1
|
Yang Q, Sun S, Shao H, Su Y, Wang N, Chen X, Han M, Shen J, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M, Liang Y. Characterization and Genomic Analysis of a Lytic Vibriophage vB_VneS_S3 of Infecting Vibrio neocaledonicus. Curr Microbiol 2025; 82:251. [PMID: 40252093 DOI: 10.1007/s00284-025-04239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Vibrio is a prevalent marine bacteria, distinguished by their remarkable genomic flexibility. Although Vibrio neocaledonicus is well known for effectively inhibiting carbon steel corrosion, nothing is known about its viruses. This study identified a new lytic vibriophage vB_VneS_S3. Transmission electron microscopy analysis showed that vB_VneS_S3 is a siphoviral morphology with an icosahedral head and long non-contractile tail. It is a linear, dsDNA with a length of 76,083 bp and a G + C content of 48.97%, encodes 101 ORFs. Average nucleotide sequence identification and phylogenetic analysis demonstrated that phage vB_VneS_S3 is a new species within the genus of Mardecavirus. Biogeographic analysis revealed that vB_VneS_S3 was exclusively identified in the Arctic, where it exhibited low abundance. In conclusion, our results provided basic information about the interaction between V. neocaledonicus and viruses, increased our knowledge of phylogenetic diversity, genomic characteristics, and distribution of the novel phage.
Collapse
Affiliation(s)
- Qiyue Yang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Shujuan Sun
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yue Su
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ni Wang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xin Chen
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Meiaoxue Han
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Jinhao Shen
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universitiy Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yantao Liang
- MoE Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| |
Collapse
|
2
|
Migaou M, Macé S, Maalej H, Marchand L, Bonnetot S, Noël C, Sinquin C, Jérôme M, Zykwinska A, Colliec-Jouault S, Maaroufi RM, Delbarre-Ladrat C. Exploring the Exopolysaccharide Production Potential of Bacterial Strains Isolated from Tunisian Blue Crab Portunus segnis Microbiota. Molecules 2024; 29:774. [PMID: 38398526 PMCID: PMC10893132 DOI: 10.3390/molecules29040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The blue crab (BC) Portunus segnis is considered an invasive species colonizing Tunisian coasts since 2014. This work aims to explore its associated bacteria potential to produce anionic exopolysaccharides (EPSs) in order to open up new ways of valorization. In this study, different BC samples were collected from the coastal area of Sfax, Tunisia. First, bacterial DNA was extracted from seven different fractions (flesh, gills, viscera, carapace scraping water, and three wastewaters from the production plant) and then sequenced using the metabarcoding approach targeting the V3-V4 region of the 16S rDNA to describe their microbiota composition. Metabarcoding data showed that the dominant bacterial genera were mainly Psychrobacter, Vagococcus, and Vibrio. In parallel, plate counting assays were performed on different culture media, and about 250 bacterial strains were isolated and identified by sequencing the 16S rDNA. EPS production by this new bacterial diversity was assessed to identify new compounds of biotechnological interest. The identification of the bacterial strains in the collection confirmed the dominance of Psychrobacter spp. strains. Among them, 43 were identified as EPS producers, as revealed by Stains-all dye in agarose gel electrophoresis. A Buttiauxella strain produced an EPS rich in both neutral sugars including rare sugars such as rhamnose and fucose and uronic acids. This original composition allows us to assume its potential for biotechnological applications and, more particularly, for developing innovative therapeutics. This study highlights bacterial strains associated with BC; they are a new untapped source for discovering innovative bioactive compounds for health and cosmetic applications, such as anionic EPS.
Collapse
Affiliation(s)
- Mariem Migaou
- Laboratory of Genetics, Biodiversity & Valorisation of Bioresources, Higher Institute of Biotechnology of Monastir, University of Monastir, Ave Tahar Haddad, BP74, Monastir 5000, Tunisia
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Sabrina Macé
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Hana Maalej
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Laetitia Marchand
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Sandrine Bonnetot
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'Ifremer, F-29280 Plouzané, France
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Marc Jérôme
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | | | - Raoui Mounir Maaroufi
- Laboratory of Genetics, Biodiversity & Valorisation of Bioresources, Higher Institute of Biotechnology of Monastir, University of Monastir, Ave Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | |
Collapse
|
3
|
Dinçtürk E, Öndes F, Leria L, Maldonado M. Mass mortality of the keratose sponge Sarcotragus foetidus in the Aegean Sea (Eastern Mediterranean) correlates with proliferation of Vibrio bacteria in the tissues. Front Microbiol 2023; 14:1272733. [PMID: 38107859 PMCID: PMC10722426 DOI: 10.3389/fmicb.2023.1272733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023] Open
Abstract
In the last two decades, episodes of mass mortality in benthic communities have often been associated with climatic anomalies, but the ultimate mechanisms through which they lead to death have rarely been identified. This study reports a mass mortality of wild sponges in the Aegean Sea (Turkey, Eastern Mediterranean), which affected the keratose demosponge Sarcotragus foetidus in September 2021. We examined the occurrence of thermo-dependent bacteria of the genus Vibrio in the sponges, identified through 16S rRNA of colonies isolated from sponge tissue in specific culturing media. Six Vibrio sequences were identified from the sponges, three of them being putatively pathogenic (V. fortis, V. owensii, V. gigantis). Importantly, those Vibrios were isolated from only tissues of diseased sponges. In contrast, healthy individuals sampled in both summer and winter led to no Vibrio growth in laboratory cultures. A 50 years record of sea surface temperature (SST) data for the study area reveals a progressive increase in temperature from 1970 to 2021, with values above 24°C from May to September 2021, reaching an absolute historical maximum of 28.9°C in August 2021. We hypothesize that such elevated SST values maintained for several months in 2021 promoted proliferation of pathogenic Vibrio species (thermo-dependent bacteria) in S. foetidus, triggering or aggravating the course of sponge disease. Thus, vibrioisis emerges as one of the putative mechanisms through which global water warming in the Mediterranean Sea translates into sponge mortality. The historical time course of temperature data for the studied area in the Aegean Sea predicts that recurrent waves of elevated SST are likely to occur in the coming summers. If so, recurrent disease may eventually eliminate this abundant sponge from the sublittoral in the midterm, altering the original bathymetric distribution of the species and compromising its ecological role.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Fish Disease and Biotechnology Laboratory, Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
| | - Fikret Öndes
- Fisheries Laboratory, Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
- Department of Marine Sciences and Applied Biology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laia Leria
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Manuel Maldonado
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| |
Collapse
|
4
|
Nakamura S, Yumioka J, Kachi S, Baba Y, Kawai S. Bacterial and fungal gut microbiota of supralittoral talitrid amphipods feeding on brown macroalgae and paper. PLoS One 2022; 17:e0279834. [PMID: 36584150 PMCID: PMC9803094 DOI: 10.1371/journal.pone.0279834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Some macroalgae drift on the ocean and are stranded on coasts, and these stranded brown macroalgae are regarded to be degraded by organisms. Alginate is a major component of brown macroalgae. An uncovering of how carbon is cycled through brown macroalgae is needed to deeply understand coastal ecosystems. In this study, to gain insights into metabolism of brown macroalgae and alginate in the organisms, we initially confirmed that supralittoral talitrid amphipods (beach fleas or sandhoppers collected on the Shibagaki coast in Ishikawa Prefecture, Japan) fed on the brown macroalgae. We then isolated bacteria such as Vibrio sp. with alginate-assimilating capability from the gut of the amphipods. Metagenomic analysis of the gut of amphipods housed in several conditions (e.g. macroalgae or paper as feed, non-sterilized or sterilized environment) showed no condition-dependent compositions of bacteria and fungi, but Vibrio sp. were detected at high frequency, in good agreement with the isolation of Vibrio sp. An intervention study using antibiotics showed that amphipods fed on algae or paper at about the same rate in the presence or absence of antibiotics, and that the antibiotics had no effects on the life span. Moreover, intervention with antibiotics completely killed Vibrio sp. and some other bacteria, and had significant effects on the composition of the flora in the gut, with elimination of the variations observed in the guts of amphipods housed without antibiotics. These data suggest that microbes that were killed by antibiotics, including Vibrio sp., in the gut of talitrid amphipods are not essential for assimilation of brown macroalgae.
Collapse
Affiliation(s)
- Seiichiro Nakamura
- Division of Applied Life Sciences, Graduate School of Bioresources and Environment, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Junya Yumioka
- Division of Applied Life Sciences, Graduate School of Bioresources and Environment, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Seishu Kachi
- Department of Environmental Science, Faculty of Bioresources and Environment, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yasunori Baba
- Division of Applied Life Sciences, Graduate School of Bioresources and Environment, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Shigeyuki Kawai
- Division of Applied Life Sciences, Graduate School of Bioresources and Environment, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
5
|
Srivastava N, Kumari S, Kurmi S, Pinnaka AK, Choudhury AR. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42. Arch Microbiol 2022; 204:399. [PMID: 35713724 DOI: 10.1007/s00203-022-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Shubham Kurmi
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
6
|
Concórdio-Reis P, Alves VD, Moppert X, Guézennec J, Freitas F, Reis MAM. Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Mar Drugs 2021; 19:522. [PMID: 34564184 PMCID: PMC8470090 DOI: 10.3390/md19090522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5-2.1 wt%), pyruvyl (0.2-4.9 wt%), succinyl (1-1.8 wt%), and sulfate (1.98-3.43 wt%); and few peptides (1.72-6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32-53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia;
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France;
| | - Filomena Freitas
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria A. M. Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Cheng TH, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M. Industrial enzymes-producing marine bacteria from marine resources. ACTA ACUST UNITED AC 2020; 27:e00482. [PMID: 32514406 PMCID: PMC7267704 DOI: 10.1016/j.btre.2020.e00482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Abstract
Lipase is the most dominant industrial enzyme produced by cultivated marine bacteria. Genetic variation determines the yield of enzyme production. Proteobacteria (Vibrio spp.) is the main producer of industrial enzymes.
Industrial enzymes are important for various biotechnological applications. Currently, the diversity of industrial enzymes-producing marine bacteria from Malaysia remains mostly unknown. This study investigated the diversity of industrial enzyme-producing marine bacteria from culture collections at the Institute of Marine Biotechnology, Universiti Malaysia Terengganu. Out of 200 bacterial isolates revived, 163 bacteria isolate were successfully growth. Marine bacteria produced enzymes with total scoring higher than four were selected for molecular identification using 16S rDNA. About 161 bacteria isolate secreted amylase (68.7 %), lipase (88.3 %) and protease (68.7 %). The phylogenetic analysis led to the identification of three major phyla, namely Proteobacteria, Firmicutes and Bacteroidetes. These phyla were differentiated into nine genera consisted of Bacillus, Chryseomicrobium, Photobacterium, Pseudoalteromonas, Ruegeria, Shewanella, Solibacillus, Tenacibaculum and Vibrio. Genetic variation was more likely to occur within similar marine bacteria species. The microbial community was found to affect the production of industrial enzymes and the diversity of marine bacteria.
Collapse
Affiliation(s)
- T H Cheng
- Horseshoe Crab Research Group, Kuala Nerus, Terengganu, 21030, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - N Ismail
- Horseshoe Crab Research Group, Kuala Nerus, Terengganu, 21030, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - N Kamaruding
- Horseshoe Crab Research Group, Kuala Nerus, Terengganu, 21030, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - J Saidin
- Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - M Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia, Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| |
Collapse
|
8
|
Phylogenetics and antibacterial properties of exopolysaccharides from marine bacteria isolated from Mauritius seawater. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01487-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Deep-sea Hydrothermal Vent Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides. Molecules 2019; 24:molecules24091703. [PMID: 31052416 PMCID: PMC6539532 DOI: 10.3390/molecules24091703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
Bacteria have developed a unique strategy to survive in extreme environmental conditions through the synthesis of an extracellular polymeric matrix conferring upon the cells a protective microenvironment. The main structural component of this complex network constitutes high-molecular weight hydrophilic macromolecules, namely exopolysaccharides (EPS). EPS composition with the presence of particular chemical features may closely be related to the specific conditions in which bacteria evolve. Deep-sea hydrothermal vent bacteria have already been shown to produce EPS rich in hexosamines and uronic acids, frequently bearing some sulfate groups. Such a particular composition ensures interesting functional properties, including biological activities mimicking those known for glycosaminoglycans (GAG). The aim of the present study was to go further into the exploration of the deep-sea hydrothermal vent IFREMER (French Research Institute for Exploitation of the Sea) collection of bacteria to discover new strains able to excrete EPS endowed with GAG-like structural features. After the screening of our whole collection containing 692 strains, 38 bacteria have been selected for EPS production at the laboratory scale. EPS-producing strains were identified according to 16S rDNA phylogeny. Chemical characterization of the obtained EPS highlighted their high chemical diversity with the presence of atypical compositional patterns. These EPS constitute potential bioactives for a number of biomedical applications, including regenerative medicines and cancer treatment.
Collapse
|
10
|
Bauer J, Teitge F, Neffe L, Adamek M, Jung A, Peppler C, Steinhagen D, Jung-Schroers V. Recommendations for identifying pathogenic Vibrio spp. as part of disease surveillance programmes in recirculating aquaculture systems for Pacific white shrimps (Litopenaeus vannamei). JOURNAL OF FISH DISEASES 2018; 41:1877-1897. [PMID: 30311657 DOI: 10.1111/jfd.12897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Due to their pathogenic potential, identifying Vibrio species from recirculating aquaculture systems (RAS) for Pacific white shrimp (Litopenaeus vannamei) is of great importance to determine the risk for animal's as well as for the consumer's health. The present study compared identification results for a total of 93 Vibrio isolates, including type strains and isolates from shrimp aquaculture. Results from biochemical identifications, 16S rRNA sequencing, sequencing of the uridylate kinase encoding gene pyrH and analysis of the protein spectra assessed by MALDI-TOF MS were compared. The results achieved by these different methods were highly divergent for many of the analysed isolates and for several Vibrio spp difficulties in reliably identifying occurred. These difficulties mainly resulted from missing entries in digital databases, a low number of comparable isolates analysed so far, and high interspecific similarities of biochemical traits and nucleotide sequences between the closely related Vibrio species. Due to the presented data, it can be concluded that for identifying Vibrio spp. from samples in routine diagnostics, it is recommended to use MALDI-TOF MS analysis for a quick and reliable identification of pathogenic Vibrio sp. Nevertheless, editing the database, containing the main spectra of Vibrio is recommended to achieve reliable identification results.
Collapse
Affiliation(s)
- Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Neffe
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Delbarre-Ladrat C, Salas ML, Sinquin C, Zykwinska A, Colliec-Jouault S. Bioprospecting for Exopolysaccharides from Deep-Sea Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity. Microorganisms 2017; 5:microorganisms5030063. [PMID: 28930185 PMCID: PMC5620654 DOI: 10.3390/microorganisms5030063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022] Open
Abstract
Many bacteria biosynthesize structurally diverse exopolysaccharides (EPS) and excrete them into their surrounding environment. The EPS functional features have found many applications in industries such as cosmetics and pharmaceutics. In particular, some EPS produced by marine bacteria are composed of uronic acids, neutral sugars, and N-acetylhexosamines, and may also bear some functional sulfate groups. This suggests that they can share common structural features with glycosaminoglycans (GAG) like the two EPS (HE800 and GY785) originating from the deep sea. In an attempt to discover new EPS that may be promising candidates as GAG-mimetics, fifty-one marine bacterial strains originating from deep-sea hydrothermal vents were screened. The analysis of the EPS chemical structure in relation to bacterial species showed that Vibrio, Alteromonas, and Pseudoalteromonas strains were the main producers. Moreover, they produced EPS with distinct structural features, which might be useful for targeting marine bacteria that could possibly produce structurally GAG-mimetic EPS.
Collapse
Affiliation(s)
- Christine Delbarre-Ladrat
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | | | - Corinne Sinquin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | - Agata Zykwinska
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | - Sylvia Colliec-Jouault
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| |
Collapse
|
12
|
Marine Natural Products from New Caledonia--A Review. Mar Drugs 2016; 14:md14030058. [PMID: 26999165 PMCID: PMC4820312 DOI: 10.3390/md14030058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/17/2023] Open
Abstract
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.
Collapse
|
13
|
Biosynthesis of Extracellular Polymeric Substances by the Marine BacteriumSaccharophagus degradansunder Different Nutritional Conditions. INT J POLYM SCI 2015. [DOI: 10.1155/2015/526819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of carbon source, carbon to nitrogen (C/N) ratio, and limitation in nutrients (N, P, K, Ca, Mg, and Fe) on extracellular polymeric substances (EPS) synthesis by the marine bacteriumSaccharophagus degradanswas studied. This strain was able to grow in mineral medium and produce EPS with different efficiency according to the C source used (g EPS/L): glucose or starch (1.5 ± 0.2); galactose, sucrose, or xylose (0.7 ± 0.2); and fructose (0.3 ± 0.1). The C/N ratio (glucose/ammonium) had a significant effect on EPS biosynthesis due to its production rise as the C/N ratio increased from 3 to 100 (0.7 to 2.1 g EPS/L). It was also observed that limitation in nutrients such as N, P, K, Ca, Mg, and Fe also favored EPS biosynthesis. When taking into account both factors (C/N ratio, 100; nutrients limitation, 50%) a positive synergistic effect was noted on EPS production since under these conditions the maximum concentration obtained was 4.12 ± 0.3 g/L after 72 h of culture. The polymer was found to be a polysaccharide of mainly glucose, mannose, and galactose. This is the first report on EPS production byS. degradanswhich is a new feature of this versatile marine bacterium.
Collapse
|
14
|
Dufourcq R, Chalkiadakis E, Fauchon M, Deslandes E, Kerjean V, Chanteau S, Petit E, Guezennec J, Dupont-Rouzeyrol M. Isolation and partial characterization of bacteria (Pseudoalteromonas sp.) with potential antibacterial activity from a marine costal environment from New Caledonia. Lett Appl Microbiol 2013; 58:102-8. [PMID: 24106876 DOI: 10.1111/lam.12162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED Marine bacteria are a rich source of bioactive metabolites. However, the microbial diversity of marine ecosystem still needs to be explored. The aim of this study was to isolate and characterize bacteria with antimicrobial activities from various marine coastal environment of New Caledonia. We obtained 493 marine isolates from various environments and samples of which 63 (12.8%) presented an antibacterial activity against a panel of reference pathogenic strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis). Ten out of the most promising strains were cultured, fractionated and screened for antibacterial activity. Four of them (NC282, NC412, NC272 and NC120) showed at least an activity against reference and multidrug-resistant pathogenic strains and were found to belong to the genus Pseudoalteromonas, according to the 16S phylogenetic analysis. The NC282 strain does not belong to any described Pseudoalteromonas species and might be of interest for further chemical and biological characterization. These findings suggest that the identified strains may contribute to the discovery for new sources of antimicrobial substances to develop new therapies to treat infections caused by multidrug-resistant bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY With the constant increasing of bacterial resistance against known antibiotics in worldwide public health, it is now necessary to find new sources of antimicrobials. Marine bacteria from New Caledonia were isolated, tested for antibacterial activity and characterized to find new active molecules against multidrug-resistant bacteria. This study illustrates the diversity of the marine ecosystem with potent new bacteria species. Also the potential of marine bacteria as a rich source of bioactive molecule, for example antibiotics, is highlighted.
Collapse
Affiliation(s)
- R Dufourcq
- URE-DA (former Laboratoire d'Epidémiologie Moléculaire), Institut Pasteur de Nouvelle-Calédonie, Réseau International des Instituts Pasteur, Nouméa, Nouvelle-Calédonie, France
| | | | | | | | | | | | | | | | | |
Collapse
|