1
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Awata WMC, Alves JV, Costa RM, Bruder-Nascimento A, Singh S, Barbosa GS, Tirapelli CR, Bruder-Nascimento T. Vascular injury associated with ethanol intake is driven by AT1 receptor and mitochondrial dysfunction. Biomed Pharmacother 2023; 169:115845. [PMID: 37951022 DOI: 10.1016/j.biopha.2023.115845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Renin-angiotensin (Ang II)-aldosterone system (RAAS) is crucial for the cardiovascular risk associated with excessive ethanol consumption. Disturbs in mitochondria have been implicated in multiple cardiovascular diseases. However, if mitochondria dysfunction contributes to ethanol-induced vascular dysfunction is still unknown. We investigated whether ethanol leads to vascular dysfunction via RAAS activation, mitochondria dysfunction, and mitochondrial reactive oxygen species (mtROS). METHODS Male C57/BL6J or mt-keima mice (6-8-weeks old) were treated with ethanol (20% vol./vol.) for 12 weeks with or without Losartan (10 mg/kg/day). RESULTS Ethanol induced aortic hypercontractility in an endothelium-dependent manner. PGC1α (a marker of biogenesis), Mfn2, (an essential protein for mitochondria fusion), as well as Pink-1 and Parkin (markers of mitophagy), were reduced in aortas from ethanol-treated mice. Disturb in mitophagy flux was further confirmed in arteries from mt-keima mice. Additionally, ethanol increased mtROS and reduced SOD2 expression. Strikingly, losartan prevented vascular hypercontractility, mitochondrial dysfunction, mtROS, and restored SOD2 expression. Both MnTMPyP (SOD2 mimetic) and CCCP (a mitochondrial uncoupler) reverted ethanol-induced vascular dysfunction. Moreover, L-NAME (NOS inhibitor) and EUK 134 (superoxide dismutase/catalase mimetic) did not affect vascular response in ethanol group, suggesting that ethanol reduces aortic nitric oxide (NO) and H2O2 bioavailability. These responses were prevented by losartan. CONCLUSION AT1 receptor modulates ethanol-induced vascular hypercontractility by promoting mitochondrial dysfunction, mtROS, and reduction of NO and H2O2 bioavailability. Our findings shed a new light in our understanding of ethanol-induced vascular toxicity and open perspectives of new therapeutic approaches for patients with disorder associated with abusive ethanol drinking.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela S Barbosa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; UNIPEX, Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | | | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine, Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Martins FRB, de Oliveira MD, Souza JAM, Queiroz-Junior CM, Lobo FP, Teixeira MM, Malacco NL, Soriani FM. Chronic ethanol exposure impairs alveolar leukocyte infiltration during pneumococcal pneumonia, leading to an increased bacterial burden despite increased CXCL1 and nitric oxide levels. Front Immunol 2023; 14:1175275. [PMID: 37275853 PMCID: PMC10235596 DOI: 10.3389/fimmu.2023.1175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Ethanol abuse is a risk factor for the development of pneumonia caused by Streptococcus pneumoniae, a critical pathogen for public health. The aim of this article was to investigate the inflammatory mechanisms involved in pneumococcal pneumonia that may be associated with chronic ethanol exposure. Male C57BL6/J-Unib mice were exposed to 20% (v/v) ethanol for twelve weeks and intranasally infected with 5x104 CFU of S. pneumoniae. Twenty-four hours after infection, lungs, bronchoalveolar lavage and blood samples were obtained to assess the consequences of chronic ethanol exposure during infection. Alcohol-fed mice showed increased production of nitric oxide and CXCL1 in alveoli and plasma during pneumococcal pneumonia. Beside this, ethanol-treated mice exhibited a decrease in leukocyte infiltration into the alveoli and reduced frequency of severe lung inflammation, which was associated with an increase in bacterial load. Curiously, no changes were observed in survival after infection. Taken together, these results demonstrate that chronic ethanol exposure alters the inflammatory response during S. pneumoniae lung infection in mice with a reduction in the inflammatory infiltrate even in the presence of higher levels of the chemoattractant CXCL1.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maycon Douglas de Oliveira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jéssica Amanda Marques Souza
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Frederico Marianetti Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Wang Y, Yu Y, Zhang H, Chen C, Wan H, Chen Y, Xia F, Yu S, Wang N, Ye L, Lu Y. Cardiovascular and renal burdens among patients with MAFLD and NAFLD in China. Front Endocrinol (Lausanne) 2022; 13:968766. [PMID: 36120461 PMCID: PMC9480613 DOI: 10.3389/fendo.2022.968766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/PURPOSE Metabolic associated fatty liver disease (MAFLD) was proposed as a new definition to put emphasis on the metabolic aspects of nonalcoholic fatty liver disease (NAFLD). We aim to compare the cardiovascular and renal burden between MAFLD and NAFLD patients. METHODS 12183 participants were enrolled in East China. The cardiovascular burden (Framingham risk score and previous cardiovascular diseases (CVD)) and renal burden (eGFR and chronic kidney disease (CKD)) were measured. RESULTS The risk of hypertension, dyslipidemia, diabetes, overweight/obesity, and central obesity of MAFLD patients were higher than those of NAFLD. Patients with MAFLD have a similar or higher beta coefficients in Framingham risk score [beta (95%CI): male 0.062 (0.055,0.069) vs 0.041 (0.033,0.048); female 0.014 (0.012,0.016) vs 0.012 (0.01,0.014)], and higher odds ratio in previous CVD [odds ratio (95%CI): male 1.50 (1.22,1.85) vs 1.35 (1.1,1.66); female 1.58 (1.33,1.87) vs 1.45 (1.22,1.72)], compared with those with NAFLD. However, compared with males with MAFLD, the odds ratio of CKD was higher in those with NAFLD [eGFR: -2.731 (-3.422, -2.041) vs-3.578 (-4.268, -2.887). CKD: 1.44 (1.05,1.96) vs 1.56 (1.14,2.12)]. In female, CKD was only marginally associated with NAFLD [0.8 (0.62,1.02), P=0.075], but not MAFLD [0.87 (0.68,1.11), P=0.268]. CONCLUSIONS Patients with MAFLD have a similar or higher risk of future and previous CVD compared with those with NAFLD, but the risk of CKD was higher in male with NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Ye
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Kobayashi NHC, Farias SV, Luz DA, Machado-Ferraro KM, da Conceição BC, da Silveira CCM, Fernandes LMP, Cartágenes SDC, Ferreira VMM, Fontes-Júnior EA, Maia CDSF. Ketamine plus Alcohol: What We Know and What We Can Expect about This. Int J Mol Sci 2022; 23:ijms23147800. [PMID: 35887148 PMCID: PMC9323326 DOI: 10.3390/ijms23147800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
Drug abuse has become a public health concern. The misuse of ketamine, a psychedelic substance, has increased worldwide. In addition, the co-abuse with alcohol is frequently identified among misusers. Considering that ketamine and alcohol share several pharmacological targets, we hypothesize that the consumption of both psychoactive substances may synergically intensify the toxicological consequences, both under the effect of drugs available in body systems and during withdrawal. The aim of this review is to examine the toxicological mechanisms related to ketamine plus ethanol co-abuse, as well the consequences on cardiorespiratory, digestive, urinary, and central nervous systems. Furthermore, we provide a comprehensive discussion about the probable sites of shared molecular mechanisms that may elicit additional hazardous effects. Finally, we highlight the gaps of knowledge in this area, which deserves further research.
Collapse
Affiliation(s)
- Natalia Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Diandra Araújo Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Kissila Márvia Machado-Ferraro
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Brenda Costa da Conceição
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cinthia Cristina Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Vânia Maria Moraes Ferreira
- Laboratory of Psychobiology, Psychology Institute, University of Brasília, Campus Universitário Darcy Ribeiro—Asa Norte, Brasília 70910900, DF, Brazil;
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
- Correspondence: ; Tel.: +55-91-3201-7201
| |
Collapse
|
6
|
Sousa AH, do Vale GT, da Silva CBP, Awata WMC, Pinheiro LC, Tirapelli CR. Ethanol and cyclophosphamide induce similar nephrotoxic effects: possible role for Nox4 and superoxide. Can J Physiol Pharmacol 2021; 99:744-751. [PMID: 33175570 DOI: 10.1139/cjpp-2020-0246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We tested the hypothesis that ethanol consumption would aggravate the renal damage induced by cyclophosphamide (CYP). Male C57BL/6 J mice from control (n = 8) and CYP (n = 12) groups had free access to filtered water and standard rodent chow for 12 weeks. Then, 24 h before euthanasia mice received an intraperitoneal injection of saline or CYP (300 mg/kg). Mice from ethanol (n = 8) and CYP + ethanol (n = 12) groups had free access to increasing doses of ethanol for 12 weeks. Twenty-four hours before euthanasia, mice from ethanol and CYP + ethanol groups received an intraperitoneal injection of saline or CYP, respectively. Ethanol, CYP, or the association of both drugs augmented serum levels of creatinine and increased the levels of superoxide ([Formula: see text]) generation and thiobarbituric acid reactive substances in the renal cortex. Upregulation of Nox4 and increased activity of superoxide dismutase were detected in the renal cortex of mice treated with ethanol, CYP, or the combination of these drugs; however, these molecular alterations induced by CYP were not potentiated by ethanol consumption. Our findings revealed that chronic ethanol consumption had no potentiating effect on the nephrotoxic effects displayed by CYP. It is possible that the combination of these drugs showed no synergistic effect because they share the same molecular mechanisms of renal toxicity.
Collapse
Affiliation(s)
- Arthur H Sousa
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel T do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - Carla B P da Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-Graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Wanessa M C Awata
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lucas C Pinheiro
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
do Valle GT, Ricci ST, Silva AO, Tirapelli CR, Ceron CS. Ethanol consumption increases renal dysfunction and mortality in a mice model of sub-lethal sepsis. Can J Physiol Pharmacol 2021; 99:699-707. [PMID: 33290154 DOI: 10.1139/cjpp-2020-0564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic ethanol consumption and sepsis cause oxidative stress and renal dysfunction. This study aimed to examine whether chronic ethanol consumption sensitizes the mouse kidney to sub-lethal cecal ligation and puncture (SL-CLP) sepsis, leading to impairment of renal function by tissue oxidative and inflammatory damage. Male C57BL/6J mice were treated for 9 weeks with ethanol (20%, v/v) before SL-CLP was induced. Systolic blood pressure (SBP), survival rate, creatinine plasma, oxidative stress, and inflammatory parameters, inducible nitric oxide synthase (iNOS), cytokines, and metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) levels were evaluated. Chronic ethanol consumption increased SBP, plasma creatinine, O2.-, H2O2, lipid peroxidation, catalase activity, Nox4, IL-6, and TNF-α levels, and MMP-9/TIMP-1 ratio. SL-CLP decreased SBP, increased creatinine, lipid peroxidation, IL-6, TNF-α, nitrate/nitrite (NOx), and iNOS levels, and MMP-2/TIMP-2 ratio, and decreased catalase activity. SL-CLP mice previously treated with ethanol showed a similar decrease in SBP but higher mortality and creatinine levels than SL-CLP alone. These responses were mediated by increased O2-, lipid peroxidation, IL-6, TNF-α, NOx, iNOS, MMP-2, and MMP-9 levels, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios. Our findings demonstrated that previous oxidative stress and inflammatory damage caused by ethanol consumption sensitizes the kidney to SL-CLP injury, resulting in impaired kidney function and sepsis prognosis.
Collapse
Affiliation(s)
- Gabriel Tavares do Valle
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo -USP, São Paulo, Brasil
| | - Sthefany Teodoro Ricci
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo -USP, São Paulo, Brasil
| | - Alessandra Oliveira Silva
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Minas Gerais, Brasil
| | - Carlos Renato Tirapelli
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo -USP, São Paulo, Brasil
| | - Carla Speroni Ceron
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Minas Gerais, Brasil
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Minas Gerais, Brasil
| |
Collapse
|
8
|
da Silva CBP, Ceron CS, Mendes AS, de Martinis BS, Castro MM, Tirapelli CR. Inducible nitric oxide synthase (iNOS) mediates ethanol-induced redox imbalance and upregulation of inflammatory cytokines in the kidney. Can J Physiol Pharmacol 2021; 99:1016-1025. [PMID: 33887163 DOI: 10.1139/cjpp-2021-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of the inducible isoform of the enzyme nitric oxide synthase (iNOS) has been associated to pathological processes in the kidney. Ethanol consumption induces the renal expression of iNOS; however, the contribution of this enzyme to the deleterious effects of ethanol in the kidney remains elusive. We examined whether iNOS plays a role in the renal dysfunction and oxidative stress induced by ethanol consumption. With this purpose, male C57BL/6 wild-type (WT) or iNOS-deficient (iNOS-/-) mice were treated with ethanol (20% v/v) for 10 weeks. Treatment with ethanol increased the expression of Nox4 as well as the concentration of thiobarbituric acid reactive substances and the levels of tumor necrosis factor α in the renal cortex of WT but not iNOS-/- mice. Augmented serum levels of creatinine and increased systolic blood pressure were found in WT and iNOS-/- mice treated with ethanol. WT mice treated with ethanol showed increased production of reactive oxygen species and myeloperoxidase activity, but these responses were attenuated in iNOS-/- mice. We concluded that iNOS played a role in ethanol-induced oxidative stress and pro-inflammatory cytokine production in the kidney. These are mechanisms that may contribute to the renal toxicity induced by ethanol.
Collapse
Affiliation(s)
- Carla B P da Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.,Programa de Pós-Graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla S Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Atlante S Mendes
- Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Bruno S de Martinis
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Hepatic and renal damage by alcohol and cigarette smoking in rats. Toxicol Res 2021; 37:209-219. [PMID: 33868978 DOI: 10.1007/s43188-020-00057-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic use of alcohol and tobacco cigarettes is associated to millions of deaths per year, either by direct or indirect causes. However, few studies have explored the additional risks of the combined use of these drugs. Here we assessed the effect of the combined use of alcohol and cigarette smoke on liver or kidney morphology, and on biochemical parameters in chronically treated rats. Male Wistar rats were allocated to receive 2 g/kg alcohol orally, which was followed by the inhalation of smoke from six cigarettes during 2 h (ALTB group) for 28 days. Other groups received alcohol alone (AL) or were exposed to cigarette smoke (TB) alone and were compared to control (CT) rats, which received water followed by ambient air. On day 29, rats were euthanized and blood samples were collected for aminotransferase enzymes (AST and ALT), creatinine, and urea analysis. Liver and kidney were weighted, dissected, fixed, and stained with hematoxylin and eosin for morphological analysis. Our results showed that necrosis was elevated in the AL, TB, and mainly the ALTB group in both liver and kidney of rats. Serum levels of AST and ALT were reduced by cigarette smoke exposure, independently of alcohol use. Serum creatinine levels increased after tobacco smoke exposure. On the other hand, TB and AL groups decreased serum urea levels, and their association restored that decrease. Absolute liver and kidney weights were lower in the cigarette smoke exposure rats. Lastly, body weight gain was lower in TB group and combined use restored it. Thus, we may infer that the use of alcohol, exposure to tobacco cigarette smoke or, mainly, their association promotes liver and kidney injuries, and this damage is related with biochemical changes in rats.
Collapse
|
10
|
|
11
|
Hebbani AV, Bulle S, Kanu VR, Balachandrababu Malini A, Reddy VD, Chakravarthula VN. Nephro-protective activity of wheatgrass juice against alcohol-induced oxidative damage in rats. Toxicol Mech Methods 2020; 30:679-686. [PMID: 32811246 DOI: 10.1080/15376516.2020.1810837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present study is an attempt to check the protective effect of fresh wheatgrass juice (WJ) as a potential therapeutic agent against alcohol-induced oxidative/nitrosative stress leading to nephrotoxicity in rats. Administration of 20% ethanol (5 g/kg b.wt/day) for 60 days resulted in a significant rise in the plasma concentrations of urea and creatinine with decreased levels of uric acid. Besides, a significant decrease in plasma electrolyte/mineral levels along with decreased activity of Na+/K+-ATPase activity was recorded in alcohol administered rats. In alcohol administered rats augmented lipid peroxidation (thio-barbituric acid reactive substance - TBARS) and nitric oxide (NOx) reflects the increased oxidative stress and nitrosative stress, moreover, we noticed a concomitant decrease in the levels of reduced glutathione (GSH) with decreased activities of antioxidant enzyme machinery viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST). Administration of WJ to the alcoholic rats significantly restored the plasma biochemical markers and the kidney antioxidant status near to control group animal levels. These findings were further confirmed by the kidney histopathological studies, wherein the protective effect of WJ treatment in retaining the morphological features of the renal tissue in spite of the alcohol administration was evident. The rich repertoire of phenolic compounds present in the WJ from the freshly sprouted seeds synergistically protected the kidney from alcohol-induced damage.
Collapse
Affiliation(s)
- Ananda Vardhan Hebbani
- Department of Biotechnology, New Horizon College of Engineering, Bangalore, KA, India.,Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, AP, India
| | - Saradamma Bulle
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, AP, India
| | | | | | | | | |
Collapse
|
12
|
do Vale GT, Sousa AH, Gonzaga NA, de Oliveira MG, Justo AF, Alexandre EC, Tanus-Santos JE, Antunes E, Tirapelli CR. Chronic ethanol consumption induces micturition dysfunction and alters the oxidative state of the urinary bladder. Can J Physiol Pharmacol 2019; 97:1103-1114. [DOI: 10.1139/cjpp-2019-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oxidative stress is pointed out as a major mechanism by which ethanol induces functional and structural changes in distinctive tissues. We evaluated whether ethanol consumption would increase oxidative stress and cause micturition dysfunction. Male C57BL/6J mice were treated with 20% ethanol (v/v) for 10 weeks. Our findings showed that chronic ethanol consumption reduced micturition spots and urinary volume in conscious mice, whereas in anaesthetized animals cystometric analysis revealed reduced basal pressure and increased capacity, threshold pressure, and maximum voiding. Treatment with ethanol reduced the contraction induced by carbachol in isolated bladders. Chronic ethanol consumption increased the levels of oxidant molecules and thiobarbituric acid reactive species in the mouse bladder. Upregulation of Nox2 was detected in the bladder of ethanol-treated mice. Increased activity of both superoxide dismutase and catalase were detected in the mouse bladder after treatment with ethanol. Conversely, decreased levels of reduced glutathione were detected in the bladder of ethanol-treated mice. The present study first demonstrated that chronic ethanol consumption induced micturition dysfunction and that this response was accompanied by increased levels of oxidant molecules in the mousebladder. These findings suggest that ethanol consumption is a risk factor for vesical dysfunction.
Collapse
Affiliation(s)
- Gabriel T. do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Arthur H. Sousa
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Natália A. Gonzaga
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Mariana G. de Oliveira
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alberto F.O. Justo
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo C. Alexandre
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jose E. Tanus-Santos
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos R. Tirapelli
- Escola de Enfermagem de Ribeirão Preto - DEPCH / Faculdade de Ciências Farmacêuticas de Ribeirão Preto - DFQ, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Fan Z, Yun J, Yu S, Yang Q, Song L. Alcohol Consumption Can be a "Double-Edged Sword" for Chronic Kidney Disease Patients. Med Sci Monit 2019; 25:7059-7072. [PMID: 31538630 PMCID: PMC6767945 DOI: 10.12659/msm.916121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive drinking of alcohol is becoming a worldwide problem, and people have recognized that there exists a close relationship between chronic kidney disease (CKD) and alcohol consumption. However, there are many inconsistencies between experimental and clinical studies on alcohol consumption and kidney damage. The possible reason for this contradictory conclusion is the complex drinking pattern of humans and some bioactivators in wine. In addition, the design itself of the clinical studies can also produce conflicting interpretations of the results. Considering the benefits of light-to-moderate alcohol consumption, we recommend that CKD patients continue light-to-moderate drinking, which is beneficial to them. Because alcohol consumption can lead to adverse events, we do not advise non-drinkers to start to drink. Although light-to-moderate alcohol consumption may not pose a risk to patients with CKD, the patients’ condition needs to be considered. Consumption of even small amounts of alcohol can be associated with increased death risk. Additional clinical and experimental studies are needed to clarify the effect of alcohol on the kidneys and alcohol consumption on CKD patients.
Collapse
Affiliation(s)
- Zhenliang Fan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Jie Yun
- First Clinic School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Shanshan Yu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Qiaorui Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| | - Liqun Song
- First Clinic School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
14
|
Leal S, Ricardo Jorge DO, Joana B, Maria S, Isabel S. Heavy Alcohol Consumption Effects on Blood Pressure and on Kidney Structure Persist After Long-Term Withdrawal. Kidney Blood Press Res 2017; 42:664-675. [DOI: 10.1159/000482022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
|
15
|
Muniz JJ, Leite LN, Lacchini R, Tanus-Santos JE, Tirapelli CR. Dysregulated mitogen-activated protein kinase and matrix metalloproteinase in ethanol-induced cavernosal dysfunction. Can J Physiol Pharmacol 2017; 96:266-274. [PMID: 28820947 DOI: 10.1139/cjpp-2017-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We evaluated the effects of ethanol consumption on the mitogen-activated protein kinases (MAPK) and metalloproteinases (MMP) pathways in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) for 6 weeks. Quantitative real-time polymerase chain reaction experiments showed that ethanol consumption did not alter mRNA levels of p38MAPK, SAPK/JNK, ERK1/2, MMP-2, or MMP-9 in the rat CSM. Western immunoblotting experiments revealed decreased protein expression of p38MAPK and phosphorylation of SAPK/JNK in the CSM from ethanol-treated rats. Additionally, ethanol consumption decreased the expression of MMP-2. Functional assays showed that SP600125, an inhibitor of SAPK/JNK, prevented the increase in endothelin (ET)-1-induced contraction in the CSM from ethanol-treated rats. Treatment with ethanol decreased MMP-2 activity, but did not change net MMP activity in the rat CSM. Ethanol consumption increased the circulating levels of MMP-2, MMP-9, and TIMP-2 as well as the MMP-9/TIMP-1 ratio. The major finding of our study is that ethanol consumption down-regulates both MAPK and MMP pathways in the rat CSM, whereas it increases the circulating levels of MMP-9. Additionally, we found that SAPK/JNK plays a role in ethanol-induced increase on ET-1 contraction in the isolated rat CSM.
Collapse
Affiliation(s)
- Jaqueline J Muniz
- a Escola de Enfermagem de Ribeirão Preto, DEPCH, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Letícia N Leite
- a Escola de Enfermagem de Ribeirão Preto, DEPCH, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Riccardo Lacchini
- a Escola de Enfermagem de Ribeirão Preto, DEPCH, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - José E Tanus-Santos
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- a Escola de Enfermagem de Ribeirão Preto, DEPCH, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Leite LN, do Vale GT, Simplicio JA, De Martinis BS, Carneiro FS, Tirapelli CR. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species. Eur J Pharmacol 2017; 804:82-93. [DOI: 10.1016/j.ejphar.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/09/2023]
|
17
|
Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats. Biomed Pharmacother 2016; 84:740-746. [DOI: 10.1016/j.biopha.2016.09.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023] Open
|
18
|
Kim MJ, Nepal S, Lee ES, Jeong TC, Kim SH, Park PH. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages. Toxicol Appl Pharmacol 2013; 273:77-89. [DOI: 10.1016/j.taap.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022]
|
19
|
Leite LN, Lacchini R, Carnio EC, Queiroz RH, Tanus-Santos JE, de Oliveira AM, Tirapelli CR. Ethanol Consumption Increases Endothelin-1 Expression and Reactivity in the Rat Cavernosal Smooth Muscle. Alcohol Alcohol 2013; 48:657-66. [DOI: 10.1093/alcalc/agt057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
20
|
McIver SR, Muccigrosso MM, Haydon PG. The effect of doxycycline on alcohol consumption and sensitivity: consideration for inducible transgenic mouse models. Exp Biol Med (Maywood) 2012; 237:1129-33. [PMID: 23019604 DOI: 10.1258/ebm.2012.012029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation is known to elicit numerous changes in brain physiology and is associated with various pathologies, including neurodegenerative diseases, and behaviors, such as sleep and acute illness. In addition, there is accumulating evidence that the behavioral response to alcohol is affected by perturbations to the neuroimmune system. Recent studies have shown that administration of proinflammatory mediators increases alcohol consumption, while anti-inflammatory drugs, such as minocycline, decrease consumption. Doxycycline is an anti-inflammatory mediator and a tetracycline derivative, and is commonly used in the tetracycline regulatory system, a transgenic approach widely accredited for its inducible and reversible nature. Given the established link between anti-inflammatory agents and response to and consumption of alcohol, and because the tetracycline regulatory system is becoming increasingly employed for genetic manipulations and behavioral phenotyping, we investigated the effect of doxycycline administration on alcohol sensitivity and consumption. Two independent transgenic lines containing a tetracycline transactivator transgene or the tetracycline operator promoter insertion, along with wild-type littermate mice (C57Bl/6J), were used to measure changes in alcohol consumption, alcohol-induced motor impairment and sedation, and blood alcohol concentration with doxycycline administration (40 mg/kg in chow). Using repeated sessions of the drinking-in-the-dark paradigm, we found that doxycycline consistently reduced consumption of 20% alcohol during two- and four-hour access. Doxycycline also increased sensitivity to the motor-impairing effects of alcohol (2 g/kg), and the duration of loss of righting reflex after ethanol injection (3.5 g/kg), without causing a significant alteration in blood alcohol levels. Despite the many advantages of using a tetracycline-regulated transgenic approach, it is important to consider the effects of doxycycline administration in behaviors that may be influenced by neuroinflammation, including alcohol behaviors.
Collapse
Affiliation(s)
- Sally R McIver
- Department of Neuroscience, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
21
|
Ojeda ML, Nogales F, Murillo ML, Carreras O. Selenium or selenium plus folic acid-supplemented diets ameliorate renal oxidation in ethanol-exposed pups. Alcohol Clin Exp Res 2012; 36:1863-72. [PMID: 22486362 DOI: 10.1111/j.1530-0277.2012.01788.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/13/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Ethanol (EtOH) exposure during gestation and lactation induces an oxidative stress in offspring. In kidney, the oxidative damage is the primary pathway to alcohol-induced injury. In this study, we have demonstrated that a diet supplemented with selenium (Se) (0.5 ppm) or with Se (0.5 ppm) + folic acid (8 ppm) administered to EtOH-exposed (20% v/v) dams during gestation and lactation prevents the oxidative EtOH-provoked effects in their offspring's kidneys. METHODS All the studies were performed on 21-day-old pups. Serum, urine, and kidney Se levels were assessed by graphite-furnace atomic absorption spectrometry. Se and creatinine clearance, antioxidant enzyme activities, and lipid and protein peroxidation were determined by a spectrophotometric method in kidney. RESULTS Dietary supplementation treatments used could not improve the glomerular filtration function altered by EtOH exposure during gestation and lactation; however, they did improve renal Se deposits, renal development, and renal protein content while decreasing lipid and protein oxidation and modifying antioxidant enzymes' activity. CONCLUSIONS Se or Se + folic acid supplementations improve renal development and protein content and modify antioxidant enzymes' activity, decreasing lipid and protein oxidation after EtOH exposure. In this context, a double-supplemented diet appears to reduce protein peroxidation more efficiently than the Se-only-supplemented one, probably via superoxide dismutase and catalase.
Collapse
Affiliation(s)
- Maria Luisa Ojeda
- Department of Physiology and Zoology, Faculty of Pharmacy, Seville University, Seville, Spain
| | | | | | | |
Collapse
|