1
|
Roberts JA, Kim CY, Hwang SA, Hassan A, Covington E, Heydari K, Lyerly M, Sejvar JJ, Hasbun R, Prasad M, Thakur KT. Clinical, Prognostic, and Longitudinal Functional and Neuropsychological Features of West Nile Virus Neuroinvasive Disease in the United States: A Systematic Review and Meta-Analysis. Ann Neurol 2025. [PMID: 40008684 DOI: 10.1002/ana.27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVE West Nile virus (WNV) is the most common cause of arboviral disease in the United States. Approximately 1% of infections involve the nervous system, most commonly resulting in West Nile encephalitis (WNE), West Nile meningitis (WNM), or acute flaccid paralysis (AFP). METHODS In this systematic review, we characterized comprehensively the diagnostic and clinical features of WNV neuroinvasive disease (WNND) in the United States, as well as the evidence regarding prognostic factors and long-term outcomes of WNND. RESULTS We identified 47 relevant studies reporting data on acute or longitudinal features of WNND. Across studies, the most common presenting symptoms were fever (88%), nausea/vomiting (58%), and fatigue (50%) coupled neurologically with headache (50%), altered mental status (39%), and focal weakness (32%). Pooled mortality was 9.2%, and 42.1% of reported cases required intensive care unit (ICU) admission. In meta-analyses, chronic kidney disease (odds ratio [OR] = 5.99, 95% confidence interval [CI] = 2.71-13.23), diabetes mellitus (OR = 2.43, 95% CI = 1.54-3.84), and hypertension (OR = 4.01, 95% CI = 2.39-6.72) were associated with an increased risk of mortality. Multidomain neurocognitive impairment was reported in several studies at post-hospitalization follow-up, although with marked heterogeneity between study methodology. Subjective neurocognitive impairment, most notably fatigue (37-75%), memory concerns (11-57%), concentration deficits (17-48%), and depression (17-38%), were also common at post-hospitalization follow-up. INTERPRETATION These findings underscore the significant mortality and morbidity of WNND in the acute and long-term setting. Our findings may additionally provide utility for risk stratification of hospitalized patients with WNND and suggest the need for further evaluation of novel therapeutics to prevent substantial disease-associated acute and long-term disability. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Jackson A Roberts
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center, New York, NY
- Department of Neurology, Massachusetts General Brigham, Boston, MA
| | - Carla Y Kim
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | | | - Amir Hassan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Ethan Covington
- Xavier University of Louisiana, New Orleans, LA
- STAR U Program, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | | | - Mac Lyerly
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James J Sejvar
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas-Houston, Houston, TX
| | - Manya Prasad
- Clinical Research and Epidemiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kiran T Thakur
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
2
|
Lu HZ, Xie YZ, Gao C, Wang Y, Liu TT, Wu XZ, Dai F, Wang DQ, Deng SQ. Diabetes mellitus as a risk factor for severe dengue fever and West Nile fever: A meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012217. [PMID: 38820529 PMCID: PMC11168630 DOI: 10.1371/journal.pntd.0012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/12/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Dengue fever (DF) and West Nile fever (WNF) have become endemic worldwide in the last two decades. Studies suggest that individuals with diabetes mellitus (DM) are at a higher risk of developing severe complications from these diseases. Identifying the factors associated with a severe clinical presentation is crucial, as prompt treatment is essential to prevent complications and fatalities. This article aims to summarize and assess the published evidence regarding the link between DM and the risk of severe clinical manifestations in cases of DF and WNF. METHODOLOGY/PRINCIPAL FINDINGS A systematic search was conducted using the PubMed and Web of Science databases. 27 studies (19 on DF, 8 on WNF) involving 342,873 laboratory-confirmed patients were included in the analysis. The analysis showed that a diagnosis of DM was associated with an increased risk for severe clinical presentations of both DF (OR 3.39; 95% CI: 2.46, 4.68) and WNF (OR 2.89; 95% CI: 1.89, 4.41). DM also significantly increased the risk of death from both diseases (DF: OR 1.95; 95% CI: 1.09, 3.52; WNF: OR 1.74; 95% CI: 1.40, 2.17). CONCLUSIONS/SIGNIFICANCE This study provides strong evidence supporting the association between DM and an increased risk of severe clinical manifestations in cases of DF and WNF. Diabetic individuals in DF or WNF endemic areas should be closely monitored when presenting with febrile symptoms due to their higher susceptibility to severe disease. Early detection and appropriate management strategies are crucial in reducing the morbidity and mortality rates associated with DF and WNF in diabetic patients. Tailored care and targeted public health interventions are needed to address this at-risk population. Further research is required to understand the underlying mechanisms and develop effective preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Hong-Zheng Lu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui China
| | - Yu-Zhuang Xie
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Gao
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xing-Zhe Wu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
4
|
Gervais A, Rovida F, Avanzini MA, Croce S, Marchal A, Lin SC, Ferrari A, Thorball CW, Constant O, Le Voyer T, Philippot Q, Rosain J, Angelini M, Pérez Lorenzo M, Bizien L, Achille C, Trespidi F, Burdino E, Cassaniti I, Lilleri D, Fornara C, Sammartino JC, Cereda D, Marrocu C, Piralla A, Valsecchi C, Ricagno S, Cogo P, Neth O, Marín-Cruz I, Pacenti M, Sinigaglia A, Trevisan M, Volpe A, Marzollo A, Conti F, Lazzarotto T, Pession A, Viale P, Fellay J, Ghirardello S, Aubart M, Ghisetti V, Aiuti A, Jouanguy E, Bastard P, Percivalle E, Baldanti F, Puel A, MacDonald MR, Rice CM, Rossini G, Murray KO, Simonin Y, Nagy A, Barzon L, Abel L, Diamond MS, Cobat A, Zhang SY, Casanova JL, Borghesi A. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in ∼40% of patients. J Exp Med 2023; 220:e20230661. [PMID: 37347462 PMCID: PMC10287549 DOI: 10.1084/jem.20230661] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefania Croce
- UOSD Cell Factory, San Matteo Research Hospital, Pavia, Italy
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Shih-Ching Lin
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Ferrari
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cristian Achille
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Elisa Burdino
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Irene Cassaniti
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | | | | | - Chiara Marrocu
- Department of Biomedical Sciences for Health, Postgraduate School of Public Health, University of Milan, Milan, Italy
| | - Antonio Piralla
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Valsecchi
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, San Donato Hospital, Milan, Italy
| | - Paola Cogo
- Department of Medicine (DAME), Division of Pediatrics, University of Udine, Udine, Italy
| | - Olaf Neth
- Inborn Errors of Immunity Laboratory, Biomedicine Institute in Seville (IBiS), University of Seville/CSIC, “Red de Investigación Translacional en Infectología Pediátrica”, Seville, Spain
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Inés Marín-Cruz
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Volpe
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, Padova, Italy
| | - Francesca Conti
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, University Hospital of Bologna, Bologna, Italy
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Neurology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valeria Ghisetti
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris, Paris, France
| | - Elena Percivalle
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Alessandro Borghesi
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| |
Collapse
|
5
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Comorbid conditions as risk factors for West Nile neuroinvasive disease in Ontario, Canada: a population-based cohort study. Epidemiol Infect 2022; 150:e103. [PMID: 35543409 PMCID: PMC9171902 DOI: 10.1017/s0950268822000887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
West Nile neuroinvasive disease (WNND) is a severe neurological illness that can result from West Nile virus (WNV) infection, with long-term disability and death being common outcomes. Although WNV arrived in North America over two decades ago, risk factors for WNND are still being explored. The objective of this study was to identify WNND comorbid risk factors in the Ontario population using a retrospective, population-based cohort design. Incident WNV infections from laboratory records between 1 January 2002 – 31 December 2012 were individually-linked to health administrative databases to ascertain WNND outcomes and comorbid risk factors. WNND incidence was compared among individuals with and without comorbidities using risk ratios (RR) calculated with log binomial regression. Three hundred and forty-five individuals developed WNND (18.3%) out of 1884 WNV infections. West Nile encephalitis was driving most associations with comorbidities. Immunocompromised (aRR 2.61 [95% CI 1.23–4.53]) and male sex (aRR 1.32 [95% CI 1.00–1.76]) were risk factors for encephalitis, in addition to age, for which each 1-year increase was associated with a 2% (aRR 1.02 [95% CI 1.02–1.03]) relative increase in risk. Our results suggest that individuals living with comorbidities are at higher risk for WNND, in particular encephalitis, following WNV infection.
Collapse
|
7
|
Badawi A, Velummailum R, Ryoo SG, Senthinathan A, Yaghoubi S, Vasileva D, Ostermeier E, Plishka M, Soosaipillai M, Arora P. Prevalence of chronic comorbidities in dengue fever and West Nile virus: A systematic review and meta-analysis. PLoS One 2018; 13:e0200200. [PMID: 29990356 PMCID: PMC6039036 DOI: 10.1371/journal.pone.0200200] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background Flavivirus diseases such as dengue fever (DENV), West Nile virus (WNV), Zika and yellow fever represent a substantial global public health concern. Preexisting chronic conditions such as cardiovascular diseases, diabetes, obesity, and asthma were thought to predict risk of progression to severe infections. Objective We aimed to quantify the frequency of chronic comorbidities in flavivirus diseases to provide an estimate for their prevalence in severe and non-severe infections and examine whether chronic diseases contribute to the increased risk of severe viral expression. Methods We conducted a comprehensive search in PubMed, Ovid MEDLINE(R), Embase and Embase Classic and grey literature databases to identify studies reporting prevalence estimates of comorbidities in flavivirus diseases. Study quality was assessed with the risk of bias tool. Age-adjusted odds ratios (ORs) were estimated for severe infection in the presence of chronic comorbidities. Results We identified 65 studies as eligible for inclusion for DENV (47 studies) and WNV (18 studies). Obesity and overweight (i.e., BMI> 25 kg/m2, prevalence: 24.5%, 95% CI: 18.6–31.6%), hypertension (17.1%, 13.3–21.8%) and diabetes (13.3%, 9.3–18.8%) were the most prevalent comorbidities in DENV. However, hypertension (45.0%, 39.1–51.0%), diabetes (24.7%, 20.2–29.8%) and heart diseases (25.6%, 19.5–32.7%) were the most prevalent in WNV. ORs of severe flavivirus diseases were about 2 to 4 in infected patients with comorbidities such as diabetes, hypertension and heart diseases. The small number of studies in JEV, YFV and Zika did not permit estimating the prevalence of comorbidities in these infections. Conclusion Higher prevalence of chronic comorbidities was found in severe cases of flavivirus diseases compared to non-severe cases. Findings of the present study may guide public health practitioners and clinicians to evaluate infection severity based on the presence of comorbidity, a critical public health measure that may avert severe disease outcome given the current dearth of clear prevention practices for some flavivirus diseases.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Russanthy Velummailum
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Seung Gwan Ryoo
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | | | - Sahar Yaghoubi
- Faculty of Science, Ryerson University, Toronto, ON, Canada
| | - Denitsa Vasileva
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Emma Ostermeier
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mikayla Plishka
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | | | - Paul Arora
- National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
We aimed to describe the clinical characteristics of West Nile patients reported in Québec in 2012 and 2013 and to document physical, mental and functional status 24 months after symptom onset according to illness severity. The cases were recruited by a public health professional. Data were collected from public health files, medical records and two standardised phone questionnaires: the Short Form-36 and the Instrumental Activities of Daily Living. In all, 92 persons participated in the study (25 had West Nile fever (WNF), 18 had meningitis and 49 had encephalitis). Encephalitis participants were older, had more underlying medical conditions, more neurological symptoms, worse hospital course and higher lethality than meningitis or WNF participants. Nearly half of the surviving hospitalised encephalitis patients required extra support upon discharge. At 24-month follow-up, encephalitis and meningitis patients had a lower score in two domains of the mental component: mental health and social functioning (P = 0.0025 and 0.0297, respectively) compared with the norms based on age- and sex-matched Canadians. Physical status was not affected by West Nile virus (WNV) infection. In addition, 5/36 (15%) of encephalitis, 1/17 (6%) of meningitis and 1/23 (5%) of WNF participants had new functional limitations 24 months after symptom onset. In summary, mental and functional sequelae in encephalitis patients are likely to represent a source of long-term morbidity. Preventive measures should target patients at higher risk of severe illness after WNV infection.
Collapse
|
9
|
Yeung MW, Shing E, Nelder M, Sander B. Epidemiologic and clinical parameters of West Nile virus infections in humans: a scoping review. BMC Infect Dis 2017; 17:609. [PMID: 28877682 PMCID: PMC5588625 DOI: 10.1186/s12879-017-2637-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Clinical syndromes associated with West Nile virus (WNV) infection range from fever to neuroinvasive disease. Understanding WNV epidemiology and disease history is important for guiding patient care and healthcare decision-making. The objective of this review was to characterize the existing body of peer-reviewed and surveillance literature on WNV syndromes and summarize epidemiologic and clinical parameters. METHODS We followed scoping review methodology described by the Joanna Briggs Institute. Terms related to WNV epidemiology, hospitalization, and surveillance were searched in four bibliographic databases (MEDLINE, EMBASE, Scopus, and CINAHL) for literature published from January 1999 to December 2015. RESULTS In total, 2334 non-duplicated titles and abstracts were screened; 92 primary studies were included in the review. Publications included one randomized controlled trial and 91 observational studies. Sample sizes ranged from under 25 patients (n = 19) to over 400 patients (n = 28). Eight studies were from Canada, seven from Israel, and the remaining (n = 77) from the United States. N = 17 studies were classified as outbreak case investigations following epidemics; n = 37 with results of regional/national surveillance and monitoring programs. Mean patient ages were > 40 years old; three studies (3%) focused on the pediatric population. Patients with encephalitis fared worse than patients with meningitis and fever, considering hospitalization, length of stay, discharge, recovery, and case-fatality. Several studies examined risk factors; however, age was the only risk factor for neuroinvasive disease/death consistently identified. Overall, patients with acute flaccid paralysis or encephalitis fared worse than patients with meningitis and West Nile fever in terms of hospitalization and mortality. Among the included studies, proportion hospitalized, length of stay, proportion discharged home and case-fatality ranged considerably. CONCLUSION Our review highlights the heterogeneity among reporting clinical WNV syndromes and epidemiologic parameters of WNV-related illness. Presently, there is potential for further synthesis of the risk factors of WNV-illness and mortality; undertaking further analysis through a systematic review and meta-analysis may benefit our understanding of risk factors for emerging mosquito-borne diseases. Future research on the burden of WNV can build on existing evidence summarized in this review, not only to support our understanding of endemic WNV, but also to strengthen research on emerging arboviruses with similar clinical manifestations.
Collapse
Affiliation(s)
- Man Wah Yeung
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Emily Shing
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Mark Nelder
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Beate Sander
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Abstract
Although long recognized as a human pathogen, West Nile virus (WNV) emerged as a significant public health problem following its introduction and spread across North America. Subsequent years have seen a greater understanding of all aspects of this viral infection. The North American epidemic resulted in a further understanding of the virology, pathogenesis, clinical features, and epidemiology of WNV infection. Approximately 80% of human WNV infections are asymptomatic. Most symptomatic people experience an acute systemic febrile illness; less than 1% of infected people develop neuroinvasive disease, which typically manifests as meningitis, encephalitis, or anterior myelitis resulting in acute flaccid paralysis. Older age is associated with more severe illness and higher mortality; other risk factors for poor outcome have been challenging to identify. In addition to natural infection through mosquito bites, transfusion- and organ transplant-associated infections have occurred. Since there is no definitive treatment for WNV infection, protection from mosquito bites and other preventative measures are critical. WNV has reached an endemic pattern in North America, but the future epidemiologic pattern is uncertain.
Collapse
|
11
|
Patel H, Sander B, Nelder MP. Long-term sequelae of West Nile virus-related illness: a systematic review. THE LANCET. INFECTIOUS DISEASES 2015; 15:951-9. [PMID: 26163373 DOI: 10.1016/s1473-3099(15)00134-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
We systematically reviewed the clinical outlook of West Nile virus (WNV)-related illness in North America and western Europe. As of March, 2015, more than 45 000 cases of WNV-related illness have been reported in North America. Unlike acute morbidity and mortality, the long-term physical, cognitive, and functional sequelae associated with WNV-related illness are not well characterised. An understanding of WNV-related sequelae and their prognostic factors can support physicians with early diagnosis and tertiary prevention efforts. We searched Ovid Medline, Embase, Scopus, and Environment Complete for studies published between 1999 and 2015. We included 67 studies in our Review. Although muscle weakness, memory loss, and difficulties with activities of daily living were among the most common physical, cognitive, and functional sequelae, respectively, some population groups were reported to be at greater risk of severe neurological disease or death (ie, older men with underlying illnesses such as cardiovascular disease or cancer). A high level of heterogeneity was reported among studies included in this Review, suggesting a need for consistent methods for collecting data and reporting findings. Further, more than half of the studies reporting sequelae relied exclusively on subjective assessment and only two studies used matched control groups. Therefore, opportunities exist for more robust primary studies in future research.
Collapse
Affiliation(s)
- Hetal Patel
- Enteric, Zoonotic and Vector-Borne Diseases, Communicable Disease Prevention and Control, Public Health Ontario, Toronto, ON, Canada
| | - Beate Sander
- Public Health Sciences, Public Health Ontario, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Mark P Nelder
- Enteric, Zoonotic and Vector-Borne Diseases, Communicable Disease Prevention and Control, Public Health Ontario, Toronto, ON, Canada.
| |
Collapse
|
12
|
Garcia MN, Hasbun R, Murray KO. Persistence of West Nile virus. Microbes Infect 2014; 17:163-8. [PMID: 25499188 DOI: 10.1016/j.micinf.2014.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022]
Abstract
West Nile virus (WNV) is a widespread global pathogen that results in significant morbidity and mortality. Data from animal models provide evidence of persistent renal and neurological infection from WNV; however, the possibility of persistent infection in humans and long-term neurological and renal outcomes related to viral persistence remain largely unknown. In this paper, we provide a review of the literature related to persistent infection in parallel with the findings from cohorts of patients with a history of WNV infection. The next steps for enhancing our understanding of WNV as a persistent pathogen are discussed.
Collapse
Affiliation(s)
- Melissa N Garcia
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| | - Rodrigo Hasbun
- University of Texas Health Science Center at Houston, School of Medicine, Houston, TX 77030, USA
| | - Kristy O Murray
- Section of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
14
|
Abstract
Abstract:Background:West Nile virus (WNV) is a virus of the family Flaviviridae. The main route of human infection is through the bite of an infected mosquito. Approximately 90% of WNV infections in humans are asymptomatic, but neurologic manifestations can be severe.Methods:This study reviews the clinical profile of cases with neuroinvasive West Nile infection (NWNI) reported by the Surveillance program of the government of Saskatchewan in the Saskatoon Health Region (SHR). In 2007, 1456 cases of human West Nile cases were reported by the government of Saskatchewan in the whole province. One hundred and thirteen cases had severe symptoms of NWNI (8%), 1172 (80%) cases had mild symptoms of WNI and 171 (12%) had asymptomatic disease. Three hundred and fifty six cases were reported in the SHR, where 57 (16%) fulfilled criteria for NWNI.Results:From the 57 cases, 39 (68%) were females. Nine (16%) patients had a history of recent camping, two (4%) reported outdoor sports and four (8%) reported outdoor activities not otherwise specified. Twenty five patients had headache (43.9%), 25 confusion (42.1%), 23 meningitis (40.4%), 17 encephalitis (29.8%), 14 encephalopathy (24.6%), 11 meningoencephalitis (19.3%), 10 tremor (17.5%), acute flaccid paralysis 10 (17.5%), myoclonus 1 (1.8%), nystagmus 2 (3.5%), diplopia 2 (3.5%), dizziness 2 (3.5%). Three patients died related with comorbidities during admission.Conclusion:During a year of high occurrence of WNI in Saskatchewan, 16% of cases developed NWNI. The recognition of neurological complications associated with WNI is important to improve their referral to tertiary centers.
Collapse
|
15
|
A brief report of West Nile Virus neuroinvasive disease in the summer of 2012 in Hamilton, Ontario. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 25:24-6. [PMID: 24634684 DOI: 10.1155/2014/626783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
West Nile neuroinvasive disease is a severe infectious disease that is associated with a high mortality rate, especially in immunocompromised hosts. Physicians who are aware of its clinical presentations may be able to order diagnostic tests more appropriately and avoid inappropriate treatment. In the present series, the cases of seven patients admitted to Hamilton Health Sciences (Hamilton, Ontario) in the summer of 2012 with a diagnosis of West Nile neuroinvasive disease were retrospectively reviewed based on available medical records. According to the clinical and laboratory criteria published by the Centers for Disease Control and Prevention, five cases were diagnosed as encephalitis, one case as meningitis and one case as meningomyelitis. Patients were managed supportively. Forty-three percent (three of seven) presented with rash, 71% (five of seven) did not report headache despite exhibiting neurological symptoms, 43% (three of seven) did not have fever on presentation and 37.5% of cerebrospinal fluid samples exhibited a neutrophil predominance. The mortality rate in the present series was 14.3% (one of seven), and 57.1% (four of seven) of the patients had residual symptoms on discharge and at follow-up.
Collapse
|
16
|
Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection. Viruses 2014; 6:606-23. [PMID: 24509812 PMCID: PMC3939474 DOI: 10.3390/v6020606] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Since the emergence of West Nile virus (WNV) in North America in 1999, understanding of the clinical features, spectrum of illness and eventual functional outcomes of human illness has increased tremendously. Most human infections with WNV remain clinically silent. Among those persons developing symptomatic illness, most develop a self-limited febrile illness. More severe illness with WNV (West Nile neuroinvasive disease, WNND) is manifested as meningitis, encephalitis or an acute anterior (polio) myelitis. These manifestations are generally more prevalent in older persons or those with immunosuppression. In the future, a more thorough understanding of the long-term physical, cognitive and functional outcomes of persons recovering from WNV illness will be important in understanding the overall illness burden.
Collapse
Affiliation(s)
- James J Sejvar
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
17
|
Abstract
Even at a time when HIV/AIDS and immunosuppressive therapy have increased the number of individuals living with significant immunocompromise, diabetes mellitus (DM) remains a major comorbid disorder for several rare but potentially lethal infections, including rhino-orbital-cerebral mucormycosis and malignant external otitis. DM is also a commonly associated condition in patients with nontropical pyomyositis, pyogenic spinal infections, Listeria meningitis, and blastomycosis. As West Nile virus spread to and across North America over a decade ago, DM appeared in many series as a risk factor for death or neuroinvasive disease. More recently, in several large international population-based studies, DM was identified as a risk factor for herpes zoster. The relationships among infection, DM, and the nervous system are multidirectional. Viral infections have been implicated in the pathogenesis of type 1 and type 2 DM, while parasitic infections have been hypothesized to protect against autoimmune disorders, including type 1 DM. DM-related neurologic disease can predispose to systemic infection - polyneuropathy is the predominant risk factor for diabetic foot infection. Because prognosis for many neurologic infections depends on timely institution of antimicrobial and sometimes surgical therapy, neurologists caring for diabetic patients should be familiar with the clinical features of the neuroinfectious syndromes associated with DM.
Collapse
Affiliation(s)
- Cheryl A Jay
- Department of Neurology, University of California San Francisco and Neurology Service, San Francisco General Hospital, San Francisco, CA, USA.
| | - Marylou V Solbrig
- Departments of Internal Medicine (Neurology) and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Hoffman JE, Paschal KA. Functional outcomes of adult patients with West Nile virus admitted to a rehabilitation hospital. J Geriatr Phys Ther 2013; 36:55-62. [PMID: 22785181 DOI: 10.1519/jpt.0b013e318258bcba] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE The clinical manifestation of West Nile Virus (WNV) varies in individuals from mild flu-like symptoms to acute flaccid paralysis. Advanced age is the most significant risk factor for developing severe neurological disease and for death. The broad range of neurologic symptoms associated with WNV infection leads to varied body structure and function limitations and participation restrictions that may require rehabilitation. The purpose of this study is to describe the functional impairments upon admission and the functional outcomes at discharge of 48 adult patients admitted with WNV to a rehabilitation facility in the Midwest from 2002 to 2009. METHODS A retrospective chart review was completed on 48 patients (29 male, 19 female) with mean age 67.8 (SD = 16.6, range = 24-91) years and median age 72.5 years, admitted to inpatient rehabilitation with a diagnosis of WNV after January 1, 2002, and discharged prior to December 31, 2009. General information (sex, age, social history, employment, and living environment), past medical history, and information specific to the current hospitalization (medical conditions, functional status and activity level on admission and discharge as measured by the Functional Independence Measure [FIM], lengths of stay [LOSs] in the acute care and rehabilitation hospital, physical therapy care, discharge destination, and follow-up care provisions) were gathered. The standardized response mean (SRM) was calculated for total, motor, and cognitive FIM scores to provide insight into the effect size and the responsiveness of the FIM for the patients with WNV in this study. RESULTS All patients were admitted to the rehabilitation hospital from acute care hospitals following LOSs ranging from 1 to 62 days. The rehabilitation hospital LOS ranged from 2 to 304 days. These patients had significant comorbidities including hypertension (43.75%), diabetes mellitus (41.67%), acute respiratory failure (37.5%), ventilator dependency/tracheostomy (33.33%), and pneumonia (29.17%). Their admission FIM scores ranged from 13 to 116 (mean = 45.8 ± 28.2) and discharge FIM scores ranged from 18 to 121 (mean = 75.1 ± 34.2). The change in FIM during inpatient rehabilitation was statistically significant (P < .001). The calculated SRM for the total (1.06) and motor (1.12) FIM indicate a large effect size, whereas the SRM for the cognitive FIM (0.79) indicates a moderate effect. The majority of patients were discharged home or to a nursing facility (46%), skilled or extended care (38%) with a need for continued rehabilitation services. DISCUSSION AND CONCLUSIONS The manifestation of the WNV and functional outcomes after comprehensive rehabilitation vary from patient to patient. Higher numbers of comorbid conditions lead to more complex presentation and challenge rehabilitation professionals to design individualized plans of care to enable these patients to achieve the highest functional outcomes. Most patients require follow-up physical therapy care after discharge from rehabilitation.
Collapse
Affiliation(s)
- Julie E Hoffman
- Department of Physical Therapy, Creighton University, Omaha, NE 68178, USA.
| | | |
Collapse
|
19
|
Erdem H, Ergunay K, Yilmaz A, Naz H, Akata F, Inan AS, Ulcay A, Gunay F, Ozkul A, Alten B, Turhan V, Oncul O, Gorenek L. Emergence and co-infections of West Nile virus and Toscana virus in Eastern Thrace, Turkey. Clin Microbiol Infect 2013; 20:319-25. [PMID: 23910388 DOI: 10.1111/1469-0691.12310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/07/2013] [Accepted: 06/19/2013] [Indexed: 01/18/2023]
Abstract
The objective of this study was to identify the impact of West Nile virus (WNV) and Toscana virus (TOSV) in febrile diseases of unknown aetiology in Eastern Thrace, Turkey; this study was conducted during August-October 2012, and included 18 clinical cases and 296 blood donors for local serosurveillance. Antibodies were determined via commercial assays and further tested for specificity via neutralization assays (NA). Viral RNAs were sought via specific and/or generic primers. WNV infections were diagnosed in seven patients (38.8%), detected via RNA+IgM in four, RNA in one and IgM and low avidity IgG in two cases. The most common symptom was fever (>38°C), followed by headache, malaise/fatigue, myalgia/arthralgia, muscle stiffness/lower back pain, anorexia, nausea/vomiting, diarrhoea, supraorbital/retrobulbar pain and abdominal pain. Neurological symptoms were noted in one individual. WNV strains in RNA-detectable patients were characterized as lineage 1. TOSV RNA or IgM were identified in two individuals with confirmed WNV infections and in one patient without evidence of WNV exposure. The clinical and laboratory findings in individuals with WNV/TOSV co-infection were comparable to those in WNV-induced disease. The TOSV strain in the patient with detectable viral RNA was characterized as genotype A. In local blood donors, seroreactivity for specific WNV and TOSV immunoglobulins was observed in 1.7% (5/296) and 14.4% (26/180), respectively. These findings indicate the emergence of WNV and TOSV-associated diseases in Eastern Thrace. WNV/TOSV co-infections were documented for the first time.
Collapse
Affiliation(s)
- H Erdem
- Department of Infectious Diseases and Clinical Microbiology, Gulhane Military Medical Academy, Haydarpasa Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile virus: Implications for central nervous system immunopathology. World J Virol 2013; 2:49-56. [PMID: 24175229 PMCID: PMC3785052 DOI: 10.5501/wjv.v2.i2.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/19/2013] [Accepted: 02/02/2013] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that has recently spread to America and Southern Europe via an enzootic/epizootic bird-mosquito-bird transmission cycle. The virus can occasionally infect humans through mosquito bites, and man-to-man transmission has also been reported via infected blood or organ donation. In the human host, WNV causes asymptomatic infection in about 70%-80% of cases, while < 1% of clinical cases progress to severe neuroinvasive disease; long-term neurological sequelae are common in more than 50% of these severe cases. The pathogenesis of the neuroinvasive form of WNV infection remains incompletely understood, and risk factors for developing severe clinical illness are largely unknown. The innate immune response plays a major role in the control of WNV replication, which is supported by the fact that the virus has developed numerous mechanisms to escape the control of antiviral interferons. However, exaggerated inflammatory responses lead to pathology, mainly involving the central nervous system. This brief review presents the salient features of innate host responses, WNV immunoevasion strategies, and WNV-induced immunopathology.
Collapse
|
22
|
Liu H, Weng Q, Gaines D. Geographic incidence of human West Nile virus in northern Virginia, USA, in relation to incidence in birds and variations in urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4235-4241. [PMID: 21802710 DOI: 10.1016/j.scitotenv.2011.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/26/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Previous studies have analyzed the number and location of bird infections with human incidence of West Nile virus (WNV) as well as the effects of environmental and socioeconomic factors on WNV propagation. However, such associations require more quantitative analyses. This study is intended to quantitatively analyze the relationship in eight counties/independent cities in the northern Virginia, based on an integrated analysis of spatially explicit information on precipitation, land cover, infrastructure, and demographic data using Geographical Information Systems, remote sensing, and statistics. Results show that bird infections in years 2002-2003 were closely associated with low to medium level of impervious surface with certain percentage of canopy and precipitation. Environmental and socioeconomic factors such as percentages of impervious surface, canopy, senior population (65 and older), old houses, bird risk areas, and low-income population were important indicators of human WNV risk in 2002. Limited impervious surface with some canopy provides suitable habitats for WNV transmission, where bird-feeding mosquitoes can forage for blood meals from nesting/roosting birds. Certain socioeconomic conditions such as old houses were linked with human infections by providing favorable environmental conditions, i.e., mature trees with abundant canopy and settled storm sewer systems. It should be noted that the current results may be biased toward urban environments, where dead birds were more likely found, and because the sampling efforts for the bird mortality were rather based on local residents' reports than a designed random sampling method. This geospatial study contributes toward better targeting of WNV prevention within the study area. It also provides an example of how geospatial methods and variables may be used in understanding the ecology of human WNV risk for other areas.
Collapse
Affiliation(s)
- Hua Liu
- Department of Political Science and Geography, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | |
Collapse
|
23
|
Development time of IgG antibodies to West Nile virus. Arch Virol 2011; 156:1661-3. [DOI: 10.1007/s00705-011-1014-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/29/2011] [Indexed: 11/27/2022]
|
24
|
The virology, epidemiology, and clinical impact of West Nile virus: a decade of advancements in research since its introduction into the Western Hemisphere. Epidemiol Infect 2011; 139:807-17. [PMID: 21342610 DOI: 10.1017/s0950268811000185] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is now endemic in the USA. After the widespread surge of virus activity across the USA, research has flourished, and our knowledge base has significantly expanded over the past 10 years since WNV was first recognized in New York City. This article provides a review of the virology of WNV, history, epidemiology, clinical features, pathology of infection, the innate and adaptive immune response, host risk factors for developing severe disease, clinical sequelae following severe disease, chronic infection, and the future of prevention.
Collapse
|
25
|
Abstract
Zoonotic West Nile virus (WNV) circulates in natural transmission cycles involving certain mosquitoes and birds, horses, humans, and a range of other vertebrates are incidental hosts. Clinical infections in humans can range in severity from uncomplicated WNV fever to fatal meningoencephalitis. Since its introduction to the Western Hemisphere in 1999, WNV had spread across North America, Central and South America and the Caribbean, although the vast majority of severe human cases have occurred in the United States of America (USA) and Canada. By 2002-2003, the WNV outbreaks have involved thousands of patients causing severe neurologic disease (meningoencephalitis and poliomyelitis-like syndrome) and hundreds of associated fatalities in USA. The purpose of this review is to present recent information on the epidemiology and pathogenicity of WNV since its emergence in North America.
Collapse
|
26
|
Cook RL, Xu X, Yablonsky EJ, Sakata N, Tripp JH, Hess R, Piazza P, Rinaldo CR. Demographic and clinical factors associated with persistent symptoms after West Nile virus infection. Am J Trop Med Hyg 2010; 83:1133-6. [PMID: 21036852 DOI: 10.4269/ajtmh.2010.09-0717] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prognosis varies among persons with West Nile virus (WNV) infection, but the most important factors associated with persistent symptoms are not clear. In this cross-sectional study, 265 persons with symptomatic WNV infection during 2006-2008 completed a survey a mean of 7.7 months after diagnosis. We determined the association of demographic and clinical characteristics to the most common symptoms. Of 214 persons infected ≥ 6 months, 53% reported one or more persistent symptoms, including fatigue, muscle aches, decreased activity, difficulty with memory, and difficulty concentrating. Persons with neuroinvasive disease, hypertension, or diabetes were significantly more likely to report persistent symptoms, whereas age, sex, and time since infection were not associated with persistent symptoms. In conclusion, persistent symptoms persisted in most persons for more than six months after symptomatic WNV infection. Improved strategies for prevention and treatment are needed.
Collapse
Affiliation(s)
- Robert L Cook
- Department of Epidemiology and Biostatistics, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|