1
|
Jaiswal S, Singh B, Dhingra I, Joshi A, Kodgire P. Bioremediation and bioscavenging for elimination of organophosphorus threats: An approach using enzymatic advancements. ENVIRONMENTAL RESEARCH 2024; 252:118888. [PMID: 38599448 DOI: 10.1016/j.envres.2024.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Organophosphorus compounds (OP) are highly toxic pesticides and nerve agents widely used in agriculture and chemical warfare. The extensive use of these chemicals has severe environmental implications, such as contamination of soil, water bodies, and food chains, thus endangering ecosystems and biodiversity. Plants absorb pesticide residues, which then enter the food chain and accumulate in the body fat of both humans and animals. Numerous human cases of OP poisoning have been linked to both acute and long-term exposure to these toxic OP compounds. These compounds inhibit the action of the acetylcholinesterase enzyme (AChE) by phosphorylation, which prevents the breakdown of acetylcholine (ACh) neurotransmitter into choline and acetate. Thus, it becomes vital to cleanse the environment from these chemicals utilizing various physical, chemical, and biological methods. Biological methods encompassing bioremediation using immobilized microbes and enzymes have emerged as environment-friendly and cost-effective approaches for pesticide removal. Cell/enzyme immobilized systems offer higher stability, reusability, and ease of product recovery, making them ideal tools for OP bioremediation. Interestingly, enzymatic bioscavengers (stoichiometric, pseudo-catalytic, and catalytic) play a vital role in detoxifying pesticides from the human body. Catalytic bioscavenging enzymes such as Organophosphate Hydrolase, Organophosphorus acid anhydrolase, and Paraoxonase 1 show high degradation efficiency within the animal body as well as in the environment. Moreover, these enzymes can also be employed to decontaminate pesticides from food, ensuring food safety and thus minimizing human exposure. This review aims to provide insights to potential collaborators in research organizations, government bodies, and industries to bring advancements in the field of bioremediation and bioscavenging technologies for the mitigation of OP-induced health hazards.
Collapse
Affiliation(s)
- Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Isha Dhingra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
2
|
Davenport B, Hallam SJ. Emerging enzyme surface display systems for waste resource recovery. Environ Microbiol 2023; 25:241-249. [PMID: 36369958 PMCID: PMC10100002 DOI: 10.1111/1462-2920.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The current century marks an inflection point for human progress, as the developed world increasingly comes to recognize that the ecological and socioeconomic impacts of resource extraction must be balanced with more sustainable modes of growth that are less reliant on non-renewable sources of energy and materials. This has opened a window of opportunity for cross-sector development of biotechnologies that harness the metabolic problem-solving power of microbial communities. In this context, recovery has emerged as an organizing principal to create value from industrial and municipal waste streams, and the search is on for new enzymes and platforms that can be used for waste resource recovery at scale. Enzyme surface display on cells or functionalized materials has emerged as a promising platform for waste valorization. Typically, surface display involves the use of substrate binding or catalytic domains of interest translationally fused with extracellular membrane proteins in a microbial chassis. Novel display systems with improved performance features include S-layer display with increased protein density, spore display with increased resistance to harsh conditions, and intracellular inclusions including DNA-free cells or nanoparticles with improved social licence for in situ applications. Combining these display systems with advances in bioprinting, electrospinning and high-throughput functional screening have potential to transform outmoded extractive paradigms into 'trans-metabolic" processes for remediation and waste resource recovery within an emerging circular bioeconomy.
Collapse
Affiliation(s)
- Beth Davenport
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Bradshaw Research Institute for Minerals and Mining, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Immobilization of Rhizomucor miehei lipase on magnetic multiwalled carbon nanotubes towards the synthesis of structured lipids rich in sn-2 palmitic acid and sn-1,3 oleic acid (OPO) for infant formula use. Food Chem 2022; 390:133171. [PMID: 35551020 DOI: 10.1016/j.foodchem.2022.133171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, breast milk is considered as the ideal food for infants owing to the most common oleic acid-palmitic acid-oleic acid (OA-PA-OA) fatty acid distribution of the human milk fat (HMF). This study reports the synthesis of 1,3-dioleoyl-2-palmotoylglycerol (OPO)-rich human milk fat substitutes in a two-step enzymatic acidolysis reaction with Rhizomucor miehei lipase (RML) immobilized on magnetic multi-walled carbon nanotubes(mMWCNTs). The immobilized RML (RML-mMWCNTs) showed better thermal and pH stability, convenient recovery and reusability than the free soluble form. Under optimized reaction conditions (1:8 tripalmitin (PPP)/OA, 10%wt. enzyme, 50 °C, 5 h), PA content at the sn-2 position and OA incorporation at the sn-1,3 positions reached 93.46% and 59.54%, respectively. Comparison tests have also showed that RML-mMWCNTs has better catalytic activity and reusability than the commercial lipase Lipozyme RM IM. The results suggest that RML-mMWCNTs is a promising biocatalyst for the synthesis of OPO-rich TAGs with potential use in infant formulas.
Collapse
|
4
|
de Almeida MEM, Alves KCS, de Vasconcelos MGS, Pinto TS, Glória JC, Chaves YO, Neves WLL, Tarragô AM, de Souza Neto JN, Astolfi-Filho S, Pontes GS, da Silva Balieiro AA, Isticato R, Ricca E, Mariúba LAM. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model. Sci Rep 2022; 12:1531. [PMID: 35087102 PMCID: PMC8795416 DOI: 10.1038/s41598-022-05344-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Malaria remains a widespread public health problem in tropical and subtropical regions around the world, and there is still no vaccine available for full protection. In recent years, it has been observed that spores of Bacillus subtillis can act as a vaccine carrier and adjuvant, promoting an elevated humoral response after co-administration with antigens either coupled or integrated to their surface. In our study, B. subtillis spores from the KO7 strain were used to couple the recombinant CSP protein of P. falciparum (rPfCSP), and the nasal humoral-induced immune response in Balb/C mice was evaluated. Our results demonstrate that the spores coupled to rPfCSP increase the immunogenicity of the antigen, which induces high levels of serum IgG, and with balanced Th1/Th2 immune response, being detected antibodies in serum samples for 250 days. Therefore, the use of B. subtilis spores appears to be promising for use as an adjuvant in a vaccine formulation.
Collapse
Affiliation(s)
- Maria Edilene M de Almeida
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
| | - Késsia Caroline Souza Alves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliane Corrêa Glória
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Walter Luiz Lima Neves
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
- Programa de Pós-Graduação Stricto Sensu em Ciências Aplicadas à Hematologia PPGH, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Júlio Nino de Souza Neto
- Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Spartaco Astolfi-Filho
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Antônio Alcirley da Silva Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
| | - Luis André M Mariúba
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
5
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
6
|
Xu W, Zhao S, Zhang W, Wu H, Guang C, Mu W. Recent advances and future prospective of organophosphorus-degrading enzymes: identification, modification, and application. Crit Rev Biotechnol 2021; 41:1096-1113. [PMID: 33906533 DOI: 10.1080/07388551.2021.1898331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The organophosphorus-based OPs) nerve agents and pesticides have been applied in the agriculture industry for a long time. However, they were found to have a persistent effect on the environment and threaten human health. Traditional methods, including incineration and landfilling, could not thoroughly remove these organophosphorus compounds (OPs). Meanwhile, chemical hydrolysis for decontamination was also inhibited due to the presence of corrosive materials and high costs. Biological remediation for OPs employing microorganisms and organophosphorus-degrading enzymes is promising due to a mild and controllable procedure, environmental-friendly reactions, and high efficacy. A wide variety of enzymes have shown latent ability in degrading OPs hazards like organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA), the diisopropylfluorophosphatase (DFPase), and mammalian paraoxonase 1 (PON 1). To this end, increasing efforts have been made on these intriguing enzymes to increase their expression level, enhance the catalytic activity, modify the optimal substrate, and expand the practical application. In this review, the enzyme resource, crystal structure, molecular modification, and industry application were compared and discussed in detail. Moreover, the proposed ideas and positive results could be useful for the other relevant OPs-degrading enzymes.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sumao Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Ugwuodo CJ, Nwagu TN. Stabilizing enzymes by immobilization on bacterial spores: A review of literature. Int J Biol Macromol 2020; 166:238-250. [PMID: 33115650 DOI: 10.1016/j.ijbiomac.2020.10.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The ever-increasing applications of enzymes are limited by the relatively poor performance in harsh processing conditions. As a result, there are constant innovations in immobilization protocols for improving biocatalyst activity and stability. Bacterial spores are cheap to generate and highly resistant to environmental stress. The spore core is sheathed by an inner membrane, the germ cell wall, the cortex, outer membrane, spore coat and in some species the exosporium. The spore surface is anion-rich, hydrophobic and contains several reactive groups capable of interacting and stabilizing enzyme molecules through electrostatic forces, hydrophobic interactions and covalent bonding. The probiotic nature of spores obtained from non-toxic bacterial species makes them suitable carriers for the enzyme immobilization, especially food-grade enzymes or those intended for therapeutic use. Immobilization on spores is by direct adsorption, covalent attachment or surface display during the sporulation phase. Hindrances to the immobilization on spore matrix include the production rates, operational instability, and reduced catalytic properties due to conformational changes in enzyme. This paper reviews bacterial spore as a heterofunctional support matrix gives reasons why probiotic bacillus spores are better options and the diverse technologies adopted for spore-enzyme immobilization. It further suggests directions for future use and discusses the commercialization prospects.
Collapse
|
8
|
Kaur J, Singh PK. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Phys Chem Chem Phys 2020; 22:15105-15119. [DOI: 10.1039/d0cp01647k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A systematic review of enzyme based optical detection schemes for the detection and analysis of organophosphate pesticides has been presented.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
9
|
Moon Y, Jafry AT, Bang Kang S, Young Seo J, Baek KY, Kim EJ, Pan JG, Choi JY, Kim HJ, Han Lee K, Jeong K, Bae SW, Shin S, Lee J, Lee Y. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:261-269. [PMID: 30447633 DOI: 10.1016/j.jhazmat.2018.10.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 05/25/2023]
Abstract
A region suffering from an attack of a nerve agent requires not only a highly sorptive material but also a fast-acting catalyst to decontaminate the lethal chemical present. The product should be capable of high sorptive capacity, selectivity and quick response time to neutralize the long lasting harmful effects of nerve agents. Herein, we have utilized organophosphorus hydrolase (OPH) as a non-toxic bio-catalytic material held in with the supporting matrix of poly-β-cyclodextrin (PCD) as a novel sorptive reinforced self-decontaminating material against organophosphate intoxication. OPH coated PCD (OPH-PCD) will not only be providing support for holding enzyme but also would be adsorbing methyl paraoxon (MPO) used as a simulant, in a host-guest inclusion complex formation. Sorption trend for PCD revealed preference towards the more hydrophobic MPO against para-nitrophenol (pNP). The results show sorption capacity of 1.26 mg/g of 100 μM MPO with PCD which was 1.7 times higher compared to pNP. The reaction rate with immobilized OPH-PCD was found to be 23% less compared to free enzyme. With the help of OPH-PCD, continuous hydrolysis (100%) of MPO into pNP was observed for a period of 24 h through packed bed reactor with good reproducibility and stability of enzyme. The long-term stability also confirmed its stable nature for the investigation period of 4 days where it maintained activity. Combined with its fast and reactive nature, the resulting self-decontaminating regenerating material provides a promising strategy for the neutralization of nerve agents and preserving the environment.
Collapse
Affiliation(s)
- Youngkwang Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ali Turab Jafry
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Soon Bang Kang
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jin Young Seo
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyung-Youl Baek
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | | | | - Hyun-Ji Kim
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kang Han Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry and Nuclear & WMD Protection Research Center, Korea Military Academy, Seoul, Republic of Korea
| | - Se Won Bae
- Korea Institute of Industrial Technology, Cheonan, Republic of Korea
| | - Seunghan Shin
- Korea Institute of Industrial Technology, Cheonan, Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Yongwoo Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
10
|
Song T, Wang F, Xiong S, Jiang H. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochem Biophys Res Commun 2019; 510:13-19. [PMID: 30660365 DOI: 10.1016/j.bbrc.2018.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Organophosphorus-degrading enzymes show high hydrolysis efficiency and provide an environmentally friendly solution to the pollution of organophosphorus compound. However, poor enzyme stability and tedious purification process have limited practical applications. Spore-based display system can provide many advantages, such as safety, low cost, easy preparation and high resistance to harsh conditions. Recently, we have constituted the recombinant spore displaying organophosphorus hydrolase and organophosphorus acid anhydrolase. In the spore display systems, recombinant spores could be reliably produced and normal sporulation was not affected; the activities of recombinant spores were 15.81 and 10.67 U/mg spores (dry weight) respectively; furthermore, the recombinant spores exhibited significantly enhanced resistance to various harsh conditions compared to free-form enzymes. These results indicated that the spore display could contribute to the practical application of organophosphorus-degrading enzymes and provide a promising solution to bioremediation of organophosphorus compounds.
Collapse
Affiliation(s)
- Tianyu Song
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, PR China; State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, PR China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, PR China
| | - Shanshan Xiong
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, PR China; State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, PR China
| | - Hui Jiang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, PR China; State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, PR China.
| |
Collapse
|
11
|
Sharifi M, Robatjazi SM, Sadri M, Mosaabadi JM. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Hsu MN, Wei SC, Guo S, Phan DT, Zhang Y, Chen CH. Smart Hydrogel Microfluidics for Single-Cell Multiplexed Secretomic Analysis with High Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802918. [PMID: 30334375 DOI: 10.1002/smll.201802918] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/02/2018] [Indexed: 05/22/2023]
Abstract
Secreted proteins determine a range of cellular functionalities correlated with human health and disease progression. Because of cell heterogeneity, it is essential to measure low abundant protein secretions from individual cells to determine single-cell activities. In this study, an integrated platform consisting of smart hydrogel immunosensors for the sensitive detection of single-cell secretions is developed. A single cell and smart hydrogel microparticles are encapsulated within a droplet. After incubation, target secreted proteins from the cell are captured in the smart hydrogel particle for immunoassay. The temperature-induced volume phase transition of the hydrogel biosensor allows the concentration of analytes within the gel matrix to increase, enabling high-sensitivity measurements. Distinct heterogeneity for live cell secretions is determined from 6000 cells within 1 h. This method is tested for low abundant essential secretions, such as interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 secretions of both suspended cells (HL60) and adherent cells (MCF7 and MDA-MB-231). This platform is highly flexible and can be used to simultaneously measure a wide range of clinically relevant cellular secretions; it thus represents a novel tool for precise biological assays.
Collapse
Affiliation(s)
- Myat Noe Hsu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), Singapore, 117599, Singapore
| | - Shih-Chung Wei
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), Singapore, 117599, Singapore
| | - Song Guo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dinh-Tuan Phan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Chia-Hung Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117574, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), Singapore, 117599, Singapore
- Singapore Institute for Neurotechnology (SINAPSE), Singapore, 117456, Singapore
| |
Collapse
|
13
|
Ghahremanifard P, Rezaeinezhad N, Rigi G, Ramezani F, Ahmadian G. Designing a novel signal sequence for efficient secretion of Candida antarctica lipase B in E. coli: The molecular dynamic simulation, codon optimization and statistical analysis approach. Int J Biol Macromol 2018; 119:291-305. [DOI: 10.1016/j.ijbiomac.2018.07.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
|
14
|
Covalent immobilization of organophosphorus hydrolase enzyme on chemically modified cellulose microfibers: Statistical optimization and characterization. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, Amanlou M, Eslahi N, Ahmadian G. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:17-23. [PMID: 28755689 DOI: 10.1016/j.pestbp.2017.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/09/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Chitinases can inhibit the growth of many fungal diseases which are a great threat for global agricultural production. Biological control of pathogens like fungi, is believed to be one of the best ways to eliminate the adverse effects of plant pathogens. To this end, we expressed and displayed a chitinase from Bacillus pumilus (ChiS) on the surface of Bacillus subtilis spores, as a biocontrol agent. RESULT ChiS enzyme from B. pumilus was expressed on the spores of B. subtilis using CotG as a carrier protein. Immunofluorescence microscopy confirmed the expression of ChiS on the surface of the spores. Enzyme activity assay showed that the surface displayed ChiS was active and was also able to inhibit the growth of Rhizoctonia solani and Trichoderma harzianum fungi. Western blot analysis also indicated that CotG-ChiS is partially processed after display. Molecular dynamics simulation showed that the stability of the heterologous protein was decreased after fusion. CONCLUSION ChiS was successfully displayed on the surface of Bacillus spores by fusion to the CotG, one of the main spore coat proteins. In-vitro experiments showed that the displayed enzyme was effective in growth inhibition of R. solani and T. harzianum fungi.
Collapse
Affiliation(s)
- Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran; Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, UG-MUG, Gdansk, Poland
| | - Fatemeh Goshadrou
- Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdieh Bayat
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Malihe Hassanzadeh
- Department of Medicinal Chemistry, Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Eslahi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|