1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Shi S, He E, Ma J, Ge M, Gao J, Peng T, Fu Y, Wang J, Gong L, Zhou D, Liu Y. Characteristics and Functions of Rhizosphere Bacterial Communities of Camelli sinensis cv. Shifocui with Cold Resistance Characteristics in Anhui Province, China. Curr Microbiol 2024; 82:2. [PMID: 39570432 DOI: 10.1007/s00284-024-03889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
The rhizosphere bacterial community of plants has a crucial effect on healthy plant growth, and each rhizosphere has a specific microbial community. Camellia sinensis cv. Shifocui (C. sinensis cv. Shifocui) is a tea plant distributed in the Dabie Mountains of Anhui Province. It has the characteristics of high yield, good quality, strong cold resistance, and a high amino acid content. This study was the first to use 16S rRNA high-throughput sequencing technology and bioinformatics methods to explore the characteristics and functions of the rhizosphere bacterial community of the cold-tolerant tea tree C. sinensis cv. Shifocui, providing an important basis for the development and utilization of rhizosphere microbial resources. The dominant phylum in the rhizosphere microbes of the C. sinensis cv. Shifocui rhizosphere microorganisms were Proteobacteria, Chloroflexi, Acidobacteriota, and Actinobacteria. Network analysis showed significant positive and negative correlations among the rhizosphere bacterial groups of C. sinensis cv. Shifocui, among which Candidatus _ Xiphinematobacter, Acidobacteriale, Bradyrhizobium, Subgroup _ 2, Candidatus_Udaeobacter, Gemmataceae, and Gaiellales were notable nodes in the interaction networks. Functional prediction of FAPROTAX indicated that C. sinensis cv. Shifocui was rich in chemoheterotrophic, cellulose hydrolysis, and oxidative heterotrophic conditions, indicating that the dominant bacterial flora was enriched in its rhizosphere microbes and played an important role in plant growth and development. These results lay a foundation for exploring the mechanism of interaction between C. sinensis cv. Shifocui and rhizosphere microorganisms and provide a research basis for the development and utilization of tea plant microbial resources.
Collapse
Affiliation(s)
- Shuiqin Shi
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
- School of Life Sciences, 1318 North Jixian Road, Anqing, 246133, Anhui, People's Republic of China
| | - Enhui He
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Junjie Ma
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Mengrui Ge
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Jiahui Gao
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Tianyi Peng
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Yu Fu
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Jianfen Wang
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China
| | - Li Gong
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China.
| | - Duoqi Zhou
- Animal Source Disease Detection Platform, Anqing Normal University, Anqing City, 246133, Anhui Province, P.R. China.
- School of Life Sciences, 1318 North Jixian Road, Anqing, 246133, Anhui, People's Republic of China.
| | - Yafang Liu
- College of Pharmacy, Anqing Medical College, Anqing City, 246052, Anhui Province, P.R. China.
| |
Collapse
|
3
|
Hnini M, Aurag J. Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana. ENVIRONMENTAL MICROBIOME 2024; 19:73. [PMID: 39334409 PMCID: PMC11438029 DOI: 10.1186/s40793-024-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree. RESULTS A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants. CONCLUSIONS The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
4
|
Maurya N, Sharma A, Sundaram S. The Role of PGPB-Microalgae interaction in Alleviating Salt Stress in Plants. Curr Microbiol 2024; 81:270. [PMID: 39012372 DOI: 10.1007/s00284-024-03805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Plant development and yield are severely hampered by climate change. Plants are very prone to a variety of abiotic stressors during growth, making them susceptible to destruction which can reduce the productivity by 20-60%. These stresses generate reactive oxygen species (ROS), which damage lipids, proteins, and nucleic acids. Microalgae and plant growth-promoting bacteria (PGPB) are remarkably effective at reducing the effects of salt stress and promoting plant growth, thereby increasing agricultural yield, and helping ensure global food security. Through a variety of mechanisms, including the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophores, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, and modulation of antioxidants defense machinery under abiotic stresses promote plant growth after inoculation of PGPB and microalgae. These microorganisms also maintain ion homeostasis, offer osmotic balance, stimulate genes that respond to salt and drought, rewire the metabolism, modify the transcription of ion transporter genes, and more. To counteract the negative consequences of salinity stress, this study summarizes the effects of PGPB- microalgae along with a tentative protective mechanism during salinity stress for sustainable agriculture.
Collapse
Affiliation(s)
- Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India.
| |
Collapse
|
5
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
6
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
7
|
Verma KK, Joshi A, Song XP, Liang Q, Xu L, Huang HR, Wu KC, Seth CS, Arora J, Li YR. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. FRONTIERS IN PLANT SCIENCE 2024; 15:1377793. [PMID: 38855463 PMCID: PMC11157439 DOI: 10.3389/fpls.2024.1377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Hai-rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Kai-Chao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | | | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
8
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
9
|
Singh A, Mazahar S, Chapadgaonkar SS, Giri P, Shourie A. Phyto-microbiome to mitigate abiotic stress in crop plants. Front Microbiol 2023; 14:1210890. [PMID: 37601386 PMCID: PMC10433232 DOI: 10.3389/fmicb.2023.1210890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Plant-associated microbes include taxonomically diverse communities of bacteria, archaebacteria, fungi, and viruses, which establish integral ecological relationships with the host plant and constitute the phyto-microbiome. The phyto-microbiome not only contributes in normal growth and development of plants but also plays a vital role in the maintenance of plant homeostasis during abiotic stress conditions. Owing to its immense metabolic potential, the phyto-microbiome provides the host plant with the capability to mitigate the abiotic stress through various mechanisms like production of antioxidants, plant growth hormones, bioactive compounds, detoxification of harmful chemicals and toxins, sequestration of reactive oxygen species and other free radicals. A deeper understanding of the structure and functions of the phyto-microbiome and the complex mechanisms of phyto-microbiome mediated abiotic stress mitigation would enable its utilization for abiotic stress alleviation of crop plants and development of stress-resistant crops. This review aims at exploring the potential of phyto-microbiome to alleviate drought, heat, salinity and heavy metal stress in crop plants and finding sustainable solutions to enhance the agricultural productivity. The mechanistic insights into the role of phytomicrobiome in imparting abiotic stress tolerance to plants have been summarized, that would be helpful in the development of novel bioinoculants. The high-throughput modern approaches involving candidate gene identification and target gene modification such as genomics, metagenomics, transcriptomics, metabolomics, and phyto-microbiome based genetic engineering have been discussed in wake of the ever-increasing demand of climate resilient crop plants.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Samina Mazahar
- Department of Botany, Dyal Singh College, University of Delhi, New Delhi, India
| | - Shilpa Samir Chapadgaonkar
- Department of Biosciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Priti Giri
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Abhilasha Shourie
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
10
|
Kim DR, Kwak YS. Endophytic Streptomyces population induced by L-glutamic acid enhances plant resilience to abiotic stresses in tomato. Front Microbiol 2023; 14:1180538. [PMID: 37362924 PMCID: PMC10288847 DOI: 10.3389/fmicb.2023.1180538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Endophyte bacteria, which colonize plants including roots, stem, flower, and fruit, it can derive their nutrients from the host, are recognized for their mutualistic relationship with the host plant. They play a critical role in promoting host growth and modulating abiotic stress. Carbon and nitrogen have a significant impact on bacterial population and secondary metabolite production, which are highly specific in various categories such as bacterial growth regulation, anti-compounds production. Application of L-glutamic acid can significantly enhance Streptomyces globisporus population buildup in plants. However, the effectiveness of this population buildup against abiotic stresses such as salinity and drought has not been investigated. Therefore, in this study, we tested the bacteria and their prebiotic activity against salinity and drought stress in tomato plants. Three different amino acids were treated on the tomato plants, and it was observed that L-asparagine and L-proline had a negative effect on plant growth and phenotype, while L-glutamic acid promoted plant growth and increased bacteria population density. The bacteria were found to colonize the rhizosphere and root endosphere, with colonization being promoted by L-glutamic acid. Additionally, Streptomyces was found to have plant growth promotion effects and provided protection against abiotic stresses. Interestingly, L-glutamic acid reduced the damage caused by salinity stress, but not drought stress. These findings suggest that L-glutamic acid plays a role in providing tolerance to salinity stress with the core microbiota, thus the current study demonstrated their prebiotic activity in the agriculture system.
Collapse
Affiliation(s)
- Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
González F, Santander C, Ruiz A, Pérez R, Moreira J, Vidal G, Aroca R, Santos C, Cornejo P. Inoculation with Actinobacteria spp. Isolated from a Hyper-Arid Environment Enhances Tolerance to Salinity in Lettuce Plants ( Lactuca sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2018. [PMID: 37653935 PMCID: PMC10222102 DOI: 10.3390/plants12102018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
Irrigated agriculture is responsible for a third of global agricultural production, but the overuse of water resources and intensification of farming practices threaten its sustainability. The use of saline water in irrigation has become an alternative in areas subjected to frequent drought, but this practice affects plant growth due to osmotic impact and excess of ions. Plant-growth-promoting rhizobacteria (PGPR) can mitigate the negative impacts of salinity and other abiotic factors on crop yields. Actinobacteria from the hyper-arid Atacama Desert could increase the plant tolerance to salinity, allowing their use as biofertilizers for lettuce crops using waters with high salt contents. In this work, rhizosphere samples of halophytic Metharme lanata were obtained from Atacama Desert, and actinobacteria were isolated and identified by 16S gene sequencing. The PGPR activities of phosphate solubilization, nitrogen fixation, and the production of siderophore and auxin were assessed at increasing concentrations of NaCl, as well as the enhancement of salt tolerance in lettuce plants irrigated with 100 mM of NaCl. Photosynthesis activity and chlorophyll content, proline content, lipid peroxidation, cation and P concentration, and the identification and quantification of phenolic compounds were assessed. The strains S. niveoruber ATMLC132021 and S. lienomycini ATMLC122021 were positive for nitrogen fixation and P solubilization activities and produced auxin up to 200 mM NaCl. In lettuce plants, both strains were able to improve salt stress tolerance by increasing proline contents, carotenoids, chlorophyll, water use efficiency (WUE), stomatal conductance (gs), and net photosynthesis (A), concomitantly with the overproduction of the phenolic compound dicaffeoylquinic acid. All these traits were positively correlated with the biomass production under saltwater irrigation, suggesting its possible use as bioinoculants for the agriculture in areas where the water resources are scarce and usually with high salt concentrations.
Collapse
Affiliation(s)
- Felipe González
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Rodrigo Pérez
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Jorge Moreira
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Gladys Vidal
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
12
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
13
|
Kakagianni M, Tsiknia M, Feka M, Vasileiadis S, Leontidou K, Kavroulakis N, Karamanoli K, Karpouzas DG, Ehaliotis C, Papadopoulou KK. Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties. FEMS MICROBES 2023; 4:xtad001. [PMID: 37333440 PMCID: PMC10117799 DOI: 10.1093/femsmc/xtad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 10/22/2023] Open
Abstract
The olive tree is a hallmark crop in the Mediterranean region. Its cultivation is characterized by an enormous variability in existing genotypes and geographical areas. As regards the associated microbial communities of the olive tree, despite progress, we still lack comprehensive knowledge in the description of these key determinants of plant health and productivity. Here, we determined the prokaryotic, fungal and arbuscular mycorrhizal fungal (AMF) microbiome in below- (rhizospheric soil, roots) and above-ground (phyllosphere and carposphere) plant compartments of two olive varieties 'Koroneiki' and 'Chondrolia Chalkidikis' grown in Southern and Northern Greece respectively, in five developmental stages along a full fruit-bearing season. Distinct microbial communities were supported in above- and below-ground plant parts; while the former tended to be similar between the two varieties/locations, the latter were location specific. In both varieties/locations, a seasonally stable root microbiome was observed over time; in contrast the plant microbiome in the other compartments were prone to changes over time, which may be related to seasonal environmental change and/or to plant developmental stage. We noted that olive roots exhibited an AMF-specific filtering effect (not observed for bacteria and general fungi) onto the rhizosphere AMF communities of the two olive varieties/locations/, leading to the assemblage of homogenous intraradical AMF communities. Finally, shared microbiome members between the two olive varieties/locations include bacterial and fungal taxa with putative functional attributes that may contribute to olive tree tolerance to abiotic and biotic stress.
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Temponera str, 43100 Karditsa, Greece
| | - Myrto Tsiknia
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Maria Feka
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nektarios Kavroulakis
- Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization “ELGO-Dimitra”, Agrokipio-Souda, 73164 Chania, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Constantinos Ehaliotis
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
14
|
Hnini M, Taha K, Aurag J. Molecular identification and characterization of phytobeneficial osmotolerant endophytic bacteria inhabiting root nodules of the Saharan tree Vachellia tortilis subsp. raddiana. Arch Microbiol 2022; 205:45. [PMID: 36576567 DOI: 10.1007/s00203-022-03358-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Nodular endophytes of drought-tolerant legumes are understudied. For this reason, we have isolated and studied non-symbiotic endophytic bacteria from nodules of Vachellia tortilis subsp. raddiana, a leguminous tree adapted to the harsh arid climate of Southern Morocco. Rep-PCR analysis followed by 16S rDNA sequencing revealed two main genera, Pseudomonas and Bacillus. Isolates responded variably to salt and water stresses, and mostly produced exopolysaccharides. Differences concerned also plant growth-promoting activities: phosphate, potassium, and zinc solubilization; biological nitrogen fixation; auxin, siderophore, ammonia, and HCN production; and ACC deaminase activity. Some strains exhibited antagonistic activities against phytopathogenic fungi (Fusarium oxysporum and Botrytis cinerea) and showed at least two enzymatic activities (cellulase, protease, chitinase). Four selected strains inoculated to vachellia plants under controlled conditions have shown significant positive impacts on plant growth parameters. These strains are promising bio-inoculants for vachellia plants to be used in reforestation programs in arid areas increasingly threatened by desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| |
Collapse
|
15
|
Thomas J, Archana G. Differential influence of heavy metals on plant growth promoting attributes of beneficial microbes and their ability to promote growth of Vigna radiata (mung bean). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
17
|
Narsing Rao MP, Lohmaneeratana K, Bunyoo C, Thamchaipenet A. Actinobacteria-Plant Interactions in Alleviating Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212976. [PMID: 36365429 PMCID: PMC9658302 DOI: 10.3390/plants11212976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 05/20/2023]
Abstract
Abiotic stressors, such as drought, flooding, extreme temperature, soil salinity, and metal toxicity, are the most important factors limiting crop productivity. Plants use their innate biological systems to overcome these abiotic stresses caused by environmental and edaphic conditions. Microorganisms that live in and around plant systems have incredible metabolic abilities in mitigating abiotic stress. Recent advances in multi-omics methods, such as metagenomics, genomics, transcriptomics, and proteomics, have helped to understand how plants interact with microbes and their environment. These methods aid in the construction of various metabolic models of microbes and plants, resulting in a better knowledge of all metabolic exchanges engaged during interactions. Actinobacteria are ubiquitous and are excellent candidates for plant growth promotion because of their prevalence in soil, the rhizosphere, their capacity to colonize plant roots and surfaces, and their ability to produce various secondary metabolites. Mechanisms by which actinobacteria overcome abiotic stress include the production of osmolytes, plant hormones, and enzymes, maintaining osmotic balance, and enhancing nutrient availability. With these characteristics, actinobacteria members are the most promising candidates as microbial inoculants. This review focuses on actinobacterial diversity in various plant regions as well as the impact of abiotic stress on plant-associated actinobacterial diversity and actinobacteria-mediated stress mitigation processes. The study discusses the role of multi-omics techniques in expanding plant-actinobacteria interactions, which aid plants in overcoming abiotic stresses and aims to encourage further investigations into what may be considered a relatively unexplored area of research.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chakrit Bunyoo
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
18
|
Ayaz M, Ali Q, Jiang Q, Wang R, Wang Z, Mu G, Khan SA, Khan AR, Manghwar H, Wu H, Gao X, Gu Q. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202769. [PMID: 36297795 PMCID: PMC9608499 DOI: 10.3390/plants11202769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/30/2023]
Abstract
Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifan Jiang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Sabaz Ali Khan
- Biotechnology Department, College of Environmental Sciences, COMSATS, Abbottabad 22060, Pakistan
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, Rajput VD, Minkina T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life (Basel) 2022; 12:1634. [PMID: 36295069 PMCID: PMC9605384 DOI: 10.3390/life12101634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023] Open
Abstract
Agriculture production faces many abiotic stresses, mainly drought, salinity, low and high temperature. These abiotic stresses inhibit plants' genetic potential, which is the cause of huge reduction in crop productivity, decrease potent yields for important crop plants by more than 50% and imbalance agriculture's sustainability. They lead to changes in the physio-morphological, molecular, and biochemical nature of the plants and change plants' regular metabolism, which makes them a leading cause of losses in crop productivity. These changes in plant systems also help to mitigate abiotic stress conditions. To initiate the signal during stress conditions, sensor molecules of the plant perceive the stress signal from the outside and commence a signaling cascade to send a message and stimulate nuclear transcription factors to provoke specific gene expression. To mitigate the abiotic stress, plants contain several methods of avoidance, adaption, and acclimation. In addition to these, to manage stress conditions, plants possess several tolerance mechanisms which involve ion transporters, osmoprotectants, proteins, and other factors associated with transcriptional control, and signaling cascades are stimulated to offset abiotic stress-associated biochemical and molecular changes. Plant growth and survival depends on the ability to respond to the stress stimulus, produce the signal, and start suitable biochemical and physiological changes. Various important factors, such as the biochemical, physiological, and molecular mechanisms of plants, including the use of microbiomes and nanotechnology to combat abiotic stresses, are highlighted in this article.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Basanti Brar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Ravinder Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India
| | - Sumnil Marwaha
- ICAR-National Research Centre on Camel, Bikaner 334001, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
20
|
Johnston-Monje D, Gutiérrez JP, Becerra Lopez-Lavalle LA. Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants. Life (Basel) 2022; 12:life12091372. [PMID: 36143410 PMCID: PMC9506401 DOI: 10.3390/life12091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A plant’s health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant–microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.
Collapse
Affiliation(s)
- David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 76001, Colombia
- International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Correspondence: ; Tel.: +57-315-545-6227
| | | | | |
Collapse
|
21
|
Silambarasan S, Logeswari P, Sivaramakrishnan R, Cornejo P, Sipahutar MK, Pugazhendhi A. Amelioration of aluminum phytotoxicity in Solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154935. [PMID: 35395302 DOI: 10.1016/j.scitotenv.2022.154935] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 05/25/2023]
Abstract
Aluminum (Al) toxicity is the main constraint for crop cultivation in acidic soils. In this study, Al-tolerant rhizobacteria Kosakonia radicincitans (CABV2) and actinobacteria Streptomyces corchorusii (CASL5) were isolated from Beta vulgaris rhizosphere in acidic soil. Both isolates displayed high tolerance to Al (10 mM), produce siderophores, indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate and solubilize phosphate. Co-inoculation of CABV2 and CASL5 strains were significantly increased the root length (312.90%), shoot length (183.19%), fresh weight (224.82%), dry weight (309.25%) and photosynthetic pigments (chlorophyll a 279.69%, chlorophyll b 188.23% and carotenoids 158.20%) of Solanum lycopersicum plants under 300 mg Al kg-1 soil conditions as compared to uninoculated Al stressed plants. Similarly, the co-inoculation treated plants subjected to Al stress condition enhanced the uptake of essential nutrients (N 229%, P 252%, K 115%, Fe 185%, Mg 345% and Ca 202%) by plants as compared to Al stressed uninoculated plants. Under Al stress (300 mg Al kg-1 soil), co-inoculation significantly decreased malondialdehyde content (66%), and increased catalase (83%), superoxide dismutase (82%), peroxidase (89%) activities and root exudates (organic acids 6.44-12.36 fold) in S. lycopersicum as compared to uninoculated plants, indicating that the CABV2 and CASL5 strains were reduced Al-induced oxidative stress. Moreover, co-inoculation significantly reduced Al accumulation in the root (89%), stem (95%) and leaves (94%) of S. lycopersicum under Al stress at 300 mg Al kg-1 soil, compared to the uninoculated plants. This is the first report of K. radicincitans strain CABV2 and S. corchorusii strain CASL5 potentially reducing Al uptake in S. lycopersicum.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Merry Krisdawati Sipahutar
- Occupational Health and Safety (OHS) Study Program, Faculty of Vocation, Balikpapan University, East Kalimantan, 76114, Indonesia
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
22
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
23
|
Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23137036. [PMID: 35806037 PMCID: PMC9266936 DOI: 10.3390/ijms23137036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.
Collapse
|
24
|
Meng X, Zeng B, Wang P, Li J, Cui R, Ren L. Food waste anaerobic biogas slurry as fertilizer: Potential salinization on different soil layer and effect on rhizobacteria community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:490-501. [PMID: 35462293 DOI: 10.1016/j.wasman.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Biogas slurry(BS) from food waste anaerobic fermentation coexisted a lot of salinity that could damage soil and crops health. So, this study was to explore the effect of the application of biogas slurry on soil salinization in 1 ∼ 4 cm, 4-6 cm and 6 ∼ 8 cm soil layers every 10 days, Chinese cabbage growth and rhizobacteria. The results indicated that ≤ 10% concentration of biogas slurry was uninjurious for soil and plant, the dry weight growth rate was 73.7% compared with CK, long term application should be further evaluated the potential risk of salinity on underground water and human health. As for high concentration of biogas slurry ≥ 10% concentration of biogas slurry could inhibit the seed germination and root elongation, and the germination percentage was declined from 87.6% to 2.4%, but 50% and 100% concentration of biogas slurry showed a promotion of crop growth because of sufficient nutrition. However, the potential accumulation of salinity could be seen in high concentration of biogas slurry for long term application especially in top1-4 cm soil. Correlation analysis showed that Cl- was the main factor resulting high EC in all soil layers. 16S rRNA sequencing showed that UCG-004, Ketobacter, Sphingopyxis and RB41 could be regard as the indicators for determining the potential jeopardize on soil environmental by high salinity from biogas slurry.
Collapse
Affiliation(s)
- Xingyao Meng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Li
- China IPPR International Engineering Co, Ltd, Beijing 100048, China
| | - Ruoqi Cui
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Rangseekaew P, Barros-Rodríguez A, Pathom-aree W, Manzanera M. Plant Beneficial Deep-Sea Actinobacterium, Dermacoccus abyssi MT1.1T Promote Growth of Tomato (Solanum lycopersicum) under Salinity Stress. BIOLOGY 2022; 11:biology11020191. [PMID: 35205058 PMCID: PMC8869415 DOI: 10.3390/biology11020191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary Salt stress is an important environmental problem that negatively affects agricultural and food production in the world. Currently, the use of plant beneficial bacteria for plant growth promotion is attractive due to the demand for eco-friendly and sustainable agriculture. In this study, salt tolerant deep-sea actinobacterium, Dermacoccus abyssi MT1.1T was investigated plant growth promotion and salt stress mitigation in tomato seedlings. In addition, D. abyssi MT1.1T whole genome was analyzed for plant growth promoting traits and genes related to salt stress alleviation in plants. We also evaluated the biosafety of this strain on human health and organisms in the environment. Our results highlight that the inoculation of D. abyssi MT1.1T could reduce the negative effects of salt stress in tomato seedlings by growth improvement, total soluble sugars accumulation and hydrogen peroxide reduction. Moreover, this strain could survive and colonize tomato roots. Biosafety testing and genome analysis of D. abyssi MT1.1T showed no pathogenicity risk. In conclusion, we provide supporting evidence on the potential of D. abyssi MT1.1T as a safe strain for use in plant growth promotion under salt stress. Abstract Salt stress is a serious agricultural problem threatens plant growth and development resulted in productivity loss and global food security concerns. Salt tolerant plant growth promoting actinobacteria, especially deep-sea actinobacteria are an alternative strategy to mitigate deleterious effects of salt stress. In this study, we aimed to investigate the potential of deep-sea Dermacoccus abyssi MT1.1T to mitigate salt stress in tomato seedlings and identified genes related to plant growth promotion and salt stress mitigation. D. abyssi MT1.1T exhibited plant growth promoting traits namely indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization under 0, 150, 300, and 450 mM NaCl in vitro. Inoculation of D. abyssi MT1.1T improved tomato seedlings growth in terms of shoot length and dry weight compared with non-inoculated seedlings under 150 mM NaCl. In addition, increased total soluble sugar and total chlorophyll content and decreased hydrogen peroxide content were observed in tomato inoculated with D. abyssi MT1.1T. These results suggested that this strain mitigated salt stress in tomatoes via osmoregulation by accumulation of soluble sugars and H2O2 scavenging activity. Genome analysis data supported plant growth promoting and salt stress mitigation potential of D. abyssi MT1.1T. Survival and colonization of D. abyssi MT1.1T were observed in roots of inoculated tomato seedlings. Biosafety testing on D. abyssi MT1.1T and in silico analysis of its whole genome sequence revealed no evidence of its pathogenicity. Our results demonstrate the potential of deep-sea D. abyssi MT1.1T to mitigate salt stress in tomato seedlings and as a candidate of eco-friendly bio-inoculants for sustainable agriculture.
Collapse
Affiliation(s)
- Pharada Rangseekaew
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Adoración Barros-Rodríguez
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| | - Wasu Pathom-aree
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53943346-48
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| |
Collapse
|
26
|
Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. Int J Mol Sci 2022; 23:ijms23031091. [PMID: 35163015 PMCID: PMC8835006 DOI: 10.3390/ijms23031091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes’ richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants’ fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant–microbiome interactions. These associated microorganisms can increase plants’ endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.
Collapse
|
27
|
Kapadia C, Patel N, Rana A, Vaidya H, Alfarraj S, Ansari MJ, Gafur A, Poczai P, Sayyed RZ. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:946217. [PMID: 35909789 PMCID: PMC9335293 DOI: 10.3389/fpls.2022.946217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 ± 1.73 μg/mL) and phosphate solubilization (86 ± 3.06 μg/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 ±1.20 μg/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 ± 0.12 and 0.60 ± 0.04 nM α-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 ± 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Nafisa Patel
- Naran Lala College of Professional and Applied Sciences, Navsari, India
- *Correspondence: Nafisa Patel
| | - Ankita Rana
- Naran Lala College of Professional and Applied Sciences, Navsari, India
| | - Harihar Vaidya
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - R. Z. Sayyed
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
- Department of Microbiology, PSGVP Mandal's‘S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
28
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
29
|
Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. SUSTAINABILITY 2021. [DOI: 10.3390/su132212758] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Salinity is one of the most important abiotic stresses that influences plant growth and productivity worldwide. Salinity affects plant growth by ionic toxicity, osmotic stress, hormonal imbalance, nutrient mobilization reduction, and reactive oxygen species (ROS). To survive in saline soils, plants have developed various physiological and biochemical strategies such as ion exchange, activation of antioxidant enzymes, and hormonal stimulation. In addition to plant adaption mechanisms, plant growth-promoting rhizobacteria (PGPR) can enhance salt tolerance in plants via ion homeostasis, production of antioxidants, ACC deaminase, phytohormones, extracellular polymeric substance (EPS), volatile organic compounds, accumulation of osmolytes, activation of plant antioxidative enzymes, and improvement of nutrients uptake. One of the important issues in microbial biotechnology is establishing a link between the beneficial strains screened in the laboratory with industry and the consumer. Therefore, in the development of biocontrol agents, it is necessary to study the optimization of conditions for mass reproduction and the selection of a suitable carrier for their final formulation. Toward sustainable agriculture, the use of appropriate formulations of bacterial agents as high-performance biofertilizers, including microbial biocapsules, is necessary to improve salt tolerance and crop productivity.
Collapse
|
30
|
Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, Bajpai AB, Jenkins S, Siddique KHM. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. Int J Mol Sci 2021; 22:ijms222212245. [PMID: 34830124 PMCID: PMC8622033 DOI: 10.3390/ijms222212245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (K.H.M.S.)
| | - Ved Prakash Giri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow 226001, India;
| | - Shipra Pandey
- Department of Chemical Engineering, Indian Institute of Technology, Bombay 400076, India;
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | | | - Sasha Jenkins
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
- Correspondence: (M.K.); (K.H.M.S.)
| |
Collapse
|
31
|
Peng J, Ma J, Wei X, Zhang C, Jia N, Wang X, Wang ET, Hu D, Wang Z. Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01650-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Purpose
Salt stress reduces plant growth and is now becoming one of the most important factors restricting the agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear and the application effects in different reports are unstable. In order to obtain a favorite effect of PGPR inoculation and improve our knowledge about the related mechanism, we performed this study to analyze the mechanism of a PGPR consortium on improving the salt resistance of crops.
Methods
A region-specific (Saline land around Bohai Sea in China) PGPR consortium was selected that contains three strains (Pseudomonas sp. P8, Peribacillus sp. P10, and Streptomyces sp. X52) isolated from rhizosphere of Sonchus brachyotus DC. grown in a saline soil. By inoculation tests, their plant growth-promoting (PGP) traits and ability to improve the salt resistance of maize were investigated and shifting in rhizosphere bacterial community of the inoculated plants was analyzed using the high-throughput sequencing technology.
Results
The three selected strains were salt tolerant, presented several growth promoting properties, and inhibited several phytopathogenic fungi. The inoculation of this consortium promoted the growth of maize plant and enriched the beneficial bacteria in rhizosphere of maize in a saline soil, including the nitrogen fixing bacteria Azotobacter, Sinorhizobium, and Devosia, and the nitrification bacteria Candidatus Nitrososphaera, and Nitrosovibrio.
Conclusions
The bacterial consortium P8/P10/X52 could improve plant growth in a saline soil by both their PGP traits and regulating the rhizosphere bacterial community. The findings provided novel information about how the PGPR helped the plants in the view of microbiome.
Collapse
|
32
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
33
|
Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing. PLANTS 2021; 10:plants10081687. [PMID: 34451732 PMCID: PMC8401925 DOI: 10.3390/plants10081687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Soil salinity is an enormous problem affecting global agricultural productivity. Deep-sea actinobacteria are interesting due to their salt tolerance mechanisms. In the present study, we aim to determine the ability of deep-sea Dermacoccus (D. barathri MT2.1T and D. profundi MT2.2T) to promote tomato seedlings under 150 mM NaCl compared with the terrestrial strain D. nishinomiyaensis DSM20448T. All strains exhibit in vitro plant growth-promoting traits of indole-3-acetic acid production, phosphate solubilization, and siderophore production. Tomato seedlings inoculated with D. barathri MT2.1T showed higher growth parameters (shoot and root length, dry weight, and chlorophyll content) than non-inoculated tomato and the terrestrial strain under 150 mM NaCl. In addition, hydrogen peroxide (H2O2) in leaves of tomatoes inoculated with deep-sea Dermacoccus was lower than the control seedlings. This observation suggested that deep-sea Dermacoccus mitigated salt stress by reducing oxidative stress caused by hydrogen peroxide. D. barathri MT2.1T showed no harmful effects on Caenorhabditis elegans, Daphnia magna, Eisenia foetida, and Escherichia coli MC4100 in biosafety tests. This evidence suggests that D. barathri MT2.1T would be safe for use in the environment. Our results highlight the potential of deep-sea Dermacoccus as a plant growth promoter for tomatoes under salinity stress.
Collapse
|
34
|
Hoffmann J, Berni R, Sutera FM, Gutsch A, Hausman JF, Saffie-Siebert S, Guerriero G. The Effects of Salinity on the Anatomy and Gene Expression Patterns in Leaflets of Tomato cv. Micro-Tom. Genes (Basel) 2021; 12:genes12081165. [PMID: 34440339 PMCID: PMC8392013 DOI: 10.3390/genes12081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 10/26/2022] Open
Abstract
Salinity is a form of abiotic stress that impacts growth and development in several economically relevant crops and is a top-ranking threat to agriculture, considering the average rise in the sea level caused by global warming. Tomato is moderately sensitive to salinity and shows adaptive mechanisms to this abiotic stressor. A case study on the dwarf tomato model Micro-Tom is here presented in which the response to salt stress (NaCl 200 mM) was investigated to shed light on the changes occurring at the expression level in genes involved in cell wall-related processes, phenylpropanoid pathway, stress response, volatiles' emission and secondary metabolites' production. In particular, the response was analyzed by sampling older/younger leaflets positioned at different stem heights (top and bottom of the stem) and locations along the rachis (terminal and lateral) with the goal of identifying the most responsive one(s). Tomato plants cv. Micro-Tom responded to increasing concentrations of NaCl (0-100-200-400 mM) by reducing the leaf biomass, stem diameter and height. Microscopy revealed stronger effects on leaves sampled at the bottom and the expression analysis identified clusters of genes expressed preferentially in older or younger leaflets. Stress-related genes displayed a stronger induction in lateral leaflets sampled at the bottom. In conclusion, in tomato cv. Micro-Tom subjected to salt stress, the bottom leaflets showed stronger stress signs and response, while top leaflets were less impacted by the abiotic stressor and had an increased expression of cell wall-related genes involved in expansion.
Collapse
Affiliation(s)
- Jonas Hoffmann
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940 Hautcharage, Luxembourg; (J.H.); (A.G.); (J.-F.H.)
| | - Roberto Berni
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Flavia Maria Sutera
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (S.S.-S.)
| | - Annelie Gutsch
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940 Hautcharage, Luxembourg; (J.H.); (A.G.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940 Hautcharage, Luxembourg; (J.H.); (A.G.); (J.-F.H.)
| | | | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940 Hautcharage, Luxembourg; (J.H.); (A.G.); (J.-F.H.)
- Correspondence: ; Tel.: +352-27-5888-5096
| |
Collapse
|
35
|
Anand G, Bhattacharjee A, Shrivas VL, Dubey S, Sharma S. ACC deaminase positive Enterobacter-mediated mitigation of salinity stress, and plant growth promotion of Cajanus cajan: a lab to field study. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1547-1557. [PMID: 34366596 PMCID: PMC8295421 DOI: 10.1007/s12298-021-01031-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Salinity is a major abiotic stress that negatively impacts plant health and soil microbiota. ACC (1-aminocyclopropane carboxylic acid) deaminase producing microorganisms act as natural stress busters that protect plants from different kinds of stresses. The study focused on the isolation of potent, indigenous, multi-trait ACC deaminase producers. The shortlisted ACC deaminase producers were checked for their ability to promote growth of Cajanus cajan, and mitigate stress under laboratory conditions followed by validation of their potency in naturally saline field conditions. Physiological stress markers were assessed to evaluate the impact of salinity in plants treated with ACC deaminase producer, compared to controls. Further, the contribution of ACC deaminase in stress mitigation was demonstrated by using a chemical inhibitor for ethylene biosynthesis. This study presents a polyphasic approach, transitioning from the rhizospheric soil to the laboratory to validation in the field, and puts forth a promising eco-friendly alternative for sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01031-0.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
36
|
Prudence SMM, Newitt† JT, Worsley SF, Macey MC, Murrell JC, Lehtovirta-Morley LE, Hutchings MI. Soil, senescence and exudate utilisation: characterisation of the Paragon var. spring bread wheat root microbiome. ENVIRONMENTAL MICROBIOME 2021; 16:12. [PMID: 34154664 PMCID: PMC8215762 DOI: 10.1186/s40793-021-00381-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. RESULTS Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. CONCLUSIONS The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.
Collapse
Affiliation(s)
- Samuel MM. Prudence
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jake T. Newitt†
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Sarah F. Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Michael C. Macey
- School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | | | - Matthew I. Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
37
|
Sweet Sorghum Genotypes Tolerant and Sensitive to Nitrogen Stress Select Distinct Root Endosphere and Rhizosphere Bacterial Communities. Microorganisms 2021; 9:microorganisms9061329. [PMID: 34207412 PMCID: PMC8234256 DOI: 10.3390/microorganisms9061329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
The belowground microbiomes have many beneficial functions that assist plant growth, including nutrient cycling, acquisition and transport, as well as alleviation of stresses caused by nutrient limitations such as nitrogen (N). Here we analyzed the root endosphere, rhizosphere and soil bacterial communities of seven sweet sorghum genotypes differing in sensitivity to N-stress. Sorghum genotypes were grown in fields with no (low-N) or sufficient (high-N) N. The dry shoot weight ratio (low-N/high-N) was used to determine N-stress sensitivity. Our hypothesis was that genotypes tolerant and sensitive to N-stress select distinct bacterial communities. The endosphere and rhizosphere bacterial community structure were significantly different between the N-stress sensitive and tolerant genotypes in the high-N field, but not in the low-N field. However, significant changes in the relative abundance of specific bacterial taxa were observed in both fields. Streptomyces, a bacterial genus known to alleviate plant abiotic stresses, was enriched in the endosphere and rhizosphere of the tolerant genotypes in the low-N field. Our study indicates that sweet sorghum genotypes tolerant to N-stress select taxa that can potentially mitigate the N-stress, suggesting that the interactions between N-stress tolerant lines and the root-associated microbiome might be vital for coping with N-stress.
Collapse
|
38
|
The Impact of Growth-Promoting Streptomycetes Isolated from Rhizosphere and Bulk Soil on Oilseed Rape (Brassica napus L.) Growth Parameters. SUSTAINABILITY 2021. [DOI: 10.3390/su13105704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inoculation of Streptomyces to improve oilseed rape (Brassica napus L.) yields and minimise the use of chemical fertilisers is a promising sustainable strategy. In this study, we isolated 72 actinobacterial strains from rhizosphere of oilseed rape and maize and from bulk soil for screening and characterising their antimicrobial activity. Nine promising strains, identified as Streptomyces sp. by morphology, physiological characteristics, and 16S rRNA gene sequencing, were selected for their plant growth-promoting traits and in planta experiments. The actinobacterial strains were positive for IAA production, siderophore production, and HCN production. In planta experiments were conducted by soaking the oilseed rape seeds in the actinobacterial suspension, followed by plant growth under controlled conditions in a cultivate chamber (22–28 °C, 8 h dark/16 h light, constant humidity 80%). We recorded root and shoot length (cm) and seedling fresh weight (g). For most of the abovementioned parameters, a significant enhancement was observed with strain KmiRC20A118 treatment. The length of the root increased by 53.14%, the shoot length increased by 65.6%, and the weight of the fresh plant by 60% compared to the control. The integrated application of PGPS (Plant Growth Promoting Streptomyces) from the rhizosphere of oilseed rape is a promising strategy to improve the growth of oilseed rape.
Collapse
|
39
|
Batista BD, Dourado MN, Figueredo EF, Hortencio RO, Marques JPR, Piotto FA, Bonatelli ML, Settles ML, Azevedo JL, Quecine MC. The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch Microbiol 2021; 203:3869-3882. [PMID: 34013419 DOI: 10.1007/s00203-021-02361-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022]
Abstract
Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.
Collapse
Affiliation(s)
- Bruna Durante Batista
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Manuella Nóbrega Dourado
- Department of Microbiology, Biomedicine Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Everthon Fernandes Figueredo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Renata Ockner Hortencio
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Laboratory of Nuclear Instrumentation, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Letícia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Bioinformatics Core, University of California, Davis, CA, USA
| | | | - João Lucio Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
40
|
Numan M, Serba DD, Ligaba-Osena A. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Genes (Basel) 2021; 12:genes12050739. [PMID: 34068886 PMCID: PMC8156724 DOI: 10.3390/genes12050739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Millets are important cereal crops cultivated in arid and semiarid regions of the world, particularly Africa and southeast Asia. Climate change has triggered multiple abiotic stresses in plants that are the main causes of crop loss worldwide, reducing average yield for most crops by more than 50%. Although millets are tolerant to most abiotic stresses including drought and high temperatures, further improvement is needed to make them more resilient to unprecedented effects of climate change and associated environmental stresses. Incorporation of stress tolerance traits in millets will improve their productivity in marginal environments and will help in overcoming future food shortage due to climate change. Recently, approaches such as application of plant growth-promoting rhizobacteria (PGPRs) have been used to improve growth and development, as well as stress tolerance of crops. Moreover, with the advance of next-generation sequencing technology, genome editing, using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system are increasingly used to develop stress tolerant varieties in different crops. In this paper, the innate ability of millets to tolerate abiotic stresses and alternative approaches to boost stress resistance were thoroughly reviewed. Moreover, several stress-resistant genes were identified in related monocots such as rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), and other related species for which orthologs in millets could be manipulated by CRISPR/Cas9 and related genome-editing techniques to improve stress resilience and productivity. These cutting-edge alternative strategies are expected to bring this group of orphan crops at the forefront of scientific research for their potential contribution to global food security.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
| | - Desalegn D. Serba
- USDA-ARS, U. S. Arid-Land Agricultural Research Center, 21881 N Cardon Ln., Maricopa, AZ 85138, USA;
| | - Ayalew Ligaba-Osena
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
- Correspondence:
| |
Collapse
|
41
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|
42
|
Nozari RM, Ortolan F, Astarita LV, Santarém ER. Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 2021; 52:1371-1383. [PMID: 33834385 DOI: 10.1007/s42770-021-00480-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
Saline stress is one of the abiotic stresses that most compromises the yield of crops and can be mitigated by plant growth-promoting rhizobacteria (PGPR). This work characterized rhizobacteria isolates from the genus Streptomyces as PGPR and evaluated their role on growth and alleviation of the effects caused by saline stress in maize (Zea mays L.). Production of indolic compounds (IC), siderophores, ACC deaminase, phenazines, and promotion of plant growth were determined to characterize bacterial isolates. Salinity tolerance was accessed by culturing the Streptomyces isolates under NaCl increasing concentrations (0-300 mM). Four Streptomyces isolates exhibiting PGPR traits and salinity tolerance were selected and their effect on tolerance of maize plants to saline stress was evaluated. Plants obtained from bacterized seeds and submitted to 100 and 300 mM NaCl were used. All Streptomyces spp. produced IC and siderophores, CLV178 being the best producer of these two compounds. ACC deaminase was detected in six of the 10 isolates (CLV95, CLV97, CLV127, CLV179, CLV193, and CLV205), while phenazines were found only in CLV186 and CLV194. All isolates were tolerant to salinity, growing at concentrations up to 300 mM NaCl, with exception of CLV188. Increased concentrations of IC were detected in most of the isolates exposed to salinity. CLV97 and CLV179 significantly promoted growth of roots and leaves of maize plants and attenuated the negative effects of salinity on plant growth. Root colonization by Streptomyces spp. was confirmed in plants cultivated 20 days under saline stress.
Collapse
Affiliation(s)
- Rafaela Mendonça Nozari
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Francieli Ortolan
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Leandro Vieira Astarita
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Eliane Romanato Santarém
- Plant Biotechnology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
43
|
Inthama P, Pumas P, Pekkoh J, Pathom-Aree W, Pumas C. Plant Growth and Drought Tolerance-Promoting Bacterium for Bioremediation of Paraquat Pesticide Residues in Agriculture Soils. Front Microbiol 2021; 12:604662. [PMID: 33815305 PMCID: PMC8014035 DOI: 10.3389/fmicb.2021.604662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Thailand is an agricultural country. However, agricultural productivity relies on the heavy use of herbicides, especially paraquat. Paraquat accumulation is emerging as a problem in an ever-growing portion of agricultural land. Paraquat residues are toxic to plants, animals, and aquatic organisms in the environment. Biological remediation is a process that can mitigate agricultural chemical contaminants. One of the interesting bioremediators is bacteria. Not only do certain soil bacteria remediate paraquat, but some of them also possess plant growth-promoting properties, which provide advantages in field application. Thus, this study aimed to screen soil bacteria that could degrade paraquat and, at the same time, promote plant growth. Bacteria were isolated from paraquat-treated agricultural soil in Mueang Kaen Pattana municipality, Chiang Mai province, Thailand. On the basis of morphological and 16S rDNA sequence analyses, the selected bacterium was identified as Bacillus aryabhattai strain MoB09. It is capable of growing in nitrogen-free media. B. aryabhattai growth and paraquat degradation were found to be optimum at pH 7 and 30°C. This selected strain also possessed plant growth-promoting abilities, including indole production, siderophore production, phosphate solubilization, and 1-aminocyclopropane-1-carboxylic acid deaminase activity. Paraquat degradation was also evaluated in pot experiments of cowpea (Vigna unguiculata). It was found that this strain could remediate the paraquat residue in both sterilized and non-sterilized soils. The cowpea plants grown in paraquat-contaminated soil with B. aryabhattai showed longer root and shoot lengths than those grown in soil without bacterial inoculation. In addition, B. aryabhattai also promoted the growth of cowpea under induced drought stress. These results suggested that B. aryabhattai could be applied to mitigate paraquat residue in soil and also to promote plant productivity for the organic crop production.
Collapse
Affiliation(s)
- Phatcharida Inthama
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pamon Pumas
- Department of Environmental Science, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Khati P, Mishra PK, Parihar M, Singh AK, Bisht JK, Pattanayak A. Drought Stress Tolerance: An Insight to Resistance Mechanism and Adaptation in Plants. MICROBES AND SIGNALING BIOMOLECULES AGAINST PLANT STRESS 2021. [DOI: 10.1007/978-981-15-7094-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Zahra T, Hamedi J, Mahdigholi K. Endophytic actinobacteria of a halophytic desert plant Pteropyrum olivieri: promising growth enhancers of sunflower. 3 Biotech 2020; 10:514. [PMID: 33184598 DOI: 10.1007/s13205-020-02507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/24/2020] [Indexed: 01/30/2023] Open
Abstract
In the present study, 40 actinobacterial isolates were obtained from the roots of a desert plant, Pteropyrum olivieri and tested for extracellular hydrolytic enzyme activities, hydrogen cyanide, and siderophore production. Based on these activities, three isolates designated UTMC 2482, UTMC 2483, and UTMC 3136 were selected with an aim of developing bio-fertilizing agent to improve the growth of sunflower plants under normal conditions. The selected isolates showed 98.2, 98.4, and 100% similarities in the 16S rRNA gene sequences to Streptomyces chromofuscus, Streptomyces ambofaciens, and Streptomyces gardneri, respectively. These isolates exhibited indole acetic acid production while UTMC 2483 was found to produce 1-aminocyclopropane-1-carboxylate deaminase, as well. Sunflower seeds soaked in the bacterial spore suspensions increased the tolerance of sunflower seedlings to the stresses of salinity and water deficiency up to 270 mM of NaCl and - 2Mpa of PEG6000, respectively. Under normal conditions, inoculation with individual isolates and their consortia enhanced the yield (plant length, weight, and flower diameter) and biochemical contents (i.e. chlorophyll, protein, and oil) up to 5.3, 1.7, and 2.4 times higher than that of un-inoculated plants, significantly (p < 0.05) in greenhouse and field experiments. This is the first study demonstrating that endophytic actinobacteria from the desert plant, P. olivieri, have profound bio-fertilizing effects on the growth of sunflower.
Collapse
|
46
|
Horstmann JL, Dias MP, Ortolan F, Medina-Silva R, Astarita LV, Santarém ER. Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Braz J Microbiol 2020; 51:1861-1871. [PMID: 32529561 PMCID: PMC7688731 DOI: 10.1007/s42770-020-00301-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/16/2020] [Indexed: 01/21/2023] Open
Abstract
Plant growth-promoting bacteria such as Streptomyces are an attractive alternative for increasing the sustainability of agricultural systems. In this study, Streptomyces isolates obtained from rhizosphere soil of plants in the family Fabaceae were characterized for their plant growth-promoting traits, including the production of siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), and phenazines. Soybean seeds were bacterized with selected isolates to test growth promotion. All isolates produced IAA, and the isolate CLV45 was the most efficient, reaching 398.53 mg of IAA per gram of cells. CLV41, CLV45, and CLV46 showed high activity for ACC deaminase whereas CLV42, CLV44, and CLV46 were efficient in siderophore production. Pyocyanin was detected in all isolates; CLV41, CLV43, and CLV45 produced phenazine-carboxylic acid as well. Selected for IAA and ACC deaminase production combined with production of siderophores and phenazines, CLV42, CLV44, and CLV45 were tested for their growth promotion potential. Seed bacterization with CLV45 resulted in plants with increased shoot growth (36.63%) and dry mass (17.97%) compared to control plants. Results suggest that moderate or high levels of auxin and ACC deaminase production by the isolate CLV45 positively affected the growth of soybean plants, making it a strong candidate for further studies on biofertilizer formulation.
Collapse
Affiliation(s)
- Juliana Lopes Horstmann
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Maila Pacheco Dias
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Francieli Ortolan
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Renata Medina-Silva
- Escola de Ciências da Saúde e da Vida, Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leandro Vieira Astarita
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Eliane Romanato Santarém
- Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| |
Collapse
|
47
|
Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl Environ Microbiol 2020; 86:AEM.01053-20. [PMID: 32561579 PMCID: PMC7414947 DOI: 10.1128/aem.01053-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants. Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici. N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease. IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.
Collapse
|
48
|
Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front Microbiol 2020; 11:1216. [PMID: 32733391 PMCID: PMC7358356 DOI: 10.3389/fmicb.2020.01216] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Salinity stress is one of the major abiotic stresses threatening sustainable crop production worldwide. The extent of salinity affected area is expected to cover about 50% of total agricultural land by 2050. Salinity stress produces various detrimental effects on plants’ physiological, biochemical, and molecular features and reduces productivity. The poor plant growth under salinity stress is due to reduced nutrient mobilization, hormonal imbalance, and formation of reactive oxygen species (ROS), ionic toxicity, and osmotic stress. Additionally, salinity also modulates physicochemical properties and reduces the microbial diversity of soil and thus decreases soil health. On the other hand, the demand for crop production is expected to increase in coming decades owing to the increasing global population. Conventional agricultural practices and improved salt-tolerant crop varieties will not be sufficient to achieve the yields desired in the near future. Plants harbor diverse microbes in their rhizosphere, and these have the potential to cope with the salinity stress. These salinity-tolerant plant growth-promoting bacteria (PGPB) assist the plants in withstanding saline conditions. These plant-associated microbes produce different compounds such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), antioxidants, extracellular polymeric substance (EPS), and volatile organic compounds (VOC). Additionally, the naturally associated microbiome of plants has the potential to protect the host through stress avoidance, tolerance, and resistance strategies. Recent developments in microbiome research have shown ways in which novel microbe-assisted technologies can enhance plant salt tolerance and enable higher crop production under saline conditions. This focused review article presents the global scenario of salinity stress and discusses research highlights regarding PGPB and the microbiome as a biological tool for mitigation of salinity stress in plants.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Gaurav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
49
|
Odaro-Junior Umukoro B. Tropical Crops and Microbes. Microorganisms 2020. [DOI: 10.5772/intechopen.89531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
50
|
Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front Microbiol 2020; 11:443. [PMID: 32308647 PMCID: PMC7145953 DOI: 10.3389/fmicb.2020.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jyoti Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|