1
|
Ramirez-Castrillon M, Benavides-León TA, Arcos-Velasco LV, Pantoja-Pulido KD, Lopez-Parra LL, Bolaños-Rojas AC, Osorio-Cadavid E. Tropical lakes as a novel source of oleaginous yeasts with lipid profiles for biodiesel, oleochemical, and nutraceutical applications. World J Microbiol Biotechnol 2025; 41:105. [PMID: 40080249 PMCID: PMC11906551 DOI: 10.1007/s11274-025-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Oleaginous yeasts have emerged as promising microbial cell factories for lipid production, offering sustainable alternatives to traditional sources of biodiesel and nutraceuticals. In this study, the lipid accumulation potential of yeast strains isolated from two freshwater aquatic ecosystems in Cali, Colombia, was evaluated to identify novel candidates for biotechnological applications. A total of 56 strains were tested for their oleaginous nature using a gravimetric lipid assay with glucose as a carbon source. Of the assessed strains, 46.15% exceeded 20% lipid yields relative to the dry biomass. Seven strains were selected using glycerol as a carbon source, but only five yeasts were further characterized for their lipid profiles. Molecular identification revealed diverse species, including Aureobasidium sp., Papiliotrema rajashtanensis, Rhodotorula spp., and Clavispora lusitaniae. The selected strains demonstrated unique lipid profiles, with high proportions of monounsaturated and polyunsaturated fatty acids, such as oleic acid (C18:1) and linoleic acid (C18:2). In particular, Aureobasidium sp. accumulated uncommon fatty acids such as petroselinic acid under conditions induced by glycerol. This fatty acid, which has a double bond in position 6,7 and a melting point of 33 °C, highlights its potential as an alternative to margarine production, as well as a precursor to sophorolipids, estolide esters, soaps, and plastics. Rhodotorula sp. exhibited very long-chain fatty acids such as docosadienoic and docosatrienoic acids in its lipid profile. These findings underscore the biotechnological value of yeasts from lentic aquatic systems as sustainable lipid producers, paving the way for innovations in biofuels, nutraceuticals, and oleochemicals.
Collapse
Affiliation(s)
- Mauricio Ramirez-Castrillon
- Programa de Microbiología, Universidad Santiago de Cali, Calle 5 62-00, Cali, 760035, Valle del Cauca, Colombia.
- Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Carrera 32 29-31, Bucaramanga, 680002, Santander, Colombia.
| | | | | | - Kriss Dayana Pantoja-Pulido
- Departamento de Ciencias Químicas y Farmacéuticas, Escuela de Ciencias Aplicadas e Industria Sostenible, Facultad Barberi de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 122-131, Cali, 760031, Valle del Cauca, Colombia
| | - Lizbeth Lorena Lopez-Parra
- Departamento de Química, Universidad del Valle, Calle 13 100-00, Cali, 760042, Valle del Cauca, Colombia
| | - Ana Cristina Bolaños-Rojas
- Departamento de Biología, Universidad del Valle, Calle 13 100-00, Cali, 760042, Valle del Cauca, Colombia
| | - Esteban Osorio-Cadavid
- Departamento de Biología, Universidad del Valle, Calle 13 100-00, Cali, 760042, Valle del Cauca, Colombia
| |
Collapse
|
2
|
Wu C, Okano K, Religia P, Soma Y, Takahashi M, Izumi Y, Bamba T, Honda K. Combination of Two-Stage Continuous Feeding and Optimized Synthetic Medium Increases Lipid Production in Lipomyces starkeyi. Eng Life Sci 2025; 25:e70003. [PMID: 39886606 PMCID: PMC11779743 DOI: 10.1002/elsc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
The oleaginous yeast Lipomyces starkeyi is recognized for its remarkable lipid accumulation under nitrogen-limited conditions. However, precise control of microbial lipid production in L. starkeyi remains challenging due to the complexity of nutrient media. We developed a two-stage fed-batch fermentation process using a well-defined synthetic medium in a 5-L bioreactor. In the first stage, the specific growth rate was maintained at a designated level by maximizing the cell density through optimizing the feeding rate, molar carbon-to-nitrogen (C/N) ratio, and phosphate concentration in feeding media, achieving a high cell density of 213 ± 10 × 107 cells mL-1. In the second stage, we optimized the molar C/N ratio in the feeding medium for lipid production and achieved high biomass (130 ± 5 g L-1), lipid titer (88 ± 6 g L-1), and lipid content (67% ± 2% of dry cellular weight). Our approach yielded a high lipid titer, comparable to the highest reported value of 68 g L-1 achieved in a nutrient medium, by optimizing cultivation conditions with a synthetic medium in L. starkeyi. This highlights the importance of well-established yet powerful bioprocess approaches for the precise control of microbial cultivation.
Collapse
Affiliation(s)
- Chih‐Chan Wu
- International Center for BiotechnologyOsaka UniversitySuitaOsakaJapan
| | - Kenji Okano
- International Center for BiotechnologyOsaka UniversitySuitaOsakaJapan
- Department of Life Science and BiotechnologyFaculty of ChemistryMaterials and BioengineeringKansai UniversitySuitaOsakaJapan
| | - Pijar Religia
- International Center for BiotechnologyOsaka UniversitySuitaOsakaJapan
| | - Yuki Soma
- Synthetic Bioengineering Research GroupBioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry CenterMedical Research Center for High Depth OmicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry CenterMedical Research Center for High Depth OmicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry CenterMedical Research Center for High Depth OmicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kohsuke Honda
- International Center for BiotechnologyOsaka UniversitySuitaOsakaJapan
- Industrial Biotechnology Initiative DivisionInstitute for Open and Transdisciplinary Research InitiativesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
3
|
Vasilakis G, Roidouli C, Karayannis D, Giannakis N, Rondags E, Chevalot I, Papanikolaou S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024; 12:2097. [PMID: 39458406 PMCID: PMC11510017 DOI: 10.3390/microorganisms12102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial cultures repurposing organic industrial residues for value-added metabolite production is pivotal for sustainable resource use. Highlighting polyunsaturated fatty acids (PUFAs), particularly gamma-linolenic acid (GLA), renowned for their nutritional and therapeutic value. Notably, Zygomycetes' filamentous fungi harbor abundant GLA-rich lipid content, furthering their relevance in this approach. In this study, the strain C. elegans NRRL Y-1392 was evaluated for its capability to metabolize glycerol and produce lipids rich in GLA under different culture conditions. Various carbon-to-nitrogen ratios (C/N = 11.0, 110.0, and 220.0 mol/mol) were tested in batch-flask cultivations. The highest GLA production of 224.0 mg/L (productivity equal to 2.0 mg/L/h) was observed under nitrogen excess conditions, while low nitrogen content promoted lipid accumulation (0.59 g of lipids per g of dry biomass) without yielding more PUFAs and GLA. After improving the C/N ratio at 18.3 mol/mol, even higher PUFA (600 mg/L) and GLA (243 mg/L) production values were recorded. GLA content increased when the fungus was cultivated at 12 °C (15.5% w/w compared to 12.8% w/w at 28 °C), but productivity values decreased significantly due to prolonged cultivation duration. An attempt to improve productivity by increasing the initial spore population did not yield the expected results. The successful scale-up of fungal cultivations is evidenced by achieving consistent results (compared to flask experiments under corresponding conditions) in both laboratory-scale (Working Volume-Vw = 1.8 L; C/N = 18.3 mol/mol) and semi-pilot-scale (Vw = 15.0 L; C/N = 110.0 mol/mol) bioreactor experiments. To the best of our knowledge, cultivation of the fungus Cunninghamella elegans in glycerol-based substrates, especially in 20 L bioreactor experiments, has never been previously reported in the international literature. The successful scale-up of the process in a semi-pilot-scale bioreactor illustrates the potential for industrializing the bioprocess.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Christina Roidouli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Dimitris Karayannis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Nikos Giannakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Emmanuel Rondags
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Isabelle Chevalot
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| |
Collapse
|
4
|
Diamantopoulou P, Sarris D, Tchakouteu SS, Xenopoulos E, Papanikolaou S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 1: High Production of Lipid by Lipomyces starkeyi and Citric Acid by Yarrowia lipolytica. Microorganisms 2023; 11:1863. [PMID: 37513034 PMCID: PMC10384381 DOI: 10.3390/microorganisms11071863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Sugar-rich waste streams, generated in very high quantities worldwide, constitute an important source of environmental pollution. Their eco-friendly conversions into a plethora of added-value compounds through the use of microbial fermentations is currently a very "hot" scientific topic. The aim of this study, was to assess the potential of single cell oil (SCO), microbial mass and citric acid (CA) production by non-conventional yeast strains growing on expired ("waste") glucose. Six yeast strains (viz. Rhodosporidium toruloides DSM 4444, Rhodotorula glutinis NRRL YB-252, R. toruloides NRRL Y-27012, Yarrowia lipolytica LFMB Y-20, Y. lipolytica ACA-DC 50109 and Lipomyces starkeyi DSM 70296) were initially grown in shake flasks with expired glucose used as substrate under nitrogen limitation, in order to "boost" the cellular metabolism towards the synthesis of SCO and CA, and their growth response was quantitatively evaluated. Initial glucose concentration (Glc0) was adjusted at c. 50 g/L. Besides Y. lipolytica, all other yeast strains produced noticeable SCO quantities [lipid in dry cell weight (DCW) ranging from 25.3% w/w to 55.1% w/w]. Lipids of all yeasts contained significant quantities of oleic acid, being perfect candidates for the synthesis of 2nd generation biodiesel. The highest DCW production (=13.6 g/L) was obtained by L. starkeyi DSM 70296, while both Y. lipolytica strains did not accumulate noticeable lipid quantities, but produced non-negligible CA amounts. The most promising CA-producing strain, namely Y. lipolytica ACA-DC 50109 was further studied in stirred-tank bioreactor systems, while the very promising DCW- and SCO-producing L. starkeyi DSM 70296 was further studied in shake flasks. Both strains were grown on media presenting higher Glc0 concentrations and the same initial nitrogen quantity as previously. Indeed, L. starkeyi grown at Glc0 = 85 g/L, produced DCWmax = 34.0 g/L, that contained lipid =34.1% w/w (thus SCO was =11.6 g/L). The strain ACA-DC 50109 in stirred tank bioreactor with Glc0 ≈ 105 g/L produced CA up to 46 g/L (yield of CA produced on glucose consumed; YCA/Glc ≈ 0.45 g/g). Finally, in fed-batch bioreactor experiment, the significant CA quantity of 82.0 g/L (YCA/Glc = 0.50 g/g) was recorded. Concluding, "waste" glucose proved to be a suitable substrate for a number of non-conventional yeast strains. Y. lipolytica ACA-DC 50109 produced significant quantities of CA while L. starkeyi DSM 70296 was a very interesting DCW- and SCO-producing candidate. These strains can be used as potential cell factories amenable to convert glucose-based residues into the mentioned metabolic compounds, that present high importance for food, chemical and biofuel facilities.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400 Myrina, Greece
| | - Sidoine Sadjeu Tchakouteu
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
5
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
6
|
Xue SJ, Li XC, Huang X, Liu J, Li Y, Zhang XT, Zhang JY. Diversity investigation of cultivable yeasts associated with honeycombs and identification of a novel Rhodotorula toruloides strain with the robust concomitant production of lipid and carotenoid. BIORESOURCE TECHNOLOGY 2023; 370:128573. [PMID: 36603754 DOI: 10.1016/j.biortech.2022.128573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Oleaginous yeasts-derived microbial lipids provide a promising alternative feedstock for the biodiesel industry. However, hyperosmotic stress caused by high sugar concentration during fermentation significantly prevents high cell density and productivity. Isolation of new robust osmophilic oleaginous species from specific environment possibly resolves this issue to some extent. In this study, the cultivable yeast composition of honeycombs was investigated. Totally, 11 species of honeycomb-associated cultivable yeast were identified and characterized. Among them, an osmophilic yeast strain, designated as Rhodotorula toruloides C23 was featured with excellent lipogenic and carotenogenic capacity and remarkable cell growth using glucose, xylose or glycerol as feedstock, with simultaneous production of 24.41 g/L of lipids and 15.50 mg/L of carotenoids from 120 g/L glucose in 6.7-L fermentation. Comparative transcriptomic analysis showed that C23 had evolved a dedicated molecular regulation mechanism to maintain their high simultaneous accumulation of intracellular lipids and carotenoids and cell growth under high sugar concentration.
Collapse
Affiliation(s)
- Si-Jia Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao-Chen Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiao Huang
- Qingdao Animal Husbandry and Veterinary Institute, Qingdao, Shandong Province 266000, China
| | - Jie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xin-Tong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jin-Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of Rhodosporidium toruloides, Candida oleophila, Metschnikowia pulcherima, and Cryptococcus curvatus species to produce single-cell-oil (SCO) and other valuable metabolites on low-cost media, based on commercial-type xylose, was investigated. Rhodosporidium strains were further evaluated in shake-flasks using different lignosulphonate (LS) concentrations, in media mimicking waste streams derived from the paper and pulp industry. Increasing the LS concentration up to 40 g/L resulted in enhanced dry cell weight (DCW) while SCO production increased up to ~5.0 g/L when R. toruloides NRRL Y-27012 and DSM 4444 were employed. The intra-cellular polysaccharide production ranged from 0.9 to 2.3 g/L in all fermentations. Subsequent fed-batch bioreactor experiments with R. toruloides NRRL Y-27012 using 20 g/L of LS and xylose, led to SCO production of 17.0 g/L with maximum lipids in DCW (YL/X) = 57.0% w/w. The fatty acid (FA) profile in cellular lipids showed that oleic (50.3–63.4% w/w) and palmitic acid (23.9–31.0%) were the major FAs. Only SCO from batch trials of R. toruloides strains contained α-linolenic acid. Media that was supplemented with various LS concentrations enhanced the unsaturation profile of SCO from R. toruloides NRRL Y-27012. SCO from R. toruloides strains could replace plant-based commodity oils in oleochemical-operations and/or it could be micro- and nano-encapsulated into novel food-based formulas offering healthier food-products.
Collapse
|
9
|
Filippousi R, Diamantopoulou P, Stavropoulou M, Makris DP, Papanikolaou S. Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Saini R, Osorio-Gonzalez CS, Hegde K, Kaur Brar S, Vezina P. A co-fermentation strategy with wood hydrolysate and crude glycerol to enhance the lipid accumulation in Rhodosporidium toruloides-1588. BIORESOURCE TECHNOLOGY 2022; 364:127821. [PMID: 36007764 DOI: 10.1016/j.biortech.2022.127821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Wood hydrolysate has been regarded as sustainable and renewable substrate to produce microbial lipids, a potential feedstock for the biodiesel industry. Moreover, the major by-product of biofuel industries is crude glycerol but its implementation as a carbon source is still constrained due to the presence of impurities resulting in low biomass production and low lipid titer. Thus, this study investigates the effect of different carbon ratios of hydrolysate and crude glycerol on R. toruloides-1588. Hydrolysate to crude glycerol ratio of 60:40 resulted in maximum lipid accumulation of 49% (w/w), more than 90% of sugars and glycerol consumption. Further, scale-up to bench-scale fermenter resulted in 12% higher lipid accumulation (56.3% w/w, 0.15 g/L∙h) in 50% less time than flask fermentation. Hence, the ability of R. toruloides-1588 to flourish on different carbohydrates and accumulate high lipid content will be beneficial for the further development of biorefinery industries.
Collapse
Affiliation(s)
- Rahul Saini
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos Saul Osorio-Gonzalez
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Pierre Vezina
- Director of Energy and the Environment, Council of the Quebec Forestry Industry, 1175 Avenue Lavigerie Suite 200, Quebec G1V 4P1, Canada
| |
Collapse
|
11
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Dobrowolski A, Nawijn W, Mirończuk AM. Brown seaweed hydrolysate as a promising growth substrate for biomass and lipid synthesis of the yeast yarrowia lipolytica. Front Bioeng Biotechnol 2022; 10:944228. [PMID: 36061426 PMCID: PMC9428158 DOI: 10.3389/fbioe.2022.944228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Biomass of the brown algae Fucus vesiculosus and Saccharina latissima is a promising, renewable feedstock because of the high growth rate, accessibility and content of glucose and mannitol. Saccharification of seaweeds is a simple process due to the lack of lignocellulose in the cell wall. The high content of glucose and mannitol makes these seaweeds an attractive feedstock for lipid production in the yeast Yarrowia lipolytica. This study demonstrated that hydrolysates of brown algae biomass can be applied as a substrate for synthesis of yeast biomass and lipids without any supplementation. To increase the lipid titer in yeast biomass, we employed an engineered strain of Y. lipolytica overexpressing DGA1/DGA2. In consequence, the C/N ratio has a lower impact on lipid synthesis. Moreover, the applied substrates allowed for high synthesis of unsaturated fatty acids (UFA); the level exceeded 90% in the fatty acid pool. Oleic (C18:1) and linoleic acids (C18:2) achieved the highest content. The study showed that Y. lipolytica is able to grow on the seaweed hydrolysate and produces a high content of UFA in the biomass.
Collapse
|
14
|
Gufrana T, Islam H, Khare S, Pandey A, P R. In-situ transesterification of single-cell oil for biodiesel production: a review. Prep Biochem Biotechnol 2022; 53:120-135. [PMID: 35499507 DOI: 10.1080/10826068.2022.2065684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, biodiesel synthesis and production demands have increased because of its high degradability, cleaner emissions, non-toxicity, and an alternative to petroleum diesel. In this context, Single Cell Oil (SCO) has been identified as an alternative feedstock, having the advantage of accumulating high intracellular lipid. SCO/microbial lipids are potential alternatives for sustainable biodiesel production. The traditional technique for biodiesel production from the oils obtained from microbes generally requires two steps: lipid extraction and transesterification. In-situ transesterification is an innovative and renewable process for biodiesel production. It rules out the need to isolate and refine the feedstock lipid, as it directly uses biomass in a single step, i.e., the pretreated biomass will be subjected to in-situ transesterification in the presence of catalysts. Hence, the production cost can be reduced by eliminating the lipid extraction procedure. The current review focuses on the basic features and advantages of in-situ transesterification of SCO for biodiesel production with the aid of short-chain alcohols along with different acid, base, and enzyme catalysts. In addition, a comparative study was carried out to highlight the merits of in-situ transesterification over conventional transesterification.
Collapse
Affiliation(s)
- Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Radha P
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
15
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
16
|
Li M, Alotaibi MKH, Li L, Abomohra AEF. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. BIOMASS AND BIOENERGY 2022; 159:106410. [DOI: 10.1016/j.biombioe.2022.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Sarocladium strictum lipase (LipSs) produced using crude glycerol as sole carbon source: A promising enzyme for biodiesel production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhang L, Lee JTE, Ok YS, Dai Y, Tong YW. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: A review. BIORESOURCE TECHNOLOGY 2022; 344:126294. [PMID: 34748983 DOI: 10.1016/j.biortech.2021.126294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The enhanced production of microbial lipids suitable for manufacturing biodiesel from oleaginous yeast Lipomyces starkeyi is critically reviewed. Recent advances in several aspects involving the biosynthetic pathways of lipids, current conversion efficiencies using various carbon sources, intensification strategies for improving lipid yield and productivity in L. starkeyi fermentation, and lipid extraction approaches are analyzed from about 100 papers for the past decade. Key findings on strategies are summarized, including (1) optimization of parameters, (2) cascading two-stage systems, (3) metabolic engineering strategies, (4) mutagenesis followed by selection, and (5) co-cultivation of yeast and algae. The current technical limitations are analyzed. Research suggestions like examination of more gene targets via metabolic engineering are proposed. This is the first comprehensive review on the latest technical advances in strategies from the perspective of process and metabolic engineering to further increase the lipid yield and productivity from L. starkeyi fermentation.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jonathan T E Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
19
|
Current trends and next generation of future edible oils. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Jia YL, Wang LR, Zhang ZX, Gu Y, Sun XM. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Crit Rev Food Sci Nutr 2021; 62:8920-8934. [PMID: 34120537 DOI: 10.1080/10408398.2021.1937041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the important physiological functions, polyunsaturated fatty acids (PUFAs) play a vital role in protecting human health, such as preventing cancer, cardiovascular disease, and diabetes. Specifically, Yarrowia lipolytica has been identified as the most popular non-conventional oleaginous yeast, which can accumulate the abundant intracellular lipids, indicating that has great potential as an industrial host for production of PUFAs. Notably, some novel engineering strategies have been applied to endow and improve the abilities of Y. lipolytica to synthesize PUFAs, including construction and optimization of PUFAs biosynthetic pathways, improvement of preucrsors acetyl-coA and NADPH supply, inhibition of competing pathways, knockout of β-oxidation pathways, regulation of oxidative stress defense pathways, and regulation of genes involved in upstream lipid metabolism. Besides, some bypass approaches, such as strain mating, evolutionary engineering, and computational model based on omics, also have been proposed to improve the performance of engineering strains. Generally, in this review, we summarized the recent advances in engineering strategies and bypass approaches for improving PUFAs production by Y. lipolytica. In addition, we further summarized the latest efforts of CRISPR/Cas genome editing technology in Y. lipolytica, which is aimed to provide its potential applications in PUFAs production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
22
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
23
|
Takaku H, Ebina S, Kasuga K, Sato R, Ara S, Kazama H, Matsuzawa T, Yaoi K, Araki H, Shida Y, Ogasawara W, Ishiya K, Aburatani S, Yamazaki H. Isolation and characterization of Lipomyces starkeyi mutants with greatly increased lipid productivity following UV irradiation. J Biosci Bioeng 2021; 131:613-621. [PMID: 33582014 DOI: 10.1016/j.jbiosc.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.
Collapse
Affiliation(s)
- Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| | - Sayaka Ebina
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kotoha Kasuga
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Haruka Kazama
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hideo Araki
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., 4-3 Kinunodai, Tsukubamirai-shi, Ibaraki 300-2497, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sachiyo Aburatani
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Main Bldg. 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
24
|
da Cunha Abreu Xavier M, Teixeira Franco T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett 2021; 43:967-979. [PMID: 33517513 DOI: 10.1007/s10529-021-03080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.
Collapse
Affiliation(s)
- Michelle da Cunha Abreu Xavier
- Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, 77404-970, Brazil.
| | - Telma Teixeira Franco
- Department of Process Engineering (DEPro), School of Chemical Engineering, State University of Campinas (UNICAMP), Albert Einstein Avenue, 500, Zeferino Vaz University City, Campinas, SP, 13083-852, Brazil
| |
Collapse
|
25
|
Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021; 9:microorganisms9020251. [PMID: 33513696 PMCID: PMC7910848 DOI: 10.3390/microorganisms9020251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and “green” solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
Collapse
|
26
|
Chawla K, Kaur S, Kaur R, Bhunia RK. Metabolic engineering of oleaginous yeasts to enhance single cell oil production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kirti Chawla
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector‐25 Panjab University Chandigarh India
| | - Ranjeet Kaur
- Department of Genetics University of Delhi South Campus New Delhi India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| |
Collapse
|
27
|
Kamal R, Liu Y, Li Q, Huang Q, Wang Q, Yu X, Zhao ZK. Exogenous l-proline improved Rhodosporidium toruloides lipid production on crude glycerol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:159. [PMID: 32944075 PMCID: PMC7490893 DOI: 10.1186/s13068-020-01798-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. RESULTS Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. CONCLUSION Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.
Collapse
Affiliation(s)
- Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yuxue Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qiang Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Xue Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
28
|
Carota E, Petruccioli M, D'Annibale A, Crognale S. Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon 2020; 6:e04801. [PMID: 32984573 PMCID: PMC7494470 DOI: 10.1016/j.heliyon.2020.e04801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
The aqueous extraction of orange peel waste (OPW), the byproduct of the juice extraction process generated annually in massive amounts (21 Mton), yields a carbohydrate-rich liquid fraction, termed orange peel extract (OPE). Several studies highlight that the combination of glycerol, a biodiesel byproduct, with carbohydrate mixtures might boost microbial lipid production. This study performed first a shaken flask screening of 15 oleaginous yeast strains based on their growth and lipid-producing abilities on OPE- and glycerol-based media. This screening enabled the selection of R. toruloides NRRL 1091 for the assessment of the process transfer in a stirred tank reactor (STR). This assessment relied, in particular, on either single- and double-stage feeding fed-batch (SSF-FB and DSF-FB, respectively) processes where OPE served as the primary medium and nitrogen-containing glycerol-OPE mixtures as the feeding one. The continuous supply mode at low dilution rates (0.02 and 0.01 h-1 for SSF-FB and DSF-FB, respectively) starting from the end of the exponential growth of the initial batch phase enabled the temporal extension of biomass and lipid production. The SSF-FB and DSF-FB processes attained high biomass and lipid volumetric productions (LVP) and ensured significant lipid accumulation on a dry cell basis (YL/X). The SSF-FB process led to LVP of 20.6 g L-1 after 104 h with volumetric productivity (r L) of 0.20 g L-1 h-1 and YL/X of 0.80; the DSF-FB process yielded LVP, r L and YL/X values equal to 15.92 g L-1, 0.11 g L-1 h-1 and 0.65, respectively. The fatty acid profiles of lipids from both fed-batch processes were not significantly different and resembled that of Jatropha oil, a vastly used feedstock for biodiesel production. These results suggest that OPE constitutes an excellent basis for the fed-batch production of R. toruloides lipids, and this process might afford a further option in OPW-based biorefinery.
Collapse
Affiliation(s)
- Eleonora Carota
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
29
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
30
|
Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett 2020; 367:5818764. [DOI: 10.1093/femsle/fnaa063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
A total of 11 yeast strains of Yarrowia lipolytica, Metschnikowia sp., Rhodotorula sp. and Rhodosporidium toruloides were grown under nitrogen-limited conditions with crude glycerol employed as substrate in shake flasks, presenting interesting dry cell weight (DCW) production. Three of these strains belonging to Metschnikowia sp. accumulated significant quantities of endopolysaccharides (i.e. the strain V.V.-D4 produced 11.0 g/L of endopolysaccharides, with polysaccharides in DCW ≈ 63% w/w). A total of six Y. lipolytica strains produced either citric acid or mannitol. Most of the screened yeasts presented somehow elevated lipid and polysaccharides in DCW values at the early steps of growth despite nitrogen appearance in the fermentation medium. Lipid in DCW values decreased as growth proceeded. R. toruloides DSM 4444 cultivated on media presenting higher glycerol concentrations presented interesting lipid-accumulating capacities (maximum lipid = 12.5 g/L, maximum lipid in DCW = 43.0–46.0% w/w, conversion yield on glycerol = 0.16 g/g). Replacement of crude glycerol by xylose resulted in somehow decreased lipid accumulation. In xylose/glycerol mixtures, xylose was more rapidly assimilated from glycerol. R. toruloides total lipids were mainly composed of triacylglycerols. Total cellular fatty acid composition on xylose presented some differences compared with that on glycerol. Cellular lipids contained mainly oleic and palmitic acid.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
| | - Rosanina Filippousi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitrios Antoniou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evaggelia Varfi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| |
Collapse
|
31
|
Morgunov IG, Kamzolova SV, Karpukhina OV, Bokieva SB, Lunina JN, Inozemtsev AN. Microbiological Production of Isocitric Acid from Biodiesel Waste and Its Effect on Spatial Memory. Microorganisms 2020; 8:E462. [PMID: 32218311 PMCID: PMC7232500 DOI: 10.3390/microorganisms8040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/15/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Within this work, the microbial synthesis of (2R,3S)-isocitric acid (ICA), a metabolite of the nonconventional yeast Yarrowia lipolytica, from biodiesel waste, has been studied. The selected strain Y. lipolytica VKM Y-2373 synthesized ICA with citric acid (CA) as a byproduct. This process can be regulated by changing cultivation conditions. The maximal production of ICA with the minimal formation of the byproduct was provided by the use of a concentration of (NH4)2SO4 (6 g/L); the addition of biodiesel waste to cultivation medium in 20-60 g/L portions; maintaining the pH of the cultivation medium at 6, and degree of aeration between 25% and 60% of saturation. Itaconic acid at a concentration of 15 mM favorably influenced the production of ICA by the selected strain. The optimization of cultivation conditions allowed us to increase the concentration of ICA in the culture liquid from 58.32 to 90.2 g/L, the product yield (Y) by 40%, and the ICA/CA ratio from 1.1:1 to 3:1. Research on laboratory animals indicated that ICA counteracted the negative effect of ammonium molybdate (10-5 М) and lead diacetate (10-7 М) on the learning and spatial memory of rats, including those exposed to emotional stress.
Collapse
Affiliation(s)
- Igor G. Morgunov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Svetlana V. Kamzolova
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Olga V. Karpukhina
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| | - Svetlana B. Bokieva
- Department of Anatomy, Physiology and Botany, Khetagurov North Ossetian State University, 44-46 Vatutina str, 362025 Vladikavkaz, North Ossetia, Russia;
| | - Julia N. Lunina
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Anatoly N. Inozemtsev
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| |
Collapse
|
32
|
Sarris D, Sampani Z, Rapti A, Papanikolaou S. Valorization of Crude Glycerol, Residue Deriving from Biodiesel- Production Process, with the Use of Wild-type New Isolated Yarrowia lipolytica Strains: Production of Metabolites with Pharmaceutical and Biotechnological Interest. Curr Pharm Biotechnol 2020; 20:881-894. [PMID: 30747061 DOI: 10.2174/1389201020666190211145215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Crude glycerol (Glol), used as substrate for screening eleven natural Yarrowia lipolytica strains in shake-flask experiments. Aim of this study was to assess the ability of the screened strains to produce biomass (dry cell weight; X), lipid (L), citric acid (Cit), mannitol (Man), arabitol (Ara) and erythritol (Ery), compounds presenting pharmaceutical and biotechnological interest, in glycerol-based nitrogen-limited media, in which initial glycerol concentration had been adjusted to 40 g/L. METHODS Citric acid may find use in biomedical engineering (i.e. drug delivery, tissue engineering, bioimaging, orthopedics, medical device coating, wound dressings). Polyols are considered as compounds with non-cariogenic and less calorigenic properties as also with low insulin-mediated response. Microbial lipids containing polyunsaturated fatty acids (PUFA) are medically and dietetically important (selective pharmaceutical and anticancer properties, aid fetal brain development, the sight function of the eye, hormonal balance and the cardio-vascular system, prevent reasons leading to type-2 diabetes, present healing and anti-inflammatory effects). RESULTS All strains presented satisfactory microbial growth (Xmax=5.34-6.26 g/L) and almost complete substrate uptake. The principal metabolic product was citric acid (Citmax=8.5-31.7 g/L). Production of cellular lipid reached the values of 0.33-0.84 g/L. Polyols were also synthesized as strain dependent compounds (Manmax=2.8-6.1 g/L, Aramax ~2.0 g/L, Erymax= 0.5-3.8 g/L). The selected Y. lipolytica strain ACA-DC 5029 presented satisfactory growth along with synthesis of citric acid and polyols, thus, was further grown on media presenting an increased concentration of Glol~75 g/L. Biomass, lipid and citric acid production presented significant enhancement (Xmax=11.80 g/L, Lmax=1.26 g/L, Citmax=30.8 g/L), but conversion yield of citric acid produced per glycerol consumed was decreased compared to screening trials. Erythritol secretion (Erymax=15.6 g/L) was highly favored, suggesting a shift of yeast metabolism from citric acid accumulation towards erythritol production. Maximum endopolysaccharides (IPS) concentration was 4.04 g/L with yield in dry weight 34.2 % w/w. CONCLUSION Y. lipolytica strain ACA-YC 5029 can be considered as a satisfactory candidate grown in high concentrations of crude glycerol to produce added-value compounds that interest pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos Greece
| | - Zoe Sampani
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
33
|
Karamerou EE, Webb C. Cultivation modes for microbial oil production using oleaginous yeasts – A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Russmayer H, Egermeier M, Kalemasi D, Sauer M. Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnol Adv 2019; 37:107395. [DOI: 10.1016/j.biotechadv.2019.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
35
|
Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters. ENERGIES 2019. [DOI: 10.3390/en12193649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major environmental problems is the highly toxic agro-industrial waste called olive mill wastewater (OMW), deriving from olive oil production. On the other hand, the continuous development of the biological liquid fuel industry (biodiesel and bioethanol) makes it mandatory the process and exploitation of their main by-products, crude glycerol. This study dealt with the biotechnological conversions of biodiesel-derived crude glycerol with the use of the non-conventional yeast Yarrowia lipolytica in media that had been diluted with OMWs. OMWs, employed as simultaneous liquid medium and substrate, is a new trend recently appearing in Industrial Biotechnology, where value-added metabolites could be produced with simultaneous partial detoxification (i.e. decolorization and phenol removal) of the used residue. In the present study, diluted OMWs (containing 2.0 g/L of total phenolic compounds) blended with 70.0 g/L crude glycerol were employed as substrates. Production of value-added compounds by Y. lipolytica strain ACA-YC 5031 was studied in nitrogen-limited media favoring the production of secondary metabolites (i.e. citric acid, polyols, microbial lipids, polysaccharides). Batch-flask cultures were carried out and the impact of the addition of different NaCl concentrations (1.0%, 3.0%, 5.0% w/w) added upon the biochemical behavior of the strain was studied. Remarkable biomass production was observed in all trials, while in the “blank” experiment (no OMWs and no salt added), the metabolism was shifted toward the synthesis of polyols (Σpolyols = mannitol + arabitol + erythritol > 20 g/L and maximum total citric acid-Cit (sum of citric and isocitric acid) = 10.5 g/L). Addition of OMWs resulted in Citmax = 32.7 g/L, while Σpolyols concentration dropped to <15 g/L. Addition of salt in the OMW-based media slightly reduced the produced biomass, while Cit production drastically increased, reaching a final value of 54.0 g/L (conversion yield of Cit produced per unit of glycerol consumed = 0.82 g/g) in the trial with addition of 5.0% NaCl. Finally, significant color and phenols removal were observed, evaluating the yeast as a decontamination medium for the OMW and a great candidate for the production of value-added compounds.
Collapse
|
36
|
Tiukova IA, Prigent S, Nielsen J, Sandgren M, Kerkhoven EJ. Genome‐scale model of
Rhodotorula toruloides
metabolism. Biotechnol Bioeng 2019; 116:3396-3408. [DOI: 10.1002/bit.27162] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ievgeniia A. Tiukova
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala Sweden
| | | | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Mats Sandgren
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala Sweden
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| |
Collapse
|
37
|
Tasselli G, Filippucci S, D'Antonio S, Cavalaglio G, Turchetti B, Cotana F, Buzzini P. Optimization of enzymatic hydrolysis of cellulosic fraction obtained from stranded driftwood feedstocks for lipid production by Solicoccozyma terricola. ACTA ACUST UNITED AC 2019; 24:e00367. [PMID: 31453116 PMCID: PMC6704348 DOI: 10.1016/j.btre.2019.e00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/01/2022]
Abstract
Stranded driftwood feedstocks (SD) were steam exploded and hydrolyzed. The enzymatic hydrolysis was optimized using a multivariate approach (RSM). The conversion of carbohydrates into lipids by S. terricola was high (YL = 25.26%). The fatty acid profile achieved was similar to that reported for palm oil. SD feedstocks resulted a cheap C-source for biofuels and biochemicals production.
Stranded driftwood feedstocks may represent, after pretreatment with steam explosion and enzymatic hydrolysis, a cheap C-source for producing biochemicals and biofuels using oleaginous yeasts. The hydrolysis was optimized using a response surface methodology (RSM). The solid loading (SL) and the dosage of enzyme cocktail (ED) were variated following a central composite design (CCD) aimed at optimizing the conversion of carbohydrates into lipids (YL) by the yeast Solicoccozyma terricola DBVPG 5870. A second-order polynomial equation was computed for describing the effect of ED and SL on YL. The best combination (ED = 3.10%; SL = 22.07%) for releasing the optimal concentration of carbohydrates which gave the highest predicted YL (27.32%) was then validated by a new hydrolysis. The resulting value of YL (25.26%) was close to the theoretical maximum value. Interestingly, fatty acid profile achieved under the optimized conditions was similar to that reported for palm oil.
Collapse
Key Words
- A600, absorbance at 600 nm
- ANOVA, analysis of variance
- C/N, carbon/nitrogen
- C10:0, capric acid (decanoic acid)
- C12:0, lauric acid (dodecanoic acid)
- C14:0, myristic acid (tetradecanoic acid)
- C16:0, palmitic acid (hexadecanoic acid)
- C18:0, stearic acid (octadecanoic acid)
- C20:0, arachic acid (eicosanoic acid)
- C22:0, behenic acid (docosanoic acid)
- C24:0, lignoceric acid (tetracosanoic acid)
- C5, carbohydrates with five carbon atoms
- C6, carbohydrates with six carbon atoms
- C8:0, caprylic acid (octanoic acid)
- CBU, cellobiase unit
- CCD, Central Composite Design
- DW, dry weight
- ED, enzyme dosage
- Enzymatic hydrolysis
- Eq, equation
- F.A.M.E., fatty acid methyl ester
- FA, fatty acid
- FPU, filterpaper unit
- GC, Gas Chromatography
- GC-FID, Gas Chromatography – Flame Ionization Detector
- HLF, hydrolyzed liquid fraction
- HPLC, high performance liquid chromatography
- LF, liquid fraction
- NREL, National Renewable Energy Laboratory
- PL, total lipid production
- PL/DW, % of total intracellular lipid on cellbiomass
- PL/d, lipid production per day
- RI, refractive index
- RSM, response surface methodology
- Response surface methodology
- Rpm, revolutions per minute
- SD, stranded driftwood
- SE, steam explosion
- SFA, saturated fatty acid
- SL, solid loading
- Solicoccozyma terricola
- Stranded driftwood feedstocks
- TAGs, Tryacylglicerols
- UFA, unsaturated fatty acid
- UI, unsaturation index
- WIS, water insoluble substrate
- XG, Xilose and Galactose
- YL, lipid yied
- YPD, Yeast Extract Peptone Dextrose
- Yeast biochemicals and biofuels
- Yoleic, oleic acid yield
- g, gravity force
- h, hours
- min, minutes
- p, p-value
- v/v, concentration in volume/volume percent
- Δ13C22:1, erucic acid [(13Z)-docos-13-enoic acid]
- Δ9,12,15C18:3, linolenic acid [(9Z,12Z,15Z)-9,12,15-octadecatrienoic acid]
- Δ9,12C18:2, linoleic acid [(9Z,12Z)-9,12-octadecadienoic acid]
- Δ9C16:1, palmitoleic acid [(9Z)-hexadec-9-enoic acid]
- Δ9C18:1, oleic acid [(9E9Z)-octadec-9-enoic acid]
Collapse
Affiliation(s)
- Giorgia Tasselli
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Italy.,CIRIAF - Biomass Research Centre, University of Perugia, Italy
| | - Sara Filippucci
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | | | - Gianluca Cavalaglio
- CIRIAF - Biomass Research Centre, University of Perugia, Italy.,Department of Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Franco Cotana
- CIRIAF - Biomass Research Centre, University of Perugia, Italy.,Department of Engineering, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Italy.,CIRIAF - Biomass Research Centre, University of Perugia, Italy
| |
Collapse
|
38
|
Filippousi R, Antoniou D, Tryfinopoulou P, Nisiotou A, Nychas G, Koutinas A, Papanikolaou S. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel‐derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. J Appl Microbiol 2019; 127:1080-1100. [DOI: 10.1111/jam.14373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Affiliation(s)
- R. Filippousi
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - D. Antoniou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - P. Tryfinopoulou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - A.A. Nisiotou
- Hellenic Agricultural Organization “Demeter” Institute of Technology of Agricultural Products Lycovryssi Greece
| | - G.‐J. Nychas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - A.A. Koutinas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| |
Collapse
|
39
|
Tsai YY, Ohashi T, Wu CC, Bataa D, Misaki R, Limtong S, Fujiyama K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J Biosci Bioeng 2019; 127:430-440. [DOI: 10.1016/j.jbiosc.2018.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
|
40
|
Dobrowolski A, Drzymała K, Rzechonek DA, Mituła P, Mirończuk AM. Lipid Production From Waste Materials in Seawater-Based Medium by the Yeast Yarrowia lipolytica. Front Microbiol 2019; 10:547. [PMID: 30936863 PMCID: PMC6431633 DOI: 10.3389/fmicb.2019.00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
The global limitation of fossil fuels impels scientists to search for new energy sources. A good alternative is biodiesel produced from crop plants. However, its production requires huge quantities of farmland, fertilizers and fresh water, which is in conflict with the human demand for water for consumption and land for food production. Thus, production of single cell oil (SCO) by oleaginous microorganisms remains the best solution for the coming years. Whereas most microorganisms require fresh water for proper cell metabolism, in this study we demonstrate that the unconventional yeast Yarrowia lipolytica is able to produce huge quantities of fatty acid in seawater-based medium. Here we shown that Y. lipolytica is able to produce fatty acids in medium based on seawater and crude glycerol as the main carbon source, which allows for low-cost production of SCO, is beneficial for industrial application and is ecologically friendly.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Drzymała
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Dorota A Rzechonek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Mituła
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
41
|
Sarris D, Rapti A, Papafotis N, Koutinas AA, Papanikolaou S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019; 24:E222. [PMID: 30634450 PMCID: PMC6359483 DOI: 10.3390/molecules24020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Anna Rapti
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Nikolaos Papafotis
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Apostolis A Koutinas
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
42
|
Gálvez-López D, Chávez-Meléndez B, Vázquez-Ovando A, Rosas-Quijano R. The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Braz J Microbiol 2019; 50:23-31. [PMID: 30637631 PMCID: PMC6863248 DOI: 10.1007/s42770-018-0004-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/02/2018] [Indexed: 01/08/2023] Open
Abstract
The biotechnological potential of Yarrowia lipolytica, as a single cell oil-producing microorganism, is presented in this review. Although initially this yeast species was considered as a lipid-degrading, recently, it was reclassified as a lipid-producing microorganism, since it has been reported to be capable of accumulating diverse desirable fatty acids after metabolic pathway engineering. In the first part of the present document, a general revision of the oil metabolic pathways and the capacity of oil production in Y. lipolytica is presented. The single cell oil produced by these metabolic engineering strategies has been designed by optimization, introduction, or suppression of new pathways to increase yield on lipid production. Later on, the genetic regulation systems and the lipid composition generated by this yeast for industrial purposes are discussed. These lipids could be safely used in the chemical food and biofuel industries, due to their high proportion of oleic acid. This document emphasizes in the overviewing at Y. lipolytica as an ideal oil cell factory, and as an excellent model to produce single cell oil.
Collapse
Affiliation(s)
- Didiana Gálvez-López
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, México
| | - Bianca Chávez-Meléndez
- Unidad Académica Multidisciplinaria, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | | |
Collapse
|
43
|
Palaiogeorgou AM, Papanikolaou S, de Castro AM, Freire DMG, Kookos IK, Koutinas AA. A newly isolatedEnterobactersp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. FEMS Microbiol Lett 2018; 366:5210085. [DOI: 10.1093/femsle/fny280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aline Machado de Castro
- Renewable Energy Division, Research and Development Center, PETROBRAS, Avenue Horácio Macedo, 950 Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Denise Maria Guimarães Freire
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
44
|
Hernández MA, Alvarez HM. Increasing lipid production using an NADP +-dependent malic enzyme from Rhodococcus jostii. MICROBIOLOGY-SGM 2018; 165:4-14. [PMID: 30372408 DOI: 10.1099/mic.0.000736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The occurrence of NADP+-dependent malic enzymes (NADP+-MEs) in several Rhodococcus strains was analysed. The NADP+-ME number in Rhodococcus genomes seemed to be a strain-dependent property. Total NADP+-ME activity increased by 1.8- and 2.6-fold in the oleaginous Rhodococcus jostii RHA1 and Rhodococcus opacus PD630 strains during cultivation under nitrogen-limiting conditions. Total NADP+-ME activity inhibition by sesamol resulted in a significant decrease of the cellular biomass and lipid production in oleaginous rhodococci. A non-redundant ME coded by the RHA1_RS44255 gene located in a megaplasmid (pRHL3) of R. jostii RHA1 was characterized and its heterologous expression in Escherichia coli resulted in a twofold increase in ME activity in an NADP+-dependent manner. The overexpression of RHA1_RS44255 in RHA1 and PD630 strains grown on glucose promoted an increase in total NADP+-ME activity and an up to 1.9-foldincrease in total fatty acid production without sacrificing cellular biomass. On the other hand, its expression in Rhodococcus fascians F7 grown on glycerol resulted in a 1.3-1.4-foldincrease in total fatty acid content. The results of this study confirmed the contribution of NADP+-MEs to TAG accumulation in oleaginous rhodococci and the utility of these enzymes as an alternative approach to increase bacterial oil production from different carbon sources.
Collapse
Affiliation(s)
- Martín A Hernández
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| | - Héctor M Alvarez
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|
45
|
Contribution of specific impurities in crude glycerol towards improved lipid production by Rhodosporidium toruloides ATCC 10788. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Maruyama Y, Toya Y, Kurokawa H, Fukano Y, Sato A, Umemura H, Yamada K, Iwasaki H, Tobori N, Shimizu H. Characterization of oil-producing yeast Lipomyces starkeyi on glycerol carbon source based on metabolomics and 13C-labeling. Appl Microbiol Biotechnol 2018; 102:8909-8920. [PMID: 30097695 DOI: 10.1007/s00253-018-9261-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 11/27/2022]
Abstract
Lipomyces starkeyi is an oil-producing yeast that can produce triacylglycerol (TAG) from glycerol as a carbon source. The TAG was mainly produced after nitrogen depletion alongside reduced cell proliferation. To obtain clues for enhancing the TAG production, cell metabolism during the TAG-producing phase was characterized by metabolomics with 13C labeling. The turnover analysis showed that the time constants of intermediates from glycerol to pyruvate (Pyr) were large, whereas those of tricarboxylic acid (TCA) cycle intermediates were much smaller than that of Pyr. Surprisingly, the time constants of intermediates in gluconeogenesis and the pentose phosphate (PP) pathway were large, suggesting that a large amount of the uptaken glycerol was metabolized via the PP pathway. To synthesize fatty acids that make up TAG from acetyl-CoA (AcCoA), 14 molecules of nicotinamide adenine dinucleotide phosphate (NADPH) per C16 fatty acid molecule are required. Because the oxidative PP pathway generates NADPH, this pathway would contribute to supply NADPH for fatty acid synthesis. To confirm that the oxidative PP pathway can supply the NADPH required for TAG production, flux analysis was conducted based on the measured specific rates and mass balances. Flux analysis revealed that the NADPH necessary for TAG production was supplied by metabolizing 48.2% of the uptaken glycerol through gluconeogenesis and the PP pathway. This result was consistent with the result of the 13C-labeling experiment. Furthermore, comparison of the actual flux distribution with the ideal flux distribution for TAG production suggested that it is necessary to flow more dihydroxyacetonephosphate (DHAP) through gluconeogenesis to improve TAG yield.
Collapse
Affiliation(s)
- Yuki Maruyama
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kurokawa
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Yuka Fukano
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Atsushi Sato
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hiroyasu Umemura
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Kaoru Yamada
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hideaki Iwasaki
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Norio Tobori
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
47
|
Jiru TM, Steyn L, Pohl C, Abate D. Production of single cell oil from cane molasses by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 as a biodiesel feedstock. Chem Cent J 2018; 12:91. [PMID: 30097852 PMCID: PMC6086781 DOI: 10.1186/s13065-018-0457-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 07/31/2018] [Indexed: 12/04/2022] Open
Abstract
Background Single cell oil has long been considered an alternative to conventional oil sources. The oil produced can also be used as a feedstock for biodiesel production. Oleaginous yeasts have relatively high growth and lipid production rates, can utilize a wide variety of cheap agro-industrial wastes such as molasses, and can accumulate lipids above 20% of their biomass when they are grown in a bioreactor under conditions of controlled excess carbon and nitrogen limitation. Results In this study, Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 was cultivated in a nitrogen-limited medium containing cane molasses as a carbon source. The study aims to provide not only information on the production of single cell oil using R. kratochvilovae SY89 on cane molasses as a biodiesel feedstock, but also to characterize the biodiesel obtained from the resultant lipids. After determination of the sugar content in cane molasses, R. kratochvilovae SY89 was grown on the optimized cane molasses for 168 h. Under the optimized conditions, the yeast accumulated lipids up to 38.25 ± 1.10% on a cellular dry biomass basis. This amount corresponds to a lipid yield of 4.82 ± 0.27 g/L. The fatty acid profiles of the extracted yeast lipids were analyzed using gas chromatography, coupled with flame ionization detector. A significant amount of oleic acid (58.51 ± 0.76%), palmitic acid (15.70 ± 1.27%), linoleic acid (13.29 ± 1.18%) and low amount of other fatty acids were detected in the extracted yeast lipids. The lipids were used to prepare biodiesel and the yield was 85.30%. The properties of this biodiesel were determined and found to be comparable to the specifications established by ASTM D6751 and EN14214 related to biodiesel quality. Conclusions Based on the results obtained, the biodiesel from R. kratochvilovae SY89 oil could be a competitive alternative to conventional diesel fuel.
Collapse
Affiliation(s)
- Tamene Milkessa Jiru
- Department of Biotechnology, University of Gondar, P.O.Box: 196, Gondar, Ethiopia.
| | - Laurinda Steyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, P.O.Box: 339, Bloemfontein, South Africa
| | - Carolina Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, P.O.Box: 339, Bloemfontein, South Africa
| | - Dawit Abate
- Microbial, Cellular and Molecular Biology Department, College of Natural Sciences, Addis Ababa University, P.O.Box: 1176, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Qin L, Wei D, Wang Z, Alam MA. Advantage Assessment of Mixed Culture of Chlorella vulgaris and Yarrowia lipolytica for Treatment of Liquid Digestate of Yeast Industry and Cogeneration of Biofuel Feedstock. Appl Biochem Biotechnol 2018; 187:856-869. [DOI: 10.1007/s12010-018-2854-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
|
49
|
Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:2509-2523. [DOI: 10.1007/s00253-018-8813-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
|
50
|
Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu S, Sarris D, Philippoussis A, Papanikolaou S. Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 2018; 124:336-367. [DOI: 10.1111/jam.13633] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- M. Athenaki
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - C. Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - P. Diamantopoulou
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S.S. Tchakouteu
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - D. Sarris
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - A. Philippoussis
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| |
Collapse
|