceae family. It may be observed that functional differences in otherwise similar soil aggregates can be largely attributed to differences in resource availability, rather than to the presence or absence of particular taxonomic groups.
Collapse
Affiliation(s)
- Vanessa L Bailey
- Microbiology, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | |
Collapse
|