1
|
Gazel D, Erinmez M, Çalışkantürk G, Saadat KASM. In Vitro and Ex Vivo Investigation of the Antibacterial Effects of Methylene Blue against Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2024; 17:241. [PMID: 38399456 PMCID: PMC10893340 DOI: 10.3390/ph17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Methylene blue (MB) is a water-soluble dye that has a number of medical applications. Methicillin-resistant Staphylococcus aureus (MRSA) was selected as a subject for research due to the numerous serious clinical diseases it might cause and because there is a significant global resistance challenge. Our main goal was to determine and analyze the antibacterial effects of MB against S. aureus both in vitro and ex vivo to enhance treatment options. A total of 104 MRSA isolates recovered from various clinical specimens were included in this study. Minimum inhibitory concentration (MIC) values of MB against MRSA isolates were determined by the agar dilution method. One randomly selected MRSA isolate and a methicillin-susceptible S. aureus strain (S. aureus ATCC 25923) were employed for further evaluation of the antibacterial effects of MB in in vitro and ex vivo time-kill assays. A disc diffusion method-based MB + antibiotic synergy assay was performed to analyze the subinhibitory effects of MB on ten isolates. MICs of MB against 104 MRSA isolates, detected by the agar dilution method, ranged between 16 and 64 µg/mL. MB concentrations of 4 and 16 µg/mL showed a bactericidal effect at 24 h in the ex vivo time-kill assays and in vitro time-kill assays, respectively. We observed a significant synergy between cefoxitin and methylene blue at a concentration of 1-2 μg/mL in two (20%) test isolates. Employing MB, which has well-defined pharmacokinetics, bioavailability, and safety profiles, for the treatment of MRSA infections and nasal decolonization could be a good strategy.
Collapse
Affiliation(s)
- Deniz Gazel
- Department of Medical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep 27310, Turkey
| | - Mehmet Erinmez
- Laboratory of Medical Microbiology, Gaziantep Abdülkadir Yüksel State Hospital, Gaziantep 27100, Turkey;
| | - Gönenç Çalışkantürk
- Department of Medical Microbiology, Gaziantep Public Health Laboratory, Gaziantep 27010, Turkey;
| | | |
Collapse
|
2
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Wang H, Agrawal A, Wang Y, Crawford DW, Siler ZD, Peterson ML, Woofter RT, Labib M, Shin HY, Baumann AP, Phillips KS. An ex vivo model of medical device-mediated bacterial skin translocation. Sci Rep 2021; 11:5746. [PMID: 33707493 PMCID: PMC7952406 DOI: 10.1038/s41598-021-84826-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is a barrier and part of the immune system that protects us from harmful bacteria. Because indwelling medical devices break this barrier, they greatly increase the risk of infection by microbial pathogens. To study how these infections can be prevented through improved clinical practices and medical device technology, it is important to have preclinical models that replicate the early stages of microbial contamination, ingress, and colonization leading up to infection. At present, there are no preclinical ex vivo models specifically developed to simulate conditions for indwelling medical devices. Translocation of pathogens from outside the body across broken skin to normally sterile internal compartments is a rate-limiting step in infectious pathogenesis. In this work, we report a sensitive and reproducible ex vivo porcine skin-catheter model to test how long antimicrobial interventions can delay translocation. Skin preparation was first optimized to minimize tissue damage. The presence of skin dramatically decreased bacterial migration time across the polyurethane catheter interface from > 96 h to 12 h. Using visual colony detection, fluorescence, a luminescent in vitro imaging system, and confocal microscopy, the model was used to quantify time-dependent differences in translocation for eluting and non-eluting antimicrobial catheters. The results show the importance of including tissue in preclinical biofilm models and help to explain current gaps between in vitro testing and clinical outcomes for antimicrobial devices.
Collapse
Affiliation(s)
- Hao Wang
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, United States Food and Drug Administration, Silver Spring, USA
| | - Yi Wang
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - David W Crawford
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | - Zachary D Siler
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | - Marnie L Peterson
- Perfectus Biomed Group (Formerly Extherid Biosciences, LLC), Jackson, WY, USA
| | | | | | - Hainsworth Y Shin
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA
| | - Andrew P Baumann
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, United States Food and Drug Administration, Silver Spring, USA
| | - K Scott Phillips
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, USA.
| |
Collapse
|
4
|
Lepelletier D, Maillard JY, Pozzetto B, Simon A. Povidone Iodine: Properties, Mechanisms of Action, and Role in Infection Control and Staphylococcus aureus Decolonization. Antimicrob Agents Chemother 2020; 64:e00682-20. [PMID: 32571829 PMCID: PMC7449185 DOI: 10.1128/aac.00682-20] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nasal decolonization is an integral part of the strategies used to control and prevent the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. The two most commonly used agents for decolonization are intranasal mupirocin 2% ointment and chlorhexidine wash, but the increasing emergence of resistance and treatment failure has underscored the need for alternative therapies. This article discusses povidone iodine (PVP-I) as an alternative decolonization agent and is based on literature reviewed during an expert's workshop on resistance and MRSA decolonization. Compared to chlorhexidine and mupirocin, respectively, PVP-I 10 and 7.5% solutions demonstrated rapid and superior bactericidal activity against MRSA in in vitro and ex vivo studies. Notably, PVP-I 10 and 5% solutions were also active against both chlorhexidine-resistant and mupirocin-resistant strains, respectively. Unlike chlorhexidine and mupirocin, available reports have not observed a link between PVP-I and the induction of bacterial resistance or cross-resistance to antiseptics and antibiotics. These preclinical findings also translate into clinical decolonization, where intranasal PVP-I significantly improved the efficacy of chlorhexidine wash and was as effective as mupirocin in reducing surgical site infection in orthopedic surgery. Overall, these qualities of PVP-I make it a useful alternative decolonizing agent for the prevention of S. aureus infections, but additional experimental and clinical data are required to further evaluate the use of PVP-I in this setting.
Collapse
Affiliation(s)
- Didier Lepelletier
- Bacteriology/Hospital Hygiene Department, Nantes University Hospital, Nantes, France
| | - Jean Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences and Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom
| | - Bruno Pozzetto
- GIMAP-EA3064, University of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Anne Simon
- Pole de Microbiologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Optimization and Application of In Vitro and Ex Vivo Models for Vaginal Semisolids Safety Evaluation. J Pharm Sci 2019; 108:3289-3301. [DOI: 10.1016/j.xphs.2019.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/19/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023]
|
6
|
Kuwabara M, Ishihara M, Fukuda K, Nakamura S, Murakami K, Sato Y, Yokoe H, Kiyosawa T. Disinfection of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Breshears LM, Gillman AN, Stach CS, Schlievert PM, Peterson ML. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome. PLoS One 2016; 11:e0158969. [PMID: 27414801 PMCID: PMC4944920 DOI: 10.1371/journal.pone.0158969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/26/2016] [Indexed: 12/02/2022] Open
Abstract
Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR). The superantigen toxic shock syndrome toxin-1 (TSST-1) contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM)-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS), a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM) model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.
Collapse
Affiliation(s)
- Laura M. Breshears
- University of Minnesota, College of Pharmacy, Department of Experimental and Clinical Pharmacology, Minneapolis, Minnesota, United States of America
| | - Aaron N. Gillman
- University of Minnesota, College of Pharmacy, Department of Experimental and Clinical Pharmacology, Minneapolis, Minnesota, United States of America
| | - Christopher S. Stach
- University of Minnesota, College of Biological Sciences, Biotechnology Institute, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- University of Iowa, Carver College of Medicine, Department of Microbiology, Iowa City, Iowa, United States of America
| | - Marnie L. Peterson
- University of Minnesota, College of Pharmacy, Department of Experimental and Clinical Pharmacology, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner. mBio 2016; 7:e00430-16. [PMID: 27094331 PMCID: PMC4850262 DOI: 10.1128/mbio.00430-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. Acinetobacter baumannii is a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of the A. baumannii efflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients by A. baumannii and provides a good target for drug discovery.
Collapse
|
9
|
Fjeld H, Lingaas E. Polyheksanid – sikkerhet og effekt som antiseptikum. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2016; 136:707-11. [DOI: 10.4045/tidsskr.14.1041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Breshears LM, Edwards VL, Ravel J, Peterson ML. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol 2015; 15:276. [PMID: 26652855 PMCID: PMC4675025 DOI: 10.1186/s12866-015-0608-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Background The vaginal microbiota can impact the susceptibility of women to bacterial vaginosis (BV) and sexually transmitted infections (STIs). BV is characterized by depletion of Lactobacillus spp., an overgrowth of anaerobes (often dominated by Gardnerella vaginalis) and a pH > 4.5. BV is associated with an increased risk of acquiring STIs such as chlamydia and gonorrhea. While these associations have been identified, the molecular mechanism(s) driving the risk of infections are unknown. An ex vivo porcine vaginal mucosal model (PVM) was developed to explore the mechanistic role of Lactobacillus spp. in affecting colonization by G. vaginalis and Neisseria gonorrhoeae. Results The data presented here demonstrate that all organisms tested can colonize and grow on PVM to clinically relevant densities. Additionally, G. vaginalis and N. gonorrhoeae form biofilms on PVM. It was observed that lactic acid, acetic acid, and hydrochloric acid inhibit the growth of G. vaginalis on PVM in a pH-dependent manner. N. gonorrhoeae grows best in the presence of lactic acid at pH 5.5, but did not grow well at this pH in the presence of acetic acid. Finally, a clinical Lactobacillus crispatus isolate (24-9-7) produces lactic acid and inhibits growth of both G. vaginalis and N. gonorrhoeae on PVM. Conclusions These data reveal differences in the effects of pH, various acids and L. crispatus on the growth of G. vaginalis and N. gonorrhoeae on a live vaginal mucosal surface. The PVM is a useful model for studying the interactions of commensal vaginal microbes with pathogens and the mechanisms of biofilm formation on the vaginal mucosa.
Collapse
Affiliation(s)
- Laura M Breshears
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 4-442 McGuire Translational Research Facility, 2001 6th St. SE, Minneapolis, MN, 55455, USA.
| | - Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland, School of Medicine, Bio Park II, 6th Floor, 801 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland, School of Medicine, Bio Park II, 6th Floor, 801 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Marnie L Peterson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 4-442 McGuire Translational Research Facility, 2001 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Studies and methodologies on vaginal drug permeation. Adv Drug Deliv Rev 2015; 92:14-26. [PMID: 25689736 DOI: 10.1016/j.addr.2015.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
The vagina stands as an important alternative to the oral route for those systemic drugs that are poorly absorbed orally or are rapidly metabolized by the liver. Drug permeation through the vaginal tissue can be estimated by using in vitro, ex vivo and in vivo models. The latter ones, although more realistic, assume ethical and biological limitations due to animal handling. Therefore, in vitro and ex vivo models have been developed to predict drug absorption through the vagina while allowing for simultaneous toxicity and pathogenesis studies. This review focuses on available methodologies to study vaginal drug permeation discussing their advantages and drawbacks. The technical complexity, costs and the ethical issues of an available model, along with its accuracy and reproducibility will determine if it is valid and applicable. Therefore every model shall be evaluated, validated and standardized in order to allow for extrapolations and results presumption, and so improving vaginal drug research and stressing its benefits.
Collapse
|
12
|
Topical delivery of ultrahigh concentrations of gentamicin is highly effective in reducing bacterial levels in infected porcine full-thickness wounds. Plast Reconstr Surg 2015; 135:151-159. [PMID: 25539303 DOI: 10.1097/prs.0000000000000801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Injury to the skin can predispose individuals to invasive infection. The standard of care for infected wounds is treatment with intravenous antibiotics. However, antibiotics delivered intravenously may have poor tissue penetration and be dose limited by systemic side effects. Topical delivery of antibiotics reduces systemic complications and delivers increased drug concentrations directly to the wound. METHODS Porcine full-thickness wounds infected with Staphylococcus aureus were treated with ultrahigh concentrations (over 1000 times the minimum inhibitory concentration) of gentamicin using an incubator-like wound healing platform. The aim of the present study was to evaluate clearance of infection and reduction in inflammation following treatment. Gentamicin cytotoxicity was evaluated by in vitro assays. RESULTS Application of 2000 μg/ml gentamicin decreased bacterial counts in wound tissue from 7.2 ± 0.3 log colony-forming units/g to 2.6 ± 0.6 log colony-forming units/g in 6 hours, with no reduction observed in saline controls (p < 0.005). Bacterial counts in wound fluid decreased from 5.7 ± 0.9 log colony-forming units/ml to 0.0 ± 0 log colony-forming units/ml in 1 hour, with no reduction observed in saline controls (p < 0.005). Levels of interleukin-1β were significantly reduced in gentamicin-treated wounds compared with saline controls (p < 0.005). In vitro, keratinocyte migration and proliferation were reduced at gentamicin concentrations between 100 and 1000 μg/ml. CONCLUSIONS Topical delivery of ultrahigh concentrations of gentamicin rapidly decontaminates acutely infected wounds and maintains safe systemic levels. Treatment of infected wounds using the proposed methodology protects the wound and establishes a favorable baseline for subsequent treatment.
Collapse
|
13
|
Efficacy of skin and nasal povidone-iodine preparation against mupirocin-resistant methicillin-resistant Staphylococcus aureus and S. aureus within the anterior nares. Antimicrob Agents Chemother 2015; 59:2765-73. [PMID: 25733504 DOI: 10.1128/aac.04624-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Mupirocin decolonization of nasal Staphylococcus aureus prior to surgery decreases surgical-site infections; however, treatment requires 5 days, compliance is low, and resistance occurs. In 2010, 3M Company introduced povidone-iodine (PVP-I)-based skin and nasal antiseptic (Skin and Nasal Prep [SNP]). SNP has rapid, broad-spectrum antimicrobial activity. We tested SNP's efficacy using full-thickness tissue (porcine mucosal [PM] and human skin) explant models and human subjects. Prior to or following infection with methicillin-resistant Staphylococcus aureus (MRSA) (mupirocin sensitive and resistant), explants were treated with Betadine ophthalmic preparation (Bet), SNP, or mupirocin (Bactroban nasal ointment [BN]) or left untreated. One hour posttreatment, explants were washed with phosphate-buffered saline (PBS) plus 2% mucin. One, 6, or 12 h later, bacteria were recovered and enumerated. Alternatively, following baseline sampling, human subjects applied two consecutive applications of SNP or saline to their anterior nares. One, 6, and 12 h after application of the preparation (postprep), nasal swabs were obtained, and S. aureus was enumerated. We observed that treatment of infected PM or human skin explants with SNP resulted in >2.0 log10 CFU reduction in MRSA, regardless of mupirocin sensitivity, which was significantly different from the values for BN- and Bet-treated explants and untreated controls 1 h, 6 h, and 12 h after being washed with PBS plus mucin. Swabbing the anterior nares of human subjects with SNP significantly reduced resident S. aureus compared to saline 1, 6, and 12 h postprep. Finally, pretreatment of PM explants with SNP, followed by a mucin rinse prior to infection, completely prevented MRSA infection. We conclude that SNP may be an attractive alternative for reducing the bioburden of anterior nares prior to surgery.
Collapse
|