1
|
Rickard H, Cloutman-Green E, Ciric L. A microbiological survey approach to understanding the virulence factors of Pseudomonas species in healthcare sinks. J Hosp Infect 2024; 151:84-91. [PMID: 38992838 DOI: 10.1016/j.jhin.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Hospital water is involved in both the prevention and spread of healthcare-associated infections (HCAIs). Handwashing is key to reducing the transmission of pathogens, yet numerous outbreaks have been found to be caused by organisms within sinks, taps and showers. Pseudomonas aeruginosa and increasingly non-aeruginosa Pseudomonas cause waterborne HCAI, however, little is known about the virulence potential of Pseudomonas species found within hospital environments. METHODS Swabs were taken from 62 sinks within two newly opened wards at Great Ormond Street Hospital, samples were taken before and after the wards opened to understand the impact of patient occupancy on sink micro-organisms. Culturable bacteria were identified by MALDI-TOF and virulence factors assessed through phenotypic methods. RESULTS A total of 106 bacterial isolates were recovered including 24 Pseudomonas isolates. Of these 25% were identified as P. oleovorans, 21% P. aeruginosa, 17% P. composti, 13% P. alicalipha, 8% P. monteilii, 4% P. putida, 4% P. stutzeri and 8% could only be identified to genus level by MALDI-TOF. Differences were seen in both the number of Pseudomonas isolates and virulence production between the two wards, overall 25% of the Pseudomonas isolates produced pigment, 58% were capable of haemolysis, 87.5% were able to swim, 83.3% were capable of twitching motility, 33.3% produced alkaline protease and 8.3% produced gelatinase. CONCLUSIONS Results suggest that patients may be back-contaminating sinks with colonizing organisms which has ongoing implications for infection prevention and control. Additionally, this work highlights the ability of non-aeruginosa Pseudomonas to produce virulence factors traditionally associated with P. aeruginosa.
Collapse
Affiliation(s)
- H Rickard
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.
| | - E Cloutman-Green
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK; Camelia Botnar Laboratories, Department of Microbiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - L Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| |
Collapse
|
2
|
Namonyo S, Weynberg KD, Guo J, Carvalho G. The effectiveness and role of phages in the disruption and inactivation of clinical P. aeruginosa biofilms. ENVIRONMENTAL RESEARCH 2023; 234:116586. [PMID: 37423363 DOI: 10.1016/j.envres.2023.116586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Biofilms of P. aeruginosa are known to be resilient forms of survival of this opportunistic pathogen, both within the host and in natural or engineered environments. This study investigated the role of phages in the disruption and inactivation of clinical P. aeruginosa biofilms by previously isolated phages. All seven tested clinical strains formed biofilms in 56-80 h. Four previously isolated phages were effective in disrupting the formed biofilms when applied at multiplicity of infection (MOI) of 10, where phage cocktails had equivalent or worse performance than single phages. Phage treatments reduced the biofilms' biomass (cells and extracellular matrix) by 57.6-88.5% after 72 h of incubation. Biofilm disruption led to the detachment of 74.5-80.4% of the cells. The phages were also able to kill the cells from the biofilms, reducing the living cell counts by approximately 40.5-62.0% after a single treatment. A fraction of 24-80% of these killed cells were also lysed due to phage action. This study showed that phages can have a relevant role in disrupting, inactivating, and destroying P. aeruginosa biofilms, which can be used in the development of treatment processes to complement or replace antibiotics and/or disinfectants.
Collapse
Affiliation(s)
- Samuel Namonyo
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
3
|
Pratschke K. Infection Prevention and Control in Theatre. INFECTION CONTROL IN SMALL ANIMAL CLINICAL PRACTICE 2023:131-147. [DOI: 10.1079/9781789244977.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Kathryn Pratschke
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
4
|
Huygens J, Rasschaert G, Cottyn B, Dewulf J, Van Coillie E, Willekens K, Quataert P, Becue I, Daeseleire E, Heyndrickx M. The impact of antibiotic residues on resistance patterns in leek at harvest. Heliyon 2023; 9:e16052. [PMID: 37215782 PMCID: PMC10192768 DOI: 10.1016/j.heliyon.2023.e16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.
Collapse
Affiliation(s)
- Judith Huygens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Bart Cottyn
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Jeroen Dewulf
- Ghent University, Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction an Population Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Els Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen Willekens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Paul Quataert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Pottier M, Castagnet S, Gravey F, Leduc G, Sévin C, Petry S, Giard JC, Le Hello S, Léon A. Antimicrobial Resistance and Genetic Diversity of Pseudomonas aeruginosa Strains Isolated from Equine and Other Veterinary Samples. Pathogens 2022; 12:64. [PMID: 36678412 PMCID: PMC9867525 DOI: 10.3390/pathogens12010064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections in humans. This bacterium is less represented in veterinary medicine, despite causing difficult-to-treat infections due to its capacity to acquire antimicrobial resistance, produce biofilms, and persist in the environment, along with its limited number of veterinary antibiotic therapies. Here, we explored susceptibility profiles to antibiotics and to didecyldimethylammonium chloride (DDAC), a quaternary ammonium widely used as a disinfectant, in 168 P. aeruginosa strains isolated from animals, mainly Equidae. A genomic study was performed on 41 of these strains to determine their serotype, sequence type (ST), relatedness, and resistome. Overall, 7.7% of animal strains were resistant to carbapenems, 10.1% presented a multidrug-resistant (MDR) profile, and 11.3% showed decreased susceptibility (DS) to DDAC. Genomic analyses revealed that the study population was diverse, and 4.9% were ST235, which is considered the most relevant human high-risk clone worldwide. This study found P. aeruginosa populations with carbapenem resistance, multidrug resistance, and DS to DDAC in equine and canine isolates. These strains, which are not susceptible to antibiotics used in veterinary and human medicine, warrant close the setting up of a clone monitoring, based on that already in place in human medicine, in a one-health approach.
Collapse
Affiliation(s)
- Marine Pottier
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - Sophie Castagnet
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - François Gravey
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Guillaume Leduc
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Corinne Sévin
- Anses, Normandy Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, 14430 Goustranville, France
| | - Sandrine Petry
- Anses, Normandy Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, 14430 Goustranville, France
| | - Jean-Christophe Giard
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - Simon Le Hello
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
- CHU de Caen, Service d’Hygiène Hospitalière, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Albertine Léon
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| |
Collapse
|
6
|
Neuhaus S, Feßler AT, Dieckmann R, Thieme L, Pletz MW, Schwarz S, Al Dahouk S. Towards a Harmonized Terminology: A Glossary for Biocide Susceptibility Testing. Pathogens 2022; 11:1455. [PMID: 36558789 PMCID: PMC9780826 DOI: 10.3390/pathogens11121455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Disinfection is a key strategy to reduce the burden of infections. The contact of bacteria to biocides-the active substances of disinfectants-has been linked to bacterial adaptation and the development of antimicrobial resistance. Currently, there is no scientific consensus on whether the excessive use of biocides contributes to the emergence and spread of multidrug resistant bacteria. The comprehensive analysis of available data remains a challenge because neither uniform test procedures nor standardized interpretive criteria nor harmonized terms are available to describe altered bacterial susceptibility to biocides. In our review, we investigated the variety of criteria and the diversity of terms applied to interpret findings in original studies performing biocide susceptibility testing (BST) of field isolates. An additional analysis of reviews summarizing the knowledge of individual studies on altered biocide susceptibility provided insights into currently available broader concepts for data interpretation. Both approaches pointed out the urgent need for standardization. We, therefore, propose that the well-established and approved concepts for interpretation of antimicrobial susceptibility testing data should serve as a role model to evaluate biocide resistance mechanisms on a single cell level. Furthermore, we emphasize the adaptations necessary to acknowledge the specific needs for the evaluation of BST data. Our approach might help to increase scientific awareness and acceptance.
Collapse
Affiliation(s)
- Szilvia Neuhaus
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Lara Thieme
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, 07747 Jena, Germany
- Leibniz Center for Photonics in Infection Research, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, 07747 Jena, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
7
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
8
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. EFSA J 2022; 20:e07310. [PMID: 35515338 PMCID: PMC9063721 DOI: 10.2903/j.efsa.2022.7310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) was identified among the most relevant antimicrobial‐resistant (AMR) bacteria in the EU for dogs and cats in a previous scientific opinion. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR P. aeruginosa can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33–90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2, 3 and 4 (Categories A, B, C and D; 0–5%, 1–5%, 5–33% and 5–33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Section 5 (Category E, 33–90% probability of meeting the criteria). The animal species to be listed for AMR P. aeruginosa according to Article 8 criteria are mainly dogs and cats.
Collapse
|
9
|
Babalska ZŁ, Korbecka-Paczkowska M, Karpiński TM. Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals (Basel) 2021; 14:1253. [PMID: 34959654 PMCID: PMC8708894 DOI: 10.3390/ph14121253] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
Issues arising in wound healing are very common, and chronic wound infections affect approximately 1.5% of the population. The main substances used in wound washing, cleansing and treatment are antiseptics. Today, there are many compounds with a known antiseptic activity. Older antiseptics (e.g., boric acid, ethacridine lactate, potassium permanganate, hydrogen peroxide, iodoform, iodine and dyes) are not recommended for wound treatment due to a number of disadvantages. According to the newest guidelines of the Polish Society for Wound Treatment and the German Consensus on Wound Antisepsis, only the following antiseptics should be taken into account for wound treatment: octenidine (OCT), polihexanide (PHMB), povidone-iodine (PVP-I), sodium hypochlorite (NaOCl) and nanosilver. This article provides an overview of the five antiseptics mentioned above, their chemical properties, wound applications, side effects and safety.
Collapse
Affiliation(s)
- Zuzanna Łucja Babalska
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | | | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
10
|
Beier RC, Andrews K, Hume ME, Sohail MU, Harvey RB, Poole TL, Crippen TL, Anderson RC. Disinfectant and Antimicrobial Susceptibility Studies of Staphylococcus aureus Strains and ST398-MRSA and ST5-MRSA Strains from Swine Mandibular Lymph Node Tissue, Commercial Pork Sausage Meat and Swine Feces. Microorganisms 2021; 9:microorganisms9112401. [PMID: 34835526 PMCID: PMC8621428 DOI: 10.3390/microorganisms9112401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes gastrointestinal illness worldwide. Disinfectants are used throughout the food chain for pathogenic bacteria control. We investigated S. aureus bioavailability in swine Mandibular lymph node tissue (MLT) and pork sausage meat (PSM), established susceptibility values for S. aureus to disinfectants, and determined the multilocus sequence type of MRSA strains. Antimicrobial and disinfectant susceptibility profiles were determined for 164 S. aureus strains isolated from swine feces (n = 63), MLT (n = 49) and PSM (n = 52). No antimicrobial resistance (AMR) was detected to daptomycin, nitrofurantoin, linezolid, and tigecycline, while high AMR prevalence was determined to erythromycin (50.6%), tylosin tartrate (42.7%), penicillin (72%), and tetracycline (68.9%). Methicillin-resistant S. aureus (MRSA) strains, ST398 (n = 6) and ST5 (n = 1), were found in the MLT and PSM, 4 MRSA in MLT and 3 MRSA strains in the PSM. About 17.5% of feces strains and 41.6% of MLT and PSM strains were resistant to chlorhexidine. All strains were susceptible to triclosan and benzalkonium chloride, with no cross-resistance between antimicrobials and disinfectants. Six MRSA strains had elevated susceptibilities to 18 disinfectants. The use of formaldehyde and tris(hydroxylmethyl)nitromethane in DC&R was not effective, which can add chemicals to the environment. Didecyldimethylammonium chloride and benzyldimethylhexadecylammonium chloride were equally effective disinfectants. ST398 and ST5 MRSA strains had elevated susceptibilities to 75% of the disinfectants tested. This study establishes susceptibility values for S. aureus strains from swine feces, mandibular lymph node tissue, and commercial pork sausage against 24 disinfectants. Since it was demonstrated that S. aureus and MRSA strains can be found deep within swine lymph node tissue, it may be beneficial for the consumer if raw swine lymph node tissue is not used in uncooked food products and pork sausage.
Collapse
Affiliation(s)
- Ross C. Beier
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
- Correspondence:
| | - Kathleen Andrews
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| | - Michael E. Hume
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| | - Muhammad Umar Sohail
- Proteomics Core, Weill Cornell Medicine, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar;
| | - Roger B. Harvey
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| | - Toni L. Poole
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| | - Tawni L. Crippen
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Agricultural Research Service, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA; (K.A.); (M.E.H.); (R.B.H.); (T.L.P.); (T.L.C.); (R.C.A.)
| |
Collapse
|
11
|
Arbab S, Ullah H, Wei X, Wang W, Ahmad SU, Zhang J. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β - Lactam resistance Phenotypes from Shandong province China. BRAZ J BIOL 2021; 83:e247061. [PMID: 34468524 DOI: 10.1590/1519-6984.247061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
The objective of this study was to evaluate the effectiveness of common antibiotics against different microorganisms in apparently healthy cattle in Shandong province and its suburb. A total of 220 nasal swab samples were collected and cultured for bacteriological evaluation. All the bacteria isolates after preliminary identification were subjected to antibiogram studies following disc diffusion method. It was found in the study that E. coli is the most commonly associated isolate (21%), followed by Klebsiella spp. (18%), Pseudomonas aeruginosa (13%), Salmonella spp. (15%), Shigella spp (12%), and Proteus spp (11%). While the antibiogram studies reveled that highest number of bacterial isolates showed resistance to Ampicillin (95%), followed by Augmentin (91%), Cefuroxime (85%) and Tetracycline (95%) of (Escherichia coli and Klebsiella spp). In the case of pseudomonas spp. and Salmonella the highest resistance was showed by Ampicillin (90%) followed by Amoxicillin + Clavulanic Acid (80%), Cefixime (90%), and Erythromycin (80%). In Shigella spp and Salmonella spp highest resistance was showed by Amoxicillin, Ceftazidime, Augmentin (60%), and Amoxicillin + Clavulanic Acid (50%). It is concluded that in vitro antibiogram studies of bacterial isolates revealed higher resistance for Ampicillin, Augmentin, Cefuroxime, Cefixime, Tetracycline, Erythromycin, and Amoxicillin + Clavulanic Acid. The high multiple Antibiotics resistance indexes (MARI) observed in all the isolates in this study ranging from 0.6 to 0.9. MARI value of >0.2 is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria.
Collapse
Affiliation(s)
- S Arbab
- Ministry of Agriculture, Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
| | - H Ullah
- Sichuan University, West China School of Nursing, West China Hospital, Department of Nursing, Chengdu, China
| | - X Wei
- Ministry of Agriculture, Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
| | - W Wang
- Ministry of Agriculture, Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
| | - S U Ahmad
- Ministry of Agriculture, Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
| | - J Zhang
- Ministry of Agriculture, Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
| |
Collapse
|
12
|
Antibiotic Susceptibility Profile of Pseudomonas aeruginosa Canine Isolates from a Multicentric Study in Romania. Antibiotics (Basel) 2021; 10:antibiotics10070846. [PMID: 34356767 PMCID: PMC8300837 DOI: 10.3390/antibiotics10070846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Treating infections caused by Pseudomonas aeruginosa is increasingly difficult due to high antibiotic resistance, materialized through the presence of multiple resistance strains, as well as due to rapid development of resistance throughout treatment. The present survey was conducted to investigate the antibiotic susceptibility profile of Pseudomonas aeruginosa pathogens in two University Veterinary hospitals from different geographical regions of Romania (i.e., Southwest Timișoara county and Northeast Iași county) involved in superficial canine infections. A total of 142 swab specimens were collected from dogs with superficial infections (superficial skin infections, otitis externa, and perianal abscess) to assess the presence of Pseudomonas aeruginosa, based on phenotypic and molecular characterization. According to their confirmed morphological and molecular features, 58 samples (40.84%; 58/142) were positive for Pseudomonas aeruginosa (according to their confirmed morphological and molecular features). Antibiotic susceptibility testing for 12 antibiotics was conducted using the Kirby–Bauer disc diffusion method. Drug resistance was observed in the case of all tested antibiotics. The susceptibility rate of P. aeruginosa strains that were tested in this study was in the following order: ceftazidime (53.44%; 31/58), followed by aztreonam (51.72%; 30/58), amikacin (44.82%; 26/58), azithromycin (41.37%; 24/58), gentamicin (37.93%; 22/58), cefepime (36.20%; 21/58), meropenem (25.86%; 13/58), piperacillin-tazobactam (25.86%; 13/58), imipenem (22.41%; 13/158), ciprofloxacin (17.24%; 10/58), tobramycin (8.62; 5/58), and polymyxin B (1.72; 1/58). The results highlight the importance of antibiotic susceptibility testing in Pseudomonas aeruginosa isolates from dogs with superficial infections to use an adequate treatment plan to manage the skin condition and other pathologies (otitis externa and perianal abscesses).
Collapse
|
13
|
Resistance to widely-used disinfectants and heavy metals and cross resistance to antibiotics in Escherichia coli isolated from pigs, pork and pig carcass. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Does Bacteria Colonization of Canine Newborns Start in the Uterus? Animals (Basel) 2021; 11:ani11051415. [PMID: 34069213 PMCID: PMC8156249 DOI: 10.3390/ani11051415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary A well-balanced microbial flora plays a fundamental role in puppies’ early development. Bacteria were thought to colonize newborns at birth, but some studies have challenged this hypothesis. A healthy fetus at term may already harbour bacteria and the uterus may also not be sterile. Time of initial microbiota development might be placed earlier in life. In this investigation we sampled uterus, amniotic fluid and meconium of healthy canine fetuses delivered through cesarean section (elective or emergency) and carried out bacteriological examinations. In contrast with the ‘sterile womb paradigm’, bacteria were isolated from all the sampled sites and materials, independently of the cesarean type. Further studies are necessary to confirm our results. We adopted traditional bacteria culture techniques, but molecular methods, which look for bacteria DNA, could also be performed to deepen the knowledge on this matter. Abstract The assumption that requires the uterus to be a sterile environment to sustain a successful pregnancy has been recently challenged in humans, and is still under debate. The aim of this study was to assess whether bacteria can be isolated from the pregnant uterus and from amniotic fluid and meconium of healthy canine fetuses at term, delivered through cesarean section. Fifteen dams of different breed, age and parity, undergoing either elective (n = 10) or emergency (n = 5) cesarean section after a healthy pregnancy, were included in the study. Swabs for bacterial culture were collected from the uterus, and from amniotic fluid and meconium. Bacteria were isolated from all the sampled sites and materials, irrespective of cesarean type. In most cases, different bacteria were isolated from the different sites. Acinetobacter spp., coagulase-negative Staphylococci and Bacillus spp. were frequently found while Pseudomonas aeruginosa, Micrococcus spp., Moraxella spp., Macrococcus spp., Glutamicibacter spp., Stenotrophomonas spp. and Psychrobacter spp. were only occasionally identified. Our data show that uterus and fetuses may not be sterile in healthy term canine pregnancies.
Collapse
|
15
|
Hattab J, Mosca F, Francesco CED, Aste G, Marruchella G, Guardiani P, Tiscar PG. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World 2021; 14:978-985. [PMID: 34083949 PMCID: PMC8167523 DOI: 10.14202/vetworld.2021.978-985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Pseudomonas aeruginosa is a relevant opportunistic and difficult to treat pathogen due to its widespread environmental diffusion, intrinsic resistance to many classes of antimicrobials, high ability to acquire additional resistance mechanisms, and wide range of pathogenic factors. The present study aimed to investigate the prevalence of P. aeruginosa in canine clinical samples, the antimicrobial susceptibility against antipseudomonal antibiotics, and the presence of extracellular pathogenic factors of the isolates, as well as their ability to produce biofilm. Materials and Methods: Overall, 300 clinical specimens from dogs with pyoderma or abscesses (n=58), otitis (n=59), and suspected bladder infection (n=183) were analyzed by standard bacteriological methods. P. aeruginosa isolates were tested for their antimicrobial susceptibility by disk and gradient diffusion methods to determine the minimum inhibitory concentrations. The ability of the isolates to produce biofilm was investigated by a microtiter plate assay, while virulence genes coding for elastase (lasB), exotoxin A (toxA), alkaline protease (aprA), hemolytic phospholipase C (plcH), and exoenzyme S (ExoS) were detected by polymerase chain reaction method. Results: A total of 24 isolates of P. aeruginosa were found in clinical specimens (urine n=3, skin/soft tissue n=6, and ear canal n=15). No resistance was found to ceftazidime, gentamicin, aztreonam, and imipenem (IMI), while low levels of resistance were found to enrofloxacin (ENR) (4.2%) and piperacillin-tazobactam (8.3%). However, 41.7% and 29.2% of the isolates showed intermediate susceptibility to ENR and IMI, respectively. Disk and gradient diffusion methods showed high concordance. The majority of the isolates revealed a weak (33.3%) or intermediate (45.8%) ability to form biofilm, while the strong biofilm producers (20.8%) derived exclusively from the ear canal samples. All isolates (100%) were positive for lasB, aprA, and plcH genes, while exoS and toxA were amplified in 21 (87.5%) and 22 (91.7%) isolates, respectively. Conclusion: In the present study, P. aeruginosa isolates from canine clinical samples were characterized by low levels of antimicrobial resistance against antipseudomonal drugs. However, the high presence of isolates with intermediate susceptibility for some categories of antibiotics, including carbapenems which are not authorized for veterinary use, could represent an early warning signal. Moreover, the presence of isolates with strong ability to produce biofilm represents a challenge for the interpretation of the antimicrobial susceptibility profile. In addition, the high prevalence of the extracellular pathogenic factors was indicative of the potential virulence of the isolates.
Collapse
Affiliation(s)
- Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Francesco Mosca
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Giovanni Aste
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Pietro Giorgio Tiscar
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
16
|
Tawre MS, Kamble EE, Kumkar SN, Mulani MS, Pardesi KR. Antibiofilm and antipersister activity of acetic acid against extensively drug resistant Pseudomonas aeruginosa PAW1. PLoS One 2021; 16:e0246020. [PMID: 33529248 PMCID: PMC7853517 DOI: 10.1371/journal.pone.0246020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an ESKAPE pathogen associated with difficult-to-treat burn wound and surgical-site infections. This study aimed to characterise an extensively drug resistant (XDR) P. aeruginosa isolate (designated PAW1) and to investigate the antibiofilm and antipersister effect of acetic acid on PAW1. PAW1 was identified using biotypic (VITEK) and genotypic (16S rDNA) analysis. Minimum inhibitory concentration (MIC) and disc susceptibility testing showed high level resistance against all antibiotics from classes including beta lactams, cephems, carbapenems and fluoroquinolones. It was therefore identified as extensively drug resistant (XDR), showing resistance to all antibiotics except for, aminoglycoside (gentamicin and netilmicin) and lipopeptides (polymyxin B). Time kill assays showed antibiotic tolerant, persister cell formation in presence of 100X MICs of gentamicin and polymyxin B. Other virulence traits such as ability to produce lipase, protease, haemolysin, and siderophores and to form biofilms were additional factors which may contribute to its pathogenicity. PAW1 showed promising susceptibility against acetic acid with MIC and minimum biofilm inhibitory concentration of 0.156% (v/v). Percent viability of PAW1 was dependent on dose and treatment time of acetic acid. 0.625% acetic acid treatment of 5 minutes was effective in killing >90% planktonic cells showing lesser toxicity to L929 cells (IC50 = 0.625%). Biofilm disruption caused due to acetic acid was also dose dependent, showing 40.57% disruption after treatment with 0.625% acetic acid for 5 minutes. FESEM imaging and live dead staining of planktonic and biofilm forms of PAW1 confirmed that acetic acid treatment caused 19.04% of cell shrinkage and disruption of extracellular matrix resulting in killing of cells. Antipersister activity of acetic acid was demonstrated by showing complete killing of PAW1 at 4X MIC. Overall, this study characterised an XDR isolate P. aeruginosa showing resistance and tolerance to various antibiotics. Antipersister and antibiofilm effect of acetic acid demonstrates the importance of forgotten topical agents as an effective strategy to treat XDR pathogens.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ekta E. Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mansura S. Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
17
|
Beier RC, Byrd JA, Andrews K, Caldwell D, Crippen TL, Anderson RC, Nisbet DJ. Disinfectant and antimicrobial susceptibility studies of the foodborne pathogen Campylobacter jejuni isolated from the litter of broiler chicken houses. Poult Sci 2021; 100:1024-1033. [PMID: 33518061 PMCID: PMC7858144 DOI: 10.1016/j.psj.2020.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/15/2023] Open
Abstract
Foodborne illness is an ongoing problem worldwide and is caused by bacteria that invade the food chain from the farm, slaughter house, restaurant or grocery, or in the home and can be controlled by strategies using biocides (antiseptics and disinfectants). Susceptibility profiles were determined for 96 Campylobacter jejuni strains obtained in 2011-2012 from broiler chicken house environments to antimicrobials and disinfectants as per the methods of the Clinical and Laboratory Standards Institute and TREK Diagnostics using CAMPY AST Campylobacter plates. Low prevalence of antimicrobial resistance was observed in C. jejuni strains to tetracycline (TET; 21.9%), ciprofloxacin (CIP; 13.5%), and nalidixic acid (NAL; 12.5%). The resistance profiles had a maximum of 3 antimicrobials, CIP-NAL-TET, with TET being the main profile observed. No cross-resistance was observed between antimicrobials and disinfectants. The C. jejuni strains (99%) were resistant to triclosan, 32% were resistant to chlorhexidine, and they all were susceptible to benzalkonium chloride. The strains had low-level minimum inhibitory concentrations (MICs) to the disinfectants P-128, Food Service Sanitizer, F-25 Sanitizer, Final Step 512 Sanitizer, OdoBan, dioctyldimethylammmonium chloride, didecyldimethylammonium chloride (C10AC), benzyldimethyldodecylammonium chloride (C12BAC), and benzyldimethyltetradecylammonium chloride (C14BAC). Intermediate MICs against DC&R, cetylpyridinium bromide hydrate, hexadecylpyridinium chloride, ethylhexadecyldimethylammonium bromide, and hexadecyltrimethylammonium bromide with elevated intermediate MICs against Tek-Trol, benzyldimethylhexadecylammonium chloride, tris(hydroxylmethyl)nitromethane (THN), and formaldehyde. The highest MIC were obtained for povidone-iodine. The components THN and the benzylammonium chlorides C12BAC and C14BAC were responsible for the inhibition by DC&R. The components C10AC and C12BAC may act synergistically causing inhibition of C. jejuni by the disinfectant P-128. The formaldehyde component in DC&R was not effective against C. jejuni compared with the ammonium chloride components. Its use in disinfectants may result in additional unnecessary chemicals in the environment. Didecyldimethylammonium chloride is the most effective ammonium chloride component against C. jejuni.
Collapse
Affiliation(s)
- Ross C Beier
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - J Allen Byrd
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Kathleen Andrews
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Denise Caldwell
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Tawni L Crippen
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - Robin C Anderson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| | - David J Nisbet
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA
| |
Collapse
|
18
|
Tyeb S, Kumar N, Kumar A, Verma V. Agar-Iodine Transdermal Patches for Infected Diabetic Wounds. ACS APPLIED BIO MATERIALS 2020; 3:7515-7530. [PMID: 35019493 DOI: 10.1021/acsabm.0c00722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present work, we have tested the potency of iodine-loaded agar transdermal patches (5 mg/cm2) for the treatment of infected diabetic wounds in the Wistar rat model. The rats were treated with the newly developed agar-iodine-potassium iodide (KI)-glycerol (AKIG) patch along with two other commercial dressings Iodoflex and Tegaderm as controls. Animals that received treatment with AKIG patches and Iodoflex showed better infection containment as compared to that with Tegaderm-covered control and exhibited complete healing. The antimicrobial property of all the patches was tested on three bacterial species-Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa-found in infected wounds. P. aeruginosa exhibited the highest minimum inhibitory concentration and minimum bactericidal concentration values among the three bacterial species for all the patches. The patch showed values of tensile strength, elongation, water vapor transmission rate, and swelling in the range of 34 ± 5 MPa, 51% ± 5, 2700 ± 110 g/m2/day, and 250% ± 25, respectively, for the agar-KI-iodine patch. The release kinetics of iodine through the agar matrix was found to follow the first-order drug release kinetics.
Collapse
Affiliation(s)
- Suhela Tyeb
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitesh Kumar
- Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vivek Verma
- Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
19
|
Beier RC, Byrd JA, Caldwell D, Andrews K, Crippen TL, Anderson RC, Nisbet DJ. Inhibition and Interactions of Campylobacter jejuni from Broiler Chicken Houses with Organic Acids. Microorganisms 2019; 7:E223. [PMID: 31366094 PMCID: PMC6722939 DOI: 10.3390/microorganisms7080223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/19/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a bacterium that causes major diarrheal disease worldwide and is also one of the top five foodborne pathogens encountered in the United States. Poultry is a major source of C. jejuni, and a high-risk factor for contracting campylobacteriosis. Organic acids are used in the United States during food animal processing for removal of bacterial contamination from animal carcasses. Six organic acids were evaluated in inhibition studies of 96 C. jejuni strains obtained from shoe covers used in broiler chicken houses at different poultry farms in several states by determining the susceptibilities of the C. jejuni strains, along with the pH values at the molar minimum inhibitory concentrations (MICMs). The undissociated and dissociated organic acid concentrations were calculated at the MICMs with the Henderson-Hasselbalch equation. The results for the 96 C. jejuni strains were treated similarly for each different organic acid. Campylobacter jejuni inhibition did correlate with the dissociated organic acids, but did not correlate with pH or with the undissociated organic acids. When the concentrations of dissociated organic acids decreased, the C. jejuni strains were not disinfected. A carcass wash using organic acids should have the concentration of dissociated acid species carefully controlled. It is suggested to maintain a dissociated acid concentration for propionic, l-lactic, formic, citric, butyric, and acetic acids at 24, 40, 36, 21, 23, and 25 mM, respectively, and at these dissociated organic acid levels an acid wash would be expected to remove or inhibit 97% or more of the C. jejuni bacteria studied here. However, studies must be undertaken to confirm that the suggested concentrations of dissociated organic acids are adequate to remove C. jejuni bacteria in the field vs. the laboratory. Due to propionate, l-lactate, formate, butyrate, and acetate being utilized by C. jejuni, these organic acids may not be appropriate for use as a carcass wash to remove C. jejuni surface contamination. Of all tested organic acids, dissociated citric acid was the most efficient at inhibiting C. jejuni.
Collapse
Affiliation(s)
- Ross C Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA.
| | - J Allen Byrd
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Denise Caldwell
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Kathleen Andrews
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Tawni L Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - David J Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| |
Collapse
|
20
|
Beier RC, Harvey RB, Hernandez CA, Andrews K, Droleskey RE, Hume ME, Davidson MK, Bodeis-Jones S, Young S, Anderson RC, Nisbet DJ. Disinfectant and Antimicrobial Susceptibility Profiles of Campylobacter coli Isolated in 1998 to 1999 and 2015 from Swine and Commercial Pork Chops. J Food Sci 2019; 84:1501-1512. [PMID: 31116418 DOI: 10.1111/1750-3841.14622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 11/28/2022]
Abstract
Susceptibility profiles were determined for 111 Campylobacter coli strains obtained in 1998 to 1999 and 2015 from market age pigs and pork chops against 22 disinfectants and 9 antimicrobials. Resistance to tetracycline (TET) was observed in 44.4% of 1998 to 1999 strains, and the antibiotic resistance profile was TET. But strains obtained in 2015 from swine and retail pork chops had 75% TET resistance and the antibiotic resistance profile was TET, followed by azithromycin-erythromycin-TET-telithromycin-clindamycin. Antimicrobial resistance increased in 2015 strains. All strains were resistant to triclosan, and 84.1% and 95.8% of strains in 1998 to 1999 and 2015, respectively, were chlorhexidine resistant. All strains were susceptible to benzalkonium chloride. There was a shift toward higher susceptibility to chlorhexidine, triclosan, P-128, OdoBan, CPB, and CPC in 2015 swine and pork chop strains compared with 1998 to 1999 strains. The disinfectants Tek-Trol and providone-iodine, tris(hydroxylmethyl)nitromethane (THN) and formaldehyde demonstrated the highest susceptibilities. Didecyldimethylammonium chloride (C10AC) appeared to be about equally effective as benzyldimethyltetradecylammonium chloride (C14BAC) for inhibiting C. coli, and both were more effective than C8AC and C12BAC, but C16BAC was not efficient at inhibiting C. coli. The BACs, C12BAC and C14BAC, were the most effective ingredients in DC&R. Also, C12BAC and C14BAC, or these two in synergy with C10AC were responsible for inhibition of C. coli at high P-128 MICs. No cross-resistance was observed between antibiotics and disinfectants. The continued use of THN and formaldehyde in DC&R should be evaluated since these components are not effective, and their inclusion adds unwanted chemicals in the environment. PRACTICAL APPLICATION: Campylobacter species cause diarrheal disease throughout the world. Disinfectants are often used on the farm, in veterinary medicine, by the food processing industry, in restaurants, and in consumer's homes. Limited information is available in the literature showing how disinfectants or disinfectant components may affect the many different foodborne pathogens, and, specifically, Campylobacter coli studied here. The knowledge generated in this study concerning the interactions of a broad array of disinfectants against C. coli may well affect the types of disinfectants and disinfectant formulations allowable for use by medical personnel, producers, food processors, restaurants, and consumers.
Collapse
Affiliation(s)
- Ross C Beier
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Roger B Harvey
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Charles A Hernandez
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Kathleen Andrews
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Robert E Droleskey
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Michael E Hume
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Maureen K Davidson
- USFDA, Office of Research, CVM, 8401 Muirkirk Road, Laurel, MD, 20708, USA
| | - Sonya Bodeis-Jones
- USFDA, Office of Research, CVM, 8401 Muirkirk Road, Laurel, MD, 20708, USA
| | - Shenia Young
- USFDA, Office of Research, CVM, 8401 Muirkirk Road, Laurel, MD, 20708, USA
| | - Robin C Anderson
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - David J Nisbet
- USDA-ARS, SPARC, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| |
Collapse
|
21
|
Lundin JG, McGann CL, Weise NK, Estrella LA, Balow RB, Streifel BC, Wynne JH. Iodine binding and release from antimicrobial hemostatic polymer foams. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Nolff MC, Winter S, Reese S, Meyer‐Lindenberg A. Comparison of polyhexanide, cold atmospheric plasma and saline in the treatment of canine bite wounds. J Small Anim Pract 2018; 60:348-355. [DOI: 10.1111/jsap.12971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- M. C. Nolff
- Clinic for Small Animal Surgery and ReproductionLudwig‐Maximilians‐University Munich 80539 Germany
| | - S. Winter
- Clinic for Small Animal Surgery and ReproductionLudwig‐Maximilians‐University Munich 80539 Germany
| | - S. Reese
- Department for Basic Veterinary SciencesLudwig‐Maximilians‐University Munich 80539 Germany
| | - A. Meyer‐Lindenberg
- Clinic for Small Animal Surgery and ReproductionLudwig‐Maximilians‐University Munich 80539 Germany
| |
Collapse
|
23
|
Beier RC, Harvey RB, Poole TL, Hume ME, Crippen TL, Highfield LD, Alali WQ, Andrews K, Anderson RC, Nisbet DJ. Interactions of organic acids with vancomycin-resistant Enterococcus faecium isolated from community wastewater in Texas. J Appl Microbiol 2018; 126:480-488. [PMID: 30383327 DOI: 10.1111/jam.14145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
Abstract
AIMS Investigate the interactions of organic acids (OAs), acetic, butyric, citric, formic, lactic and propionic acid against 50 Gram-positive vancomycin-resistant Enterococcus faecium (VRE) strains to determine whether pH, undissociated or dissociated acid forms correlate with bacterial inhibition. METHODS AND RESULTS Concentrations of undissociated and dissociated OAs at the molar minimum inhibitory concentrations (MICM s) of the VRE were calculated using the Henderson-Hasselbalch equation. The pH at the MICM s of all VRE strains against acetic, butyric, formic and propionic acids was similar, 4·66 ± 0·07, but there was a 1·1 pH unit difference for all six OAs. Inhibition of VRE by all six OAs did not appear to be solely dependent on pH or on the undissociated OA species. The inhibition of VRE by all six dissociated acids was within Δ = 3·1 mmol l-1 . CONCLUSIONS Vancomycin-resistant Enterococcus faecium inhibition correlated with the dissociated OA species. A small decrease in the concentration of the dissociated OAs from optimum may result in allowing VRE strains to escape disinfection. SIGNIFICANCE AND IMPACT OF THE STUDY When an OA is used to disinfect VRE strains, the concentration of the dissociated OA should be carefully controlled. A concentration of at least 20 mmol l-1 dissociated OA should be maintained when disinfecting VRE.
Collapse
Affiliation(s)
- R C Beier
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - R B Harvey
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - T L Poole
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - M E Hume
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - T L Crippen
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | | | - W Q Alali
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - K Andrews
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - R C Anderson
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - D J Nisbet
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA
| |
Collapse
|
24
|
Beier RC, Harvey RB, Hernandez CA, Hume ME, Andrews K, Droleskey RE, Davidson MK, Bodeis-Jones S, Young S, Duke SE, Anderson RC, Crippen TL, Poole TL, Nisbet DJ. Interactions of organic acids with Campylobacter coli from swine. PLoS One 2018; 13:e0202100. [PMID: 30096155 PMCID: PMC6086449 DOI: 10.1371/journal.pone.0202100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/28/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter coli is a bacterial species that is a major cause of diarrheal disease worldwide, and Campylobacter spp. are among the top 5 foodborne pathogens in the United States. During food production organic acids (OAs) are often used to remove bacteria from animal carcasses. The interactions of six OAs with 111 C. coli strains obtained from swine and retail pork chops were studied by determining the molar minimum inhibitory concentrations (MICMs) of the C. coli strains, and the pH at the MICMs. The Henderson-Hasselbalch equation was used to calculate the concentrations of the undissociated and dissociated OAs at the MICMs of the C. coli strains. The results for the 111 different C. coli strains obtained from different locations were treated as a single group for each OA since many of the C. coli strains behaved similarly to each different OA. Inhibition of C. coli was not dependent on pH or on the undissociated OA species, but C. coli inhibition correlated with the dissociated OA species. Therefore, if the concentration of the dissociated OAs decreases from optimum, one may then expect that C. coli bacteria would escape disinfection. The concentration of the dissociated OA should be carefully controlled in a carcass wash. We suggest maintaining a concentration of the dissociated acetic, butyric, citric, formic, lactic and propionic acids at 29, 23, 11, 35, 22 and 25 mM, respectively, when using a carcass wash with these OAs to remove C. coli bacteria. However, due to C. coli utilization of acetate, formate, lactate and propionate, these four OAs may not be the best choice to use for a carcass wash to remove C. coli contamination. Of the six OAs, citric acid was the most efficient at inhibiting C. coli.
Collapse
Affiliation(s)
- Ross C. Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Charles A. Hernandez
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Michael E. Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Kathleen Andrews
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Robert E. Droleskey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Maureen K. Davidson
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Sonia Bodeis-Jones
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Shenia Young
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Sara E. Duke
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Tawni L. Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Toni L. Poole
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - David J. Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| |
Collapse
|
25
|
Brock MT, Fedderly GC, Borlee GI, Russell MM, Filipowska LK, Hyatt DR, Ferris RA, Borlee BR. Pseudomonas aeruginosa variants obtained from veterinary clinical samples reveal a role for cyclic di-GMP in biofilm formation and colony morphology. MICROBIOLOGY-SGM 2017; 163:1613-1625. [PMID: 29034850 DOI: 10.1099/mic.0.000541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overuse of antibiotics is contributing to an emerging antimicrobial resistance crisis. To better understand how bacteria adapt tolerance and resist antibiotic treatment, Pseudomonas aeruginosa isolates obtained from infection sites sampled from companion animals were collected and evaluated for phenotypic differences. Selected pairs of clonal isolates were obtained from individual infection samples and were assessed for antibiotic susceptibility, cyclic di-GMP levels, biofilm production, motility and genetic-relatedness. A total of 18 samples from equine, feline and canine origin were characterized. A sample from canine otitis media produced a phenotypically heterogeneous pair of P. aeruginosa isolates, 42121A and 42121B, which during growth on culture medium respectively exhibited hyper dye-binding small colony morphology and wild-type phenotypes. Antibiotic susceptibility to gentamicin and ciprofloxacin also differed between this pair of clonal isolates. Sequence analysis of gyrA, a gene known to be involved in ciprofloxacin resistance, indicated that 42121A and 42121B both contained mutations that confer ciprofloxacin resistance, but this did not explain the differences in ciprofloxacin resistance that were observed. Cyclic di-GMP levels also varied between this pair of isolates and were shown to contribute to the observed colony morphology variation and ability to form a biofilm. Our results demonstrate the role of cyclic di-GMP in generating the observed morphological phenotypes that are known to contribute to biofilm-mediated antibiotic tolerance. The generation of phenotypic diversity may go unnoticed during standard diagnostic evaluation, which potentially impacts the therapeutic strategy chosen to treat the corresponding infection and may contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Maria T Brock
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Galya C Fedderly
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA.,Present address: Galya Fedderly, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Grace I Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael M Russell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Liliana K Filipowska
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Doreene R Hyatt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan A Ferris
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
26
|
Solc MK, Weese JS, Jazic E. The in vitro antibacterial activity of incomplete iron salt of polyacrylic acid against Pseudomonas aeruginosa, meticillin-resistant Staphylococcus pseudintermedius and meticillin-resistant S. aureus. Vet Dermatol 2017; 29:3-e2. [PMID: 28833656 DOI: 10.1111/vde.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The incomplete iron salt of polyacrylic acid (IIS-PAA) has been used for its haemostatic, wound healing and antibacterial properties in human patients. IIS-PAA is a water-soluble, acidic, hydrophilic polymer that is active at pH 2.9-4.0. HYPOTHESES/OBJECTIVES To evaluate the antibacterial effect of IIS-PAA against Pseudomonas aeruginosa, meticillin-resistant Staphylococcus pseudintermedius (MRSP) and meticillin-resistant S. aureus (MRSA). METHODS This was a prospective, nonblinded in vitro study. Sixty canine isolates of P. aeruginosa, MRSP and MRSA were included. Minimum inhibitory concentrations (MICs) of IIS-PAA were determined by agar dilution on Mueller-Hinton agar using testing concentrations ranging from 0.0625-0.4% (raw material 100%) and based on Clinical and Laboratory Standards Institute guidelines. RESULTS The median MIC for P. aeruginosa was 0.2% (range 0.2-0.3%), mean 0.2% and standard deviation (SD) of 0.018%. The median MIC for MRSP was 0.05% (0.025-0.1%), mean 0.058% and SD 0.022%, and the median MIC for MRSA was 0.1% (0.00625-0.4%), mean 0.126% and SD 0.080%. There were significant differences in MICs between the three bacteria types with MICs highest for Pseudomonas and lowest for MRSP (all P < 0.0001). CONCLUSIONS IIS-PAA had in vitro antibacterial activity against three important bacterial pathogens. Further studies of IIS-PAA are indicated to assess the potential clinical benefit and in vitro studies to investigate the spectrum of anti-bacterial activity and mode of action.
Collapse
Affiliation(s)
- Meghan K Solc
- Dermatology for Animals, 1321 Centerview Circle, Akron, OH, 44321, USA
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Edward Jazic
- Dermatology for Animals, 1321 Centerview Circle, Akron, OH, 44321, USA
| |
Collapse
|
27
|
Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics (Basel) 2017; 6:antibiotics6020012. [PMID: 28587316 PMCID: PMC5485445 DOI: 10.3390/antibiotics6020012] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world.
Collapse
Affiliation(s)
- Maria Angeles Argudín
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Alaeddine Meghraoui
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Magali Dodémont
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Amelie Heinrichs
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Olivier Denis
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
- Ecole de Santé Publique, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium.
| | - Claire Nonhoff
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Sandrine Roisin
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
28
|
Yukawa S, Tsuyuki Y, Sato T, Fukuda A, Usui M, Tamura Y. Antimicrobial Resistance of Pseudomonas aeruginosa Isolated from Dogs and Cats in Primary Veterinary Hospitals in Japan. Jpn J Infect Dis 2017; 70:461-463. [PMID: 28367887 DOI: 10.7883/yoken.jjid.2016.536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We collected 200 Pseudomonas aeruginosa isolates from dogs and cats in primary veterinary hospitals in Japan to investigate their antimicrobial resistance. Resistance rates against ciprofloxacin, cefotaxime, gentamicin, amikacin, and fosfomycin were 9%, 12.5%, 4.5%, 2.5%, and 35.5%, respectively. One strain displayed resistance (0.5%) to ceftazidime. We did not detect any imipenem-resistant or multidrug-resistant P. aeruginosa strains as defined by the Japanese Ministry of Health, Labour, and Welfare Law Concerning the Prevention of Infections and Medical Care for Patients with Infections. In addition, we did not find any P. aeruginosa isolates that produced metallo-β-lactamase, the aminoglycoside 6'-N-acetyltransferase AAC(6')-Iae, or the aminoglycoside acetyltransferase AAC(6')-Ib.
Collapse
Affiliation(s)
- Shoichiro Yukawa
- Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts
| | | | - Tomomi Sato
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
29
|
Hayashi M, Kawamura K, Matsui M, Suzuki M, Suzuki S, Shibayama K, Arakawa Y. Reduction in chlorhexidine efficacy against multi-drug-resistant Acinetobacter baumannii international clone II. J Hosp Infect 2016; 95:318-323. [PMID: 28159381 DOI: 10.1016/j.jhin.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Nosocomial infections caused by Acinetobacter baumannii international clone II (IC II) can cause severe clinical outcomes. AIM Differential evaluation of bactericidal efficacy of chlorhexidine gluconate (CHX) and benzethonium chloride (BZT) disinfectants against IC II and non-IC II isolates. METHODS Minimum inhibitory concentrations (MICs) of CHX and BZT were determined for 137 A. baumannii IC II, 99 non-IC II and 69 non-baumannii isolates, further classified according to MIC values into disinfectant-reduced susceptible (DRS) and disinfectant-susceptible (DS) groups. Time-kill curves and minimum bactericidal concentrations (MBCs) were evaluated for representative isolates in each group. RESULTS CHX and BZT MIC90s for IC II isolates were 100 and 175mg/L, respectively, but those for non-IC II and non-baumannii isolates were <100mg/L. Nevertheless, time-kill curves indicated that CHX and BZT reduced live bacterial cell number by 5 log10 for IC II and non-IC II isolates within 30s when used at 1000mg/L, comparable to practical use concentrations. CHX MBC at 30s was 1000mg/L for IC II and non-IC II isolates, and was not influenced by addition of 3% bovine serum albumin (BSA); BZT MBC at 30s was 100mg/L without BSA and increased up to 500mg/L upon addition of BSA. No significant differences in BSA were found between DRS and DS isolates. CONCLUSION CHX and BZT were effective against Acinetobacter spp. including IC II at a concentration of 1000mg/L and exposure for at least 30s, but their concentrations should be considered carefully to ensure sufficient effects in both clinical and healthcare settings.
Collapse
Affiliation(s)
- M Hayashi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - K Kawamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - M Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - M Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - S Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - K Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Y Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
30
|
Kampf G. Acquired resistance to chlorhexidine – is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect 2016; 94:213-227. [DOI: 10.1016/j.jhin.2016.08.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
|
31
|
Beier RC, Franz E, Bono JL, Mandrell RE, Fratamico PM, Callaway TR, Andrews K, Poole TL, Crippen TL, Sheffield CL, Anderson RC, Nisbet DJ. Disinfectant and Antimicrobial Susceptibility Profiles of the Big Six Non-O157 Shiga Toxin-Producing Escherichia coli Strains from Food Animals and Humans. J Food Prot 2016; 79:1355-70. [PMID: 27497123 DOI: 10.4315/0362-028x.jfp-15-600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin-producing Escherichia coli strains (STECs) from food animals and humans were determined. Antimicrobial resistance (AMR) was moderate (39.1% of strains) in response to 15 antimicrobial agents. Animal strains had a lower AMR prevalence (35.6%) than did human strains (43.9%) but a higher prevalence of the resistance profile GEN-KAN-TET. A decreasing prevalence of AMR was found among animal strains from serogroups O45 > O145 > O121 > O111 > O26 > O103 and among human strains from serogroups O145 > O103 > O26 > O111 > O121 > O45. One animal strain from serogroups O121 and O145 and one human strain from serogroup O26 had extensive drug resistance. A high prevalence of AMR in animal O45 and O121 strains and no resistance or a low prevalence of resistance in human strains from these serogroups suggests a source other than food animals for human exposure to these strains. Among the 24 disinfectants evaluated, all strains were susceptible to triclosan. Animal strains had a higher prevalence of resistance to chlorhexidine than did human strains. Both animal and human strains had a similar low prevalence of low-level benzalkonium chloride resistance, and animal and human strains had similar susceptibility profiles for most other disinfectants. Benzyldimethylammonium chlorides and C10AC were the primary active components in disinfectants DC&R and P-128, respectively, against non-O157 STECs. A disinfectant FS512 MIC ≥ 8 μg/ml was more prevalent among animal O121 strains (61.5%) than among human O121 strains (25%), which may also suggest a source of human exposure to STEC O121 other than food animals. Bacterial inhibition was not dependent solely on pH but was correlated with the presence of dissociated organic acid species and some undissociated acids.
Collapse
Affiliation(s)
- Ross C Beier
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA.
| | - Eelco Franz
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - James L Bono
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Robert E Mandrell
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California 94710, USA
| | - Pina M Fratamico
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Todd R Callaway
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Kathleen Andrews
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Toni L Poole
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Tawni L Crippen
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Cynthia L Sheffield
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Robin C Anderson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - David J Nisbet
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| |
Collapse
|
32
|
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 2015; 10:1683-706. [PMID: 26439366 DOI: 10.2217/fmb.15.48] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Asmaa A Al Thani
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02018, USA.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed E El Zowalaty
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.,Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL 32611, USA
| | - Gheyath K Nasrallah
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hany E Marei
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Hossam M Ashour
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
33
|
In vivo biocompatibility and in vitro efficacy of antimicrobial gendine-coated central catheters. Antimicrob Agents Chemother 2015; 59:5611-8. [PMID: 26124171 DOI: 10.1128/aac.00834-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peripherally inserted central catheters (PICCs) might reduce the incidence of central line-associated bloodstream infections (CLABSI). We tested the biocompatibility of a novel gendine-coated (combination of chlorhexidine [CHX] and gentian violet [GV]) PICC in a rabbit intravascular model and tested antimicrobial efficacy in comparison with commercially available minocycline/rifampin (M/R)- and CHX-treated PICCs in an in vitro biofilm colonization model. Gendine-coated and uncoated control PICCs were inserted in the jugular veins of rabbits for 4 days. Histopathological analysis was performed at the end of the 4-day period, and circulating levels of CHX and GV in the blood were measured at different time points using liquid chromatography-mass spectrometry. The antimicrobial efficacy of the PICCs was tested following simulated intravascular indwells of 24 h and 1 week against clinical isolates of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida glabrata. Rabbits implanted with gendine-coated PICCs exhibited reduced levels of thrombosis and inflammation compared to those of the rabbits with uncoated controls. No GV was detected in blood samples over the entire study period, and trace concentrations of CHX were detected. The gendine-coated PICCs completely prevented the adherence of all pathogens from 24 h to 1 week (P ≤ 0.001), while M/R-treated, CHX-treated, and control PICCs did not. Gendine-coated PICCs were highly effective in preventing biofilm formation of multidrug-resistant pathogenic bacteria and fungi. Gendine-coated PICCs were biocompatible in an intravascular setting. Further, the pharmacokinetic testing established that acute systemic exposures of CHX and GV from the gendine-coated catheters were well within safe levels.
Collapse
|