1
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
2
|
Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023; 13:1038. [PMID: 37509074 PMCID: PMC10377637 DOI: 10.3390/biom13071038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.
Collapse
Affiliation(s)
- Aditi Gupta
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vineet Meshram
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Soniya Goyal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamlesh Kumar Shukla
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
3
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023; 28:molecules28114381. [PMID: 37298856 DOI: 10.3390/molecules28114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the increasing availability of modern treatments, including personalized therapies, there is a strong need to search for new drugs that will be effective in the fight against cancer. The chemotherapeutics currently available to oncologists do not always yield satisfactory outcomes when used in systemic treatments, and patients experience burdensome side effects during their application. In the era of personalized therapies, doctors caring for non-small cell lung cancer (NSCLC) patients have been given a powerful weapon, namely molecularly targeted therapies and immunotherapies. They can be used when genetic variants of the disease qualifying for therapy are diagnosed. These therapies have contributed to the extension of the overall survival time in patients. Nevertheless, effective treatment may be hindered in the case of clonal selection of tumor cells with acquired resistance mutations. The state-of-the-art therapy currently used in NSCLC patients is immunotherapy targeting the immune checkpoints. Although it is effective, some patients have been observed to develop resistance to immunotherapy, but its cause is still unknown. Personalized therapies extend the lifespan and time to cancer progression in patients, but only those with a confirmed marker qualifying for the treatment (gene mutations/rearrangements or PD-L1 expression on tumor cells) can benefit from these therapies. They also cause less burdensome side effects than chemotherapy. The article is focused on compounds that can be used in oncology and produce as few side effects as possible. The search for compounds of natural origin, e.g., plants, bacteria, or fungi, exhibiting anticancer properties seems to be a good solution. This article is a literature review of research on compounds of natural origin that can potentially be used as part of NSCLC therapies.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|
4
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
5
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
6
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
7
|
Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
An endangered Tsuga chinensis (Franch.) Pritz. is widely used as a natural medicinal herb in many countries, but little has been reported on its culturable endophytic fungi capable of producing secondary metabolites applied in modern medicine and pharmacy. The present study aimed to evaluate the distribution of fungal endophytes and their cytotoxic and antioxidant properties.
Methods
This study used the surface sterilization method to isolate endophytic fungi which were then identified using morphological characteristics and ITS sequence analysis. The antimicrobial and cytotoxic potentials of fungal ethyl acetate extracts were evaluated by the minimum inhibitory concentration (MIC) and sulforhodamine B (SRB) assays, respectively. Paclitaxel-producing fungi were primarily screened using PCR-based molecular markers. Additionally, biochemical assays were used to reveal the antioxidant potencies of selected strains.
Results
A total of sixteen endophytic fungi that belonged to 7 known and 1 unknown genera were isolated from T. chinensis. The greatest number of endophytes was found in leaves (50%), followed by stems (31.3%) and roots (18.7%). Out of 16 fungal strains, 33.3% of fungal extracts showed significant antimicrobial activities against at least 4 pathogens with inhibition zones ranging from 11.0 ± 0.4 to 25.8 ± 0.6 mm. The most prominent cytotoxicity against A549 and MCF7 cell lines (IC50 value < 92.4 μg/mL) was observed in Penicillium sp. SDF4, Penicillium sp. SDF5, Aspergillus sp. SDF8, and Aspergillus sp. SDF17. Out of three key genes (dbat, bapt, ts) involved in paclitaxel biosynthesis, strains SDF4, SDF8, and SDF17 gave one or two positive hits, holding the potential for producing the billion-dollar anticancer drug paclitaxel. Furthermore, four bioactive strains also displayed remarkable and wide-range antioxidant activity against DPPH, hydroxyl radical, and superoxide anion, which was in relation to the high content of flavonoids and polyphenols detected.
Conclusion
The present study exploited for the first time fungal endophytes from T. chinensis as a promising source for the discovery of new bioactive compounds or leads for the new drug candidates.
Collapse
|
8
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
9
|
Samapti MMS, Afroz F, Rony SR, Sharmin S, Moni F, Akhter S, Ahmed SFU, Sohrab MH. Isolation and Identification of Endophytic Fungi from Syzygium cumini Linn and Investigation of Their Pharmacological Activities. ScientificWorldJournal 2022; 2022:9529665. [PMID: 36393829 PMCID: PMC9649304 DOI: 10.1155/2022/9529665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/21/2022] [Indexed: 09/06/2024] Open
Abstract
This study was conducted to isolate and identify the endophytic fungi from the bark and leaves of the Syzygum cumini plant and investigate the pharmacological activities of endophytic fungi along with plant parts. After isolation, endophytic fungi were identified based on morphological characteristics and molecular identification. Antimicrobial, antioxidant, and cytotoxic activities were studied by a disc diffusion method, free radical scavenging DPPH assay, and brine shrimp lethality bioassay, respectively. A total of eight endophytic fungi were isolated and identified up to the genus level based on morphological characteristics and confirmed by molecular identification techniques. Among the eight isolates, three isolates were identified as Colletotrichum sp. (SCBE-2, SCBE-7, and SCLE-9), while the rest of the isolates belonged to Diaporthe sp. (SCBE-1), Pestalotiopsis sp. (SCBE-3), Penicillium sp. (SCBE-4), Phyllosistica sp. (SCLE-7), and Fusarium sp. (SCLE-8). The presence of flavonoids, anthraquinones, coumarins, and isocoumarins was assumed by the preliminary screening of the fungal and plant extracts by a thin-layer chromatographic technique under UV light. Fungal extracts of Pestalotiopsis sp. Penicillium sp. were found sensitive to all test bacteria, but only extracts from the leaf and bark showed significant antifungal activity along with their antimicrobial activity. Penicillium sp. The fungal extract showed the highest free radical scavenging activity (2.43 μg/mL) near that of ascorbic acid (2.42 μg/mL). Some fungal extracts showed cytotoxic activity that, in general, suggests their probable abundance of biological metabolites. This is the first approach to investigate the endophytic fungi of Syzygium cumini Linn. in Bangladesh, to find the pharmacological potential of endophytes, and to explore novel compounds from those endophytes.
Collapse
Affiliation(s)
- Mst. Mabiya Sultana Samapti
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Farhana Afroz
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| | - Satyajit Roy Rony
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| | - Suriya Sharmin
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| | - Fatema Moni
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| | - Shammi Akhter
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| | | | - Md. Hossain Sohrab
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
| |
Collapse
|
10
|
Gargi B, Semwal P, Jameel Pasha SB, Singh P, Painuli S, Thapliyal A, Cruz-Martins N. Revisiting the Nutritional, Chemical and Biological Potential of Cajanus cajan (L.) Millsp. Molecules 2022; 27:molecules27206877. [PMID: 36296470 PMCID: PMC9608987 DOI: 10.3390/molecules27206877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C.cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C.cajan nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Baby Gargi
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
- Correspondence: (P.S.); (N.C.-M.)
| | | | - Pooja Singh
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248 006, India
| | - Ashish Thapliyal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248 002, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra PRD, Portugal
- Correspondence: (P.S.); (N.C.-M.)
| |
Collapse
|
11
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
12
|
Xingyuan Z, Linjun M, Fang C. The medicinal potential of bioactive metabolites from endophytic fungi in plants. EFOOD 2022. [DOI: 10.1002/efd2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhang Xingyuan
- Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education China Agricultural University Beijing China
| | - Ma Linjun
- Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education China Agricultural University Beijing China
| | - Chen Fang
- Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education China Agricultural University Beijing China
| |
Collapse
|
13
|
Isolation and Characterization of Antibacterial Compounds from Aspergillus fumigatus: An Endophytic Fungus from a Mangrove Plant of the Sundarbans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9600079. [PMID: 35497914 PMCID: PMC9054444 DOI: 10.1155/2022/9600079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds.
Collapse
|
14
|
Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, Masia F, Adorisio S, Delfino DV, Mazid MA. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022; 27:296. [PMID: 35011527 PMCID: PMC8746379 DOI: 10.3390/molecules27010296] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.
Collapse
Affiliation(s)
- Md. Hridoy
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | | | - Sadia Noor
- Department of Pharmacy, University of Asia Pacific, Dhaka 1215, Bangladesh; (M.Z.H.G.); (S.N.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Isabella Muscari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Francesco Masia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Domenico V. Delfino
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Md. Abdul Mazid
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Sui M, Yang H, Guo M, Li W, Gong Z, Jiang J, Li P. Cajanol Sensitizes A2780/Taxol Cells to Paclitaxel by Inhibiting the PI3K/Akt/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:783317. [PMID: 34955854 PMCID: PMC8694871 DOI: 10.3389/fphar.2021.783317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy, and one of the most deadly. The bottleneck restricting the treatment of ovarian cancer is its multi-drug resistance to chemotherapy. Cajanol is an isoflavone from pigeon pea (Cajanus cajan) that has been reported to have anti-tumor activity. In this work, we evaluate the effect of cajanol in reversing paclitaxel resistance of the A2780/Taxol ovarian cancer cell line in vitro and in vivo, and we discuss its mechanism of action. We found that 8 μM cajanol significantly restored the sensitivity of A2780/Taxol cells to paclitaxel, and in vivo experiments demonstrated that the combination of 0.5 mM/kg paclitaxel and 2 mM/kg cajanol significantly inhibited the growth of A2780/Taxol metastatic tumors in mice. Flow cytometry, fluorescence quantitative PCR, western blotting and immunohistochemical staining methods were used to study the mechanism of reversing paclitaxel resistance with cajanol. First, we determined that cajanol inhibits paclitaxel efflux in A2780/Taxol cells by down-regulating permeability glycoprotein (P-gp) expression, and further found that cajanol can inhibit P-gp transcription and translation through the PI3K/Akt/NF-κB pathway. The results of this work are expected to provide a new candidate compound for the development of paclitaxel sensitizers.
Collapse
Affiliation(s)
- Ming Sui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hairong Yang
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Mingqi Guo
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Wenle Li
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Zheng Gong
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Jing Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Gakuubi MM, Munusamy M, Liang ZX, Ng SB. Fungal Endophytes: A Promising Frontier for Discovery of Novel Bioactive Compounds. J Fungi (Basel) 2021; 7:786. [PMID: 34682208 PMCID: PMC8538612 DOI: 10.3390/jof7100786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.
Collapse
Affiliation(s)
- Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| |
Collapse
|
17
|
Tyagi G, Kapoor N, Chandra G, Gambhir L. Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer. 3 Biotech 2021; 11:263. [PMID: 33996375 DOI: 10.1007/s13205-021-02803-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Success of targeted cancer treatment modalities has generated an ambience of plausible cure for cancer. However, cancer remains to be the major cause of mortality across the globe. The emergence of chemoresistance, relapse after treatment and associated adverse effects has posed challenges to the present therapeutic regimes. Thus, investigating new therapeutic agents of natural origin and delineating the underlying mechanism of action is necessary. Since ages and still in continuum, the phytochemicals have been the prime source of identifying bioactive agents against cancer. They have been exploited for isolating targeted specific compounds to modulate the key regulating signaling pathways of cancer pathogenesis and progression. Capsaicin (alkaloid compound in chilli), catechin, epicatechin, epigallocatechin and epigallocatechin-3-gallate (phytochemicals in green tea), lutein (carotenoid found in yellow fruits), Garcinol (phenolic compound present in kokum tree) and many other naturally available compounds are also very valuable to develop the drugs to treat the cancer. An alternate repository of similar chemical diversity exists in the form of endophytic fungi inhabiting the medicinal plants. There is a high diversity of plant associated endophytic fungi in nature which are potent producers of anti-cancer compounds and offers even stronger hope for the discovery of an efficient anti-cancer drug. These fungi provide various bioactive molecules, such as terpenoids, flavonoids, alkaloids, phenolic compounds, quinines, steroids etc. exhibiting anti-cancerous property. The review discusses the relevance of phytochemicals in chemoprevention and as modulators of miRNA. The perspective advocates the imperative role of anti-cancerous secondary metabolites containing repository of endophytic fungi, as an alternative route of drug discovery.
Collapse
Affiliation(s)
- Garima Tyagi
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| | - Girish Chandra
- Department of Seed Science and Technology, School of Agricultural Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| |
Collapse
|
18
|
He Q, Zeng Q, Shao Y, Zhou H, Li T, Song F, Liu W. Anti-cervical cancer activity of secondary metabolites of endophytic fungi from Ginkgo biloba. Cancer Biomark 2021; 28:371-379. [PMID: 32508319 DOI: 10.3233/cbm-190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The purpose of this study was to isolate the secondary metabolites of endophytic fungi from Ginkgo biloba (SMEFGB) and investigate their anti-cervical cancer activity. METHODS SMEFGB were cultured. The secondary metabolites of endophytic fungi was extracted, purified and identified. The effects of secondary metabolites on proliferation, apoptosis and migration of human cervical cancer HeLa cells were determined. In addition, the effects of SMEFGB on growth of Hela implanted tumor in mice were investigated. RESULTS In 9 stains of endophytic fungi successfully isolated from the leaves of Ginkgo biloba, the stain J-1, J-2 and J-3 could produce podophyllotoxin. These 3 stains were identified by molecular biology. The secondary metabolites of stain J-1, J-2 and J-3 markedly inhibited the proliferation of HeLa cells, promoted their apoptosis and blocked their migration. In addition, the secondary metabolites of stain J-1, J-2 and J-3 significantly attenuated the growth of HeLa implanted tumor in mice. CONCLUSIONS Our results indicated that SMEFGB had obvious anti-cervical cancer activity in vitro and in vivo.
Collapse
Affiliation(s)
- Qing He
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China.,Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Qiangcheng Zeng
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China.,Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yibo Shao
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Haixia Zhou
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Tianjiao Li
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Fang Song
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Wei Liu
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
19
|
Evaluation of Dimer of Epicatechin from an Endophytic Fungus Curvularia australiensis FC2AP on Acute Toxicity Levels, Anti-Inflammatory and Anti-Cervical Cancer Activity in Animal Models. Molecules 2021; 26:molecules26030654. [PMID: 33513835 PMCID: PMC7866062 DOI: 10.3390/molecules26030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer, as the most frequent cancer in women globally and accounts almost 14% in India. It can be prevented or treated with vaccines, radiation, chemotherapy, and brachytherapy. The chemotherapeutic agents cause adverse post effects by the destruction of the neighboring normal cells or altering the properties of the cells. In order to reduce the severity of the side effects caused by the chemically synthesized therapeutic agents, the current research developed an anti-cancer agent dimer of epicatechin (DoE), a natural bioactive secondary metabolite (BSM) mediated from an endophytic fungus Curvularia australiensis FC2AP. The investigation has initiated with the evaluation of inhibiting the angiogenesis which is a main activity in metastasis, and it was assessed through Hen’s Egg Test on Chorio Allantoic Membrane (HET-CAM) test; the BSM inhibited the growth of blood vessels in the developing chick embryo. Further the DoE was evaluated for its acute toxicity levels in albino mice, whereas the survival dose was found to be 1250 mg/kg and the lethal dose was 1500 mg/kg body weight of albino mice; hematological, biochemical, and histopathological analyses were assessed. The anti-inflammatory responses of the DoE were evaluated in carrageenan induced Wistar rats and the reduction of inflammation occurred in a dose-dependent manner. By fixing the effective dose for anti-inflammation analysis, the DoE was taken for the anti-cervical cancer analysis in benzo (a) pyrene induced female Sprague-Dawley rats for 60 days trial. After the stipulated days, the rats were taken for hematological antioxidants, lipid peroxidation (LPO), member bound enzymes, cervical histopathological and carcinogenic markers analyses. The results specified that the DoE has the capability of reducing the tumor in an efficient way. This is the first report of flavonoid-DoE production from an endophytic fungus C. australiensis has the anticancer potentiality and it can be stated as anti-cancer drug.
Collapse
|
20
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
21
|
Burragoni SG, Jeon J. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 2021; 245:126691. [PMID: 33508761 DOI: 10.1016/j.micres.2020.126691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are emerging as integral components of plant microbiomes. Some of them play pivotal roles in plant development and plant responses to pathogens and abiotic stresses, whereas others produce useful and/or interesting secondary metabolites. The appreciation of their abilities to affect plant phenotypes and produce useful compounds via genetic and molecular interactions has paved the way for these abilities to be exploited for health and welfare of plants, humans and ecosystems. Here we comprehensively review current and potential applications of endophytes in the agricultural, pharmaceutical, and industrial sectors. In addition, we briefly discuss the research objectives that should be focused upon in the coming years in order for endophytes and their metabolites to be fully harnessed for potential use in diverse areas.
Collapse
Affiliation(s)
- Sravanthi Goud Burragoni
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
22
|
Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? FRONTIERS IN PLANT SCIENCE 2021; 12:791033. [PMID: 34975976 PMCID: PMC8718612 DOI: 10.3389/fpls.2021.791033] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.
Collapse
Affiliation(s)
- Beena Alam
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mueen Alam Khan
- Department of Plant Breeding & Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shahid Mehmood
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Wànkuí Gǒng,
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Yǒulù Yuán,
| |
Collapse
|
23
|
Ranjan A, Singh RK, Khare S, Tripathi R, Pandey RK, Singh AK, Gautam V, Tripathi JS, Singh SK. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Sci Rep 2019; 9:17302. [PMID: 31754154 PMCID: PMC6872796 DOI: 10.1038/s41598-019-53227-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023] Open
Abstract
Endophytic fungi produce various types of chemicals for establishment of niche within the host plant. Due to symbiotic association, they secrete pharmaceutically important bioactive compounds and enzyme inhibitors. In this research article, we have explored the potent α-glucosidse inhibitor (AGI) produced from Fusarium equiseti recovered from the leaf of Gymnema sylvestre through bioassay-guided fraction. This study investigated the biodiversity, phylogeny, antioxidant activity and α-glucosidse inhibition of endophytic fungi isolated from Gymnema sylvestre. A total of 32 isolates obtained were grouped into 16 genera, according to their morphology of colony and spores. A high biodiversity of endophytic fungi were observed in G. sylvestre with diversity indices. Endophytic fungal strain Fusarium equiseti was identified through DNA sequencing and the sequence was deposited in GenBank database (https://ncbi.nim.nih.gov) with acession number: MF403109. The characterization of potent compound was done by FTIR, LC-ESI-MS and NMR spectroscopic analysis with IUPAC name 17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a] phenanthren-3-ol. The isolated bioactive compound showed significant α-amylase and α-glucosidase inhibition activity with IC50 values, 4.22 ± 0.0005 µg/mL and 69.72 ± 0.001 µg/mL while IC50 values of acarbose was 5.75 ± 0.007 and 55.29 ± 0.0005 µg/mL respectively. This result is higher in comparison to other previous study. The enzyme kinetics study revealed that bioactive compound was competitive inhibitor for α-amylase and α-glucosidase. In-silico study showed that bioactive compound binds to the binding site of α-amylase, similar to that of acarbose but with higher affinity. The study highlights the importance of endophytic fungi as an alternative source of AGI (α-glucosidase inhibition) to control the diabetic condition in vitro.
Collapse
Affiliation(s)
- Amit Ranjan
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Rajesh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Saumya Khare
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Ruchita Tripathi
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Rajesh Kumar Pandey
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Jyoti Shankar Tripathi
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
24
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Paul T, Mondal A, Bandyopadhyay TK. Isolation, Purification, Characterisation and Application of L-ASNase: A Review. Recent Pat Biotechnol 2019; 13:33-44. [PMID: 30318009 DOI: 10.2174/1872208312666181012150407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND L-ASNase (L-asparagine aminohydrolase EC 3.5.1.1) is used for the conversion of L-asparagine to L-aspartic acid and ammonia and also it was found as an agent of chemotherapeutic property according to recent patents. It is known as an anti-cancer agent and recently it has received an immense attention. Various microorganisms have the ability to secrete the L-ASNase. It is famous world-wide as anti-tumor medicine for acute lymphoblastic leukemia and lymphosarcoma. L-ASNase helps in deamination of Asparagine and Glutamine. SOURCE L-ASNase mainly found in two bacterial sources; Escherichia coli and Erwinia carotovora. Isolation from plants: Endophytes were also a great source of L-ASNase. It was isolated from four types of plants named as; C. citratus, O. diffusa, M. koengii, and also P. bleo. APPLICATIONS L-ASNase is used as a potential anti-tumor medicine. It plays a very much essential role for the growth of tumor cells. Tumor cells require a lot of asparagine for their growth. But ASNase converts to aspartate and ammonia from asparagine. So the tumor cell does not proliferate and fails to survive. The L-ASNase is used as the medicine for the major type of cancer like acute lymphocytic leukemia (ALL), brain. It also used as a medicine for central nervous system (CNS) tumors, and also for neuroblastoma. Two types of L-ASNase have been found. CONCLUSION L-ASNase becomes a powerful anti-tumor medicine and researchers should develop a potent strain of asparaginase which can produce asparaginase in the industrial level. It is also used in the pharmaceutical industry and food industry on a broader scale.
Collapse
Affiliation(s)
- Tania Paul
- Department of Chemical Engineering, NIT Agartala, Agartala-799046, India
| | - Abhijit Mondal
- Department of Chemical Engineering, NIT Agartala, Agartala-799046, India
| | | |
Collapse
|
26
|
Diversity, Ecology, and Significance of Fungal Endophytes. REFERENCE SERIES IN PHYTOCHEMISTRY 2019. [DOI: 10.1007/978-3-319-90484-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Endophytic fungi isolated from medicinal plants: future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes. Appl Microbiol Biotechnol 2018; 102:9105-9119. [PMID: 30203146 DOI: 10.1007/s00253-018-9344-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/02/2018] [Indexed: 10/28/2022]
Abstract
Medicinal plants are a rich source of natural products used to treat many diseases; therefore, they are the basis for a new drug discovery. Plants are capable of generating different bioactive secondary metabolites, but a large amount of botanical material is often necessary to obtain small amounts of the target substance. Nowadays, many medicinal plants are becoming rather scarce. For this reason, it is important to point out the interactions between endophytic microorganisms and the host plant, because endophytes are able to produce highly diverse compounds, including those from host plants that have important biological activities. Thence, this review aims at presenting the richness in bioactive compounds of the medicinal plants from Tabebuia and Handroanthus genera, as well as important aspects about endophyte-plant interactions, with emphasis on the production of bioactive compounds by endophytic fungi, which has been isolated from various medicinal plants for such a purpose. Furthermore, bio-prospection of natural products synthesized by endophytes isolated from the aforementioned genera used in traditional medicine could be used to treat illnesses.
Collapse
|
28
|
Abdou R, Shabana S, Rateb ME. Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Nat Prod Res 2018; 34:503-510. [PMID: 30092665 DOI: 10.1080/14786419.2018.1489393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fungal endophytes are considered promising sources of new bioactive natural products. In this study, a Mucor sp. has been isolated as an endophyte from the medicinal plant Centaurea stoebe. Through bioactivity-guided fractionation, the isolation of the new bioactive terezine E in addition to the previously reported 14-hydroxyterezine D was carried out. The isolated compounds were fully characterised by HRESIMS and 1D and 2D NMR analyses. Both compounds exhibited potent antiproliferative activity against K-562 and HUVEC cell lines and antifungal efficacy against the tested fungal strains.
Collapse
Affiliation(s)
- Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Samah Shabana
- Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Gizam, Egypt
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt.,School of Science & Sport, University of the West of Scotland, Hamilton, UK
| |
Collapse
|
29
|
Gu CB, Ma H, Ning WJ, Niu LL, Han HY, Yuan XH, Fu YJ. Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. J Appl Microbiol 2018; 125:1054-1065. [PMID: 29791772 DOI: 10.1111/jam.13928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to characterize a fungal endophyte Y3 from pigeon pea (Cajanus cajan [L.] Millsp), as a novel producer of vitexin, and its culture medium optimization and antioxidant activity. METHODS AND RESULTS The endophyte from the leaves of pigeon pea was identified as Dichotomopilus funicola by the morphological and molecular characteristics. The most important medium variables affecting vitexin production in liquid culture of D. funicola Y3 were screened by Plackett-Burman design, and three culture medium constituents (i.e. l-phenylalanine, salicylic acid and CuSO4 ·5H2 O) were identified to play significant roles in vitexin production. The most significant factors were further optimized using by central composite design with response surface methodology. The DPPH radical-scavenging assay indicated that fungal vitexin exhibited notable antioxidant activity with an EC50 value of 164 μg l-1 . CONCLUSIONS First, a novel endophyte vitexin-producing Dichotomopilus funicola Y3 was isolated from pigeon pea (Cajanus cajan[L.] Millsp.). The maximum vitexin yield was obtained as 78·86 mg l-1 under the optimum culture medium constituents: 0·06 g l-1 l-phenylalanine, 0·21 g l-1 salicylic acid, and 0·19 g l-1 CuSO4 ·5H2 O in medium, which is 4·59-fold higher than that in the unoptimized medium. Also, fungal vitexin clearly demonstrated its antioxidant potential. SIGNIFICANCE AND IMPACT OF THE STUDY These findings provide an alternative source for large-scale production of vitexin by endophytic fungal fermentation and have a promising prospect in food and pharmaceutical industry.
Collapse
Affiliation(s)
- C B Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - H Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - W J Ning
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - L L Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - H Y Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - X H Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin, China
| | - Y J Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
30
|
Isolation and purification of (E)-3- (2, 3- dihydroxyphenyl) acrylic acid fromendophytic fungi Fusarium equsetiEF-32 and its anti-candidal and anticancer activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Sun J, Guo N, Niu LL, Wang QF, Zang YP, Zu YG, Fu YJ. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its Application on Dye Decolorization. Molecules 2017; 22:E673. [PMID: 28441744 PMCID: PMC6154323 DOI: 10.3390/molecules22040673] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to screen a laccase-producing fungal endophyte, optimize fermentation conditions, and evaluate the decolorization ability of the laccase. A new fungal endophyte capable of laccase-producing was firstly isolated from pigeon pea and identified as Myrothecium verrucaria based on a ITS-rRNA sequences analysis. Meanwhile, various fermentation parameters on the laccase production were optimized via response surface methodology (RSM). The optimal fermentation conditions were a fermentation time of five days, temperature 30 °C and pH 6.22. Laccase activity reached 16.52 ± 0.18 U/mL under the above conditions. Furthermore, the laccase showed effective decolorization capability toward synthetic dyes (Congo red, Methyl orange, Methyl red, and Crystal violet) in the presence of the redox mediator ABTS, with more than 70% of dyes decolorizing after 24 h of incubation. Additionally, the activity of laccase was relatively stable with pH (4.5-6.5) and a temperature range of 35-55 °C. Therefore, the high laccase production of the strain and the new fungal laccase could provide a promising alterative approach for industrial and environmental applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Qing-Fang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yuan-Gang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
32
|
Katoch M, Phull S, Vaid S, Singh S. Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L. BMC Microbiol 2017; 17:44. [PMID: 28264654 PMCID: PMC5339955 DOI: 10.1186/s12866-017-0961-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Present study focuses on diversity and distribution analysis of endophytic fungi associated with different tissues of the Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae). Anticancer and antimicrobial potential of isolated endophytes have also been investigated. RESULTS A total of twenty eight fungal endophytes belonging to 11 different genera were isolated from this plant. All the endophytic fungi belonged to the Ascomycota phylum. The leaves were immensely rich in fungal species, while roots showed the highest tissue specific fungal dominance. Out of 28 fungal species, 72% endophytic extracts were found cytotoxic against one or more human cancer cell lines. The most prominent anticancer activity (IC50 value <10 μg/mL) was shown by MC-14 L (Fusarium oxysporum), MC-14 F (F. oxysporum), MC-18 L (Aspergillus fumigatus), MC-24 L (Cladosporium tenuissimum), MC-25 L (Fusarium sp.), MC-26 F (F. oxysporum) extracts. 75% of the extracts showed antimicrobial activities in agar disc-diffusion assay and 27% in the tube dilution method (MIC <100 μg/mL) respectively against the tested pathogens. Extracts of MC-14 L (F. oxysporum) and MC-18 L (A. fumigatus) displayed broad spectrum antimicrobial activity. CONCLUSIONS These results indicated that M. citriodora harbors a rich fungal endophytic community with anticancer and antimicrobial activities. The isolated endophyte MC-24 L (C. tenuissimum) has the potential to be a source of novel cytotoxic/antimicrobial compounds. This is the first report of diversity of fungal endophytes isolated from M. citriodora.
Collapse
Affiliation(s)
- Meenu Katoch
- Microbial Biotechnology Division, Indian Institute of Integrative Medicine, Jammu, India.
| | - Shipra Phull
- Microbial Biotechnology Division, Indian Institute of Integrative Medicine, Jammu, India
| | - Shagun Vaid
- Cancer Pharmacology Divison, Indian Institute of Integrative Medicine, Jammu, India
| | - Shashank Singh
- Cancer Pharmacology Divison, Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
33
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Sharma D, Pramanik A, Agrawal PK. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 2016; 6:210. [PMID: 28330281 PMCID: PMC5042905 DOI: 10.1007/s13205-016-0518-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/09/2016] [Indexed: 01/30/2023] Open
Abstract
Six endophytic fungi were isolated from Cupressus torulosa D.Don and identified phenotypically and genotypically. The fungal cultures were further grown and the culture was extracted by two organic solvents methanol and ethyl acetate. The screening was carried out using the agar well diffusion method against human pathogen such as Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Staphylococcus aureus. Isolated strain of Pestalotiopsis sp. was showing prominent antibacterial activity. The crude methanol and ethyl acetate extract of Pestalotiopsis sp. showed MIC of 6.25 mg/mL for S. typhimurium and S. aureus which showed its efficacy as a potent antimicrobial. The phytochemical screening revealed the existence of a diverse group of secondary metabolites in the crude extracts of the endophytic fungi that resembled those in the host plant extracts. On the basis of phenotypic characteristics and rDNA sequencing of the ITS region of the endophyte was identified as P. neglecta which turned out to be a promising source of bioactive compounds. There is little known about endophytes from C. torulosa D.Don. In this paper we studied in detail the identification of isolated endophytic fungi P. neglecta from C. torulosa D.Don and characterization of its active metabolite compounds. The partially purified second fraction (PPF) extracted from the fungal culture supernatant was subjected to gas chromatography followed by mass spectrometry which revealed the presence of many phytochemicals. These results indicate that endophytic fungi P. neglecta isolated from medicinal plants could be a potential source for bioactive compounds and may find potential use in pharmaceutical industry.
Collapse
Affiliation(s)
- Deeksha Sharma
- Department of Biotechnology, G. B. Pant Engineering College, Ghurdauri, Pauri, Uttarakhand, 246194, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Pavan Kumar Agrawal
- Department of Biotechnology, G. B. Pant Engineering College, Ghurdauri, Pauri, Uttarakhand, 246194, India.
| |
Collapse
|
35
|
Woolfolk S, Stokes CE, Watson C, Baker G, Brown R, Baird R. Fungi Associated withSolenopsis invictaBuren (Red Imported Fire Ant, Hymenoptera: Formicidae) from Mounds in Mississippi. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Qin LP, Han T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol 2014; 42:454-73. [PMID: 25343583 DOI: 10.3109/1040841x.2014.959892] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.
Collapse
Affiliation(s)
- Ling Chen
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qiao-Yan Zhang
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Qian-Liang Ming
- b Department of Pharmacognosy , School of Pharmacy, Third Military Medical University , Chongqing , China and
| | - Wei Yue
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Lu-Ping Qin
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy , School of Pharmacy, Second Military Medical University , Shanghai , China
| |
Collapse
|
37
|
Chow Y, Ting AS. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 2014; 6:869-76. [PMID: 26644924 PMCID: PMC4642164 DOI: 10.1016/j.jare.2014.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.
Collapse
|
38
|
Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK. LC-MS/MS Based Identification of Piperine Production by Endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 2014; 173:30-5. [DOI: 10.1007/s12010-014-0832-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
39
|
Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:52. [PMID: 24512530 PMCID: PMC3930298 DOI: 10.1186/1472-6882-14-52] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/06/2014] [Indexed: 11/16/2022]
Abstract
Background Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Methods Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. Results 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10–100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Conclusions Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.
Collapse
|
40
|
Saeidnia S, Abdollahi M. Perspective Studies on Novel Anticancer Drugs from Natural Origin:A Comprehensive Review. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.90.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|