1
|
Rosa IA, Bianchini AE, Bressan CA, Ferrari FT, Ariotti K, Mori NC, Bandeira Junior G, Pinheiro CG, Pavanato MA, Cargnelutti JF, Baldisserotto B, Heinzmann BM. Redox profile of silver catfish challenged with Aeromonas hydrophila and treated with hexane extract of Hesperozygis ringens (Benth.) Epling through immersion bath. AN ACAD BRAS CIENC 2024; 96:e20230188. [PMID: 38597489 DOI: 10.1590/0001-3765202420230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024] Open
Abstract
The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.
Collapse
Affiliation(s)
- Isadora A Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Adriane E Bianchini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Caroline A Bressan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Fabíola T Ferrari
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Karine Ariotti
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Natacha C Mori
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade de Cruz Alta (UNICRUZ), Curso de Farmácia, Rodovia Municipal Jacob Della Mea, s/n, km 5,6, 98020-290 Cruz Alta, RS, Brazil
| | - Guerino Bandeira Junior
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Carlos G Pinheiro
- Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Maria Amália Pavanato
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Juliana F Cargnelutti
- Universidade Federal de Santa Maria, Departamento de Medicina Veterinária Preventiva, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Santos PR, Andrade-Porto SM, Oliveira MIB, Brandão FR, Matos LV, Velásquez JGR, Farias CFS, Carpio KCR, Chaves FCM, Chagas EC. Acute toxicity of essential oils of Aloysia triphylla (L'Hér.) Britton, Lippia gracilis Schauer, and Piper aduncum L. in Colossoma macropomum (Cuvier, 1818). BRAZ J BIOL 2023; 83:e272853. [PMID: 37672435 DOI: 10.1590/1519-6984.272853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/08/2023] [Indexed: 09/08/2023] Open
Abstract
The aim of this study was to determine the acute toxicity of the essential oils (EOs) of Aloysia triphylla, Lippia gracilis and Piper aduncum in juvenile tambaqui (Colossoma macropomum), and evaluate the possible histopathological alterations in their gills. For the acute toxicity tests, juvenile tambaqui (n=24/treatment) were distributed in six treatments with three replicates, which comprised the control and five EO concentrations of A. triphylla (60, 80, 100, 120 and 140 mg L-1), L. gracilis (35, 40, 45, 50 and 55 mg L-1) and P. aduncum (42.5, 45, 47.5, 50 and 52.5 mg L-1), with an exposure period of 4 h. The mortality rate and severity of damage to the tambaqui gills were proportional to the increase in the concentration of the EO, with LC50-4 h values estimated at 109.57 mg L -1 for A. triphylla, 41.63 mg L -1 for L. gracilis and 48.17 mg L -1 for P. aduncum. The main morphological damages observed in the gills of the tambaqui exposed to the three EOs, were Grade I: hypertrophy and hyperplasia of lamellar epithelial cells, lamellar fusion, epithelial detachment, capillary dilation and constriction, proliferation of chloride cells and mucosal cells and edema; in low frequency Grade II damage as epithelial rupture and lamellar aneurysm. Necrosis (Grade III damage) was observed only in gill lamellae exposed to P. aduncum EO (47.5, 50.0 and 52.5 mg L-1). Concentrations of EOs below LC50-4 h can be used sparingly, for short periods of exposure for the treatment of diseases in tambaqui breeding.
Collapse
Affiliation(s)
- P R Santos
- Universidade Federal do Amazonas - UFAM, Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros - PPGCARP, Manaus, AM, Brasil
| | - S M Andrade-Porto
- Universidade Federal do Amazonas - UFAM, Departamento de Ciências Pesqueiras, Manaus, AM, Brasil
| | - M I B Oliveira
- Universidade Federal do Amazonas - UFAM, Departamento de Morfologia, Manaus, AM, Brasil
| | - F R Brandão
- Universidade Federal do Amazonas - UFAM, Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros - PPGCARP, Manaus, AM, Brasil
| | - L V Matos
- Instituto Nacional de Pesquisa da Amazônia - INPA, Programa de Pós-graduação em Biologia de Água Doce e Pesca Interior - BADPI, Manaus, AM, Brasil
| | | | - C F S Farias
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Aquicultura, Florianópolis, SC, Brasil
| | - K C R Carpio
- Universidade Federal do Amazonas - UFAM, Programa de Pós-graduação em Biotecnologia, Manaus, AM, Brasil
| | | | - E C Chagas
- Universidade Federal do Amazonas - UFAM, Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros - PPGCARP, Manaus, AM, Brasil
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| |
Collapse
|
3
|
Salem MOA, Taştan Y, Bilen S, Terzi E, Sönmez AY. Effects of white mustard (Sinapis alba) oil on growth performance, immune response, blood parameters, digestive and antioxidant enzyme activities in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:283-299. [PMID: 36210002 DOI: 10.1016/j.fsi.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
A study was conducted to evaluate the effects of dietary supplementation of white mustard (Sinapis alba) oil (WMO) on growth performance, immune responses, digestive and antioxidant enzyme activities in juvenile rainbow trout (Oncorhynchus mykiss). For this purpose, fish (initial weight: 25.77 ± 0.13 g) were divided into four experimental groups in triplicate and fed ad libitum twice a day with diets containing WMO at 0 (control), 0.5, 1, and 1.5% of diet for 9 weeks. Three fish from each tank (n:9 per treatment) were sampled on 21st, 42nd, and 63rd days for further analyses. At the end of the feeding period, fish were challenged with Aeromonas hydrophila and Yersinia ruckeri in two separate experimental setups. Results showed that final weight, weight gain, and specific growth rate were significantly increased in all experimental groups compared to the control. Feed conversion ratio was similar among treatments. Respiratory burst and potential killing activity decreased in all experimental groups compared to the control (P < 0.05). Lysozyme and myeloperoxidase activities were elevated in all experimental groups at the end of the experiment compared to the control (P < 0.05). Cytokine gene expressions in the head kidney and intestine were elevated in all experimental groups compared to that of the control in general (P < 0.05). Hematological responses of the experimental fish groups were similar to that of the control (P > 0.05). Pepsin and trypsin levels decreased in all experimental groups (P < 0.05). In terms of antioxidant enzyme activities, significant improvement in liver superoxide dismutase, catalase, and glutathione s-transferase activities in all treatment groups were determined (P < 0.05). In addition, a significant decline in liver lipid peroxidation levels was recorded in all treated groups at all sampling times compared to the control (P < 0.05). At the end of this feeding trial, no significant differences (P > 0.05) were observed in survival against A. hydrophila among experimental groups compared to the control (P > 0.05). However, increased survival against Y. ruckeri was determined in experimental fish groups (P < 0.05). This study suggests that white mustard oil had a favorable effect on the overall health and growth of rainbow trout.
Collapse
Affiliation(s)
- Mohamed Omar Abdalla Salem
- Kastamonu University Institute of Science, Department of Aquaculture, Kastamonu, Turkey; Bani Waleed University, Faculty of Education, Department of Biology, Bani Walid, Libya
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Soner Bilen
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey.
| |
Collapse
|
4
|
Exploring the Roles of Dietary Herbal Essential Oils in Aquaculture: A Review. Animals (Basel) 2022; 12:ani12070823. [PMID: 35405814 PMCID: PMC8996993 DOI: 10.3390/ani12070823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The aquaculture sector is one of the main activities contributing to food security for humanity around the globe. However, aquatic animals are susceptible to several farming stressors involved in deteriorated growth performance, reduced productivity, and eventually high mortality rates. In some countries still, antibiotics and chemotherapies are comprehensively applied to control biotic stressors. Aside from the apparent benefits, the continuous usage of antibiotics develops bacterial resistance, deteriorates bacterial populations, and accumulates these compounds in the aquatic environment. Alternatively, environmentally friendly additives were used to avoid the direct and indirect impacts on the aquatic ecosystem and human health. In aquaculture, medicinal herbs and extracts are extensively used and approved for their growth-promoting, anti-inflammatory, and antioxidative properties. Herbal essential oils contain many bioactive components with powerful antibacterial, antioxidative, and immunostimulant potentials, suggesting their application for aquatic animals. Essential oils can be provided via diet and can benefit aquatic animals by improving their well-being and health status. The use of essential oils in aquafeed has been studied in a variety of aquatic animals to determine their beneficial roles and optimum doses. The outputs illustrated that herbal essential oils are exciting alternatives to antibiotics with prominent growth promotion, antioxidative, and immunostimulant roles. Herein, we reviewed the beneficial roles of essential oils in aquaculture. This review also aims to describe trends in herbal essential oils use, mainly in commercial fish species, and to analyze different factors that affect essential oils’ efficacy on the growth performance, antioxidative, and immune responses of finfish species.
Collapse
|
5
|
In Vitro Antimicrobial and Antibiofilm Activity of S-(-)-Limonene and R-(+)-Limonene against Fish Bacteria. FISHES 2021. [DOI: 10.3390/fishes6030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brazilian fish farming goes together with the emergence of numerous bacterial diseases, with Aeromonas hydrophila being the main bacterial pathogen. As a consequence, antimicrobials are excessively used. Considering that antimicrobials are relatively stable and nonbiodegradable, medicinal plants and their phytochemicals have been used as alternative treatments of bacteriosis in fish farming. Limonene is a monoterpene available in two enantiomers: R-(+)-limonene and S-(-)-limonene. This study analyzed the antibacterial activity of the phytochemicals S-(-)-limonene and R-(+)-limonene against some bacteria isolated from silver catfish (Rhamdia quelen). Furthermore, by means of spectrophotometry and atomic force microscopy, we also investigated the combination therapy of phytochemicals with antimicrobials and their activity in terms of inhibiting biofilm formation. Six clinical isolates and a standard strain were selected for antimicrobial activity testing. Biofilm formation was tested in 96-well plates and nylon cubes. The most sensitive of the strains tested was the A. hydrophila strain (MF 372510). S-(-)-limonene and R-(+)-limonene had high minimum inhibitory concentrations; however, they strongly inhibited A. hydrophila biofilm formation. R-(+)-limonene and S-(-)-limonene had an additive effect when combined with florfenicol and an antagonistic effect with oxytetracycline. In general, the phytochemicals tested showed strong antibiofilm activity against A. hydrophila, and when in combination therapy with florfenicol, they showed an additive effect against the treatment of A. hydrophila.
Collapse
|
6
|
Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen. FISHES 2021. [DOI: 10.3390/fishes6030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maclura tinctoria is a tree species native from Brazil and rich in phenolic compounds. Since plant antibacterial activity is highly associated with phenolic compound concentration, we aim to evaluate the in vitro antimicrobial activity of different extracts against fish pathogenic bacteria. In addition, some phenolic compounds have central depressant effects and can be useful in aquaculture due to possible sedative and/or anesthetic effects. Four M. tinctoria extracts were extracted separately with ethanol; leaves (LE), bark (BE), heartwood (HE), and the sapwood (SE). In vitro antimicrobial activity was tested against Aeromonas strains at concentrations of 6400 to 3.125 μg/mL. The sedative effect was evaluated for 24 h with 30 and 100 mg/L concentrations. Chemical composition was analyzed by HPLC-DAD-MS. The HE extract had the best MIC (400 µg/mL) and MBC (800 µg/mL) compared to the LE, BE, and SE extracts. LE extract induced deep sedation and the BE, SE, and HE extracts induced light sedation. Additionally, BE, SE, and HE induced a normal behavior without side effects. Polyphenolic compounds with antimicrobial activity and sedative effects were identified mainly in HE. Thus, HE extract is safe and can be used as a sedative for silver catfish.
Collapse
|
7
|
Klūga A, Terentjeva M, Vukovic NL, Kačániová M. Antimicrobial Activity and Chemical Composition of Essential Oils against Pathogenic Microorganisms of Freshwater Fish. PLANTS 2021; 10:plants10071265. [PMID: 34206270 PMCID: PMC8309039 DOI: 10.3390/plants10071265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022]
Abstract
Antimicrobials are widely applied in aquaculture for treatment of infectious diseases in fish. The increased antimicrobial resistance of fish pathogens to conventional antimicrobial treatment highlights the need for research on the antibacterial properties of natural products—in this case, essential oils (EOs). The aim of the present study was to detect the antimicrobial activity of the essential oils on pathogenic microorganisms found in freshwater fish. Freshwater fish isolates of Aerococcus spp., Aeromonas spp., Enterococcus spp., Escherichia spp., Pseudomonas spp., Shewanella spp., Yersinia spp., and Vagococcus spp. were tested for antimicrobial resistance and antimicrobial activity against 14 commercially available essential oils. Antimicrobial resistance was identified in Pseudomonas spp. isolates against cefepime and ciprofloxacin; while all Aeromonas, Enterococcus, and Yersinia isolates were fully susceptible. All tested EOs revealed antimicrobial activity against the tested freshwater fish isolates at different extents. Cinnamomum camphora exhibited strong antimicrobial activity against Aeromonas spp. (3.12 μL/mL), Enterococcus spp. (0.78–1.56 μL/mL), and Pseudomonas spp. with the MIC method. EOs of Gaultheria procumbens and Litsea cubeba showed strong antibacterial activity against Yersinia spp. and Vacococcus spp. (6.25 μL/mL). The study shows the antimicrobial activity of EOs against the most relevant freshwater fish pathogens and indicates the application opportunities in aquaculture.
Collapse
Affiliation(s)
- Alīna Klūga
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņa iela 8, LV-3004 Jelgava, Latvia; (A.K.); (M.T.)
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņa iela 8, LV-3004 Jelgava, Latvia; (A.K.); (M.T.)
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34 000 Kragujevac, Serbia;
| | - Miroslava Kačániová
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza St. 4, 35601 Rzeszow, Poland
- Correspondence: ; Tel.: +421-376-414-715
| |
Collapse
|
8
|
Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021; 10:pathogens10020185. [PMID: 33572193 PMCID: PMC7914417 DOI: 10.3390/pathogens10020185] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.
Collapse
|
9
|
Wani AR, Yadav K, Khursheed A, Rather MA. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog 2020; 152:104620. [PMID: 33212200 PMCID: PMC9159739 DOI: 10.1016/j.micpath.2020.104620] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023]
Abstract
Essential oils and their chemical constituents have been reported with well documented antimicrobial effects against a range of bacterial, fungal and viral pathogens. By definition, essential oils are a complex mixture of volatile organic compounds which are synthesized naturally in different parts of the plant as part of plants secondary metabolism. The chemical composition of the essential oils is dominated by the presence of a range of compounds including phenolics, terpenoids, aldehydes, ketones, ethers, epoxides and many others inferring that essential oils must be effective against a wide range of pathogens. This review article mainly focuses on the antiviral potential of essential oils and their chemical constituents especially against influenza and coronaviruses. Essential oils have been screened against several pathogenic viruses, including influenza and other respiratory viral infections. The essential oils of cinnamon, bergamot, lemongrass, thyme, lavender have been reported to exert potent antiviral effects against influenza type A virus. The essential oil of Citrus reshni leaves has been shown to be effective against H5N1 virus. The essential oil of Lippia species at a concentration of 11.1 μg/mL has been shown to induce 100% inhibition of yellow fever virus in Vero cells. Essential oils and oleoresins have been shown through in vitro and in vivo experiments to induce antiviral effects against Coronavirus infectious bronchitis virus. A study reported 221 phytochemical compounds and essential oils to be effective against severe acute respiratory syndrome associated coronavirus (SARS-CoV) using a cell-based assay measuring SARS-CoV-induced cytopathogenic effect on Vero E6 cells. The main mechanism of antiviral effects of essential oils has been found to cause capsid disintegration and viral expansion which prevents the virus to infect host cells by adsorption via the capsid. Essential oils also inhibit hemagglutinin (an important membrane protein of various viruses) of certain viruses; this membrane protein allows the virus to enter the host cell. Many essential oils and their components could inhibit the late stages of viral life cycle by targeting the redox signalling pathway. Essential oils of Thymus vulgaris, cymbopogon citratus and Rosmarinus officinalis have been found to destabilize the Tat/TAR-RNA complex of HIV-1 virus, this complex being essential for HIV-1 replication. Being lipophilic in nature, essential oils can penetrate viral membranes easily leading to membrane disintegration. The current comprehensive review will facilitate researchers to find chemical entities from plant sources as possible inhibitory agents against various viruses.
Collapse
Affiliation(s)
- Abdul Rouf Wani
- Department of Botany, Madhyanchal Professional University, Madhya Pradesh, Bhopal, 462044, India
| | - Kanchan Yadav
- Department of Botany, Madhyanchal Professional University, Madhya Pradesh, Bhopal, 462044, India.
| | - Aadil Khursheed
- Department of Chemistry, Madhyanchal Professional University, Madhya Pradesh, Bhopal, 462044, India
| | - Manzoor Ahmad Rather
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India.
| |
Collapse
|
10
|
Rimoldi S, Torrecillas S, Montero D, Gini E, Makol A, Valdenegro V. V, Izquierdo M, Terova G. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PLoS One 2020; 15:e0231494. [PMID: 32298317 PMCID: PMC7162502 DOI: 10.1371/journal.pone.0231494] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
There is an increasing interest from the aquafeed industry in functional feeds containing selected additives that improve fish growth performance and health status. Functional feed additives include probiotics, prebiotics, organic acids, and phytogenics (substances derived from plants and their extracts). This study evaluated the effects of dietary inclusion of a mucilage extract rich in galactomannan oligosaccharides (GMOS), a mixture of garlic and labiatae-plants oils (PHYTO), and a combination of them (GMOSPHYTO), on gut microbiota composition of European sea bass (Dicentrarchus labrax) fed with a low fishmeal (FM) and fish oil (FO) diet. Three experimental diets and a control diet (plant-based formulation with 10% FM and 6% FO) were tested in a 63-days feeding trial. To analyze the microbiota associated to feeds and the intestinal autochthonous (mucosa-adhered) and allochthonous (transient) microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME2 pipeline were used. Metabarcoding analysis of feed-associated bacteria showed that the microbial communities of control (CTRL) feed deeply differed from those of experimental diets. The number of reads was significantly lower in CTRL feed than in other feeds. The OTU (operational taxonomic unit) number was instead similar between the feeds, ranging from 42 to 50 OTUs. The variation of resident gut microbiota induced by diet was lower than the variation of transient intestinal microbiota, because feedstuffs are a major source of allochthonous bacteria, which can temporarily integrate into the gut transient microbiome. However, the composition of transient bacterial communities was not simply a mirror of feed-borne bacteria. Indeed, the microbial profile of feeds was different from both faecal and mucosa profiles. Our findings suggest that the dietary inclusion of GMOS (0.5%) and PHYTO (0.02%) in a low FM and FO diet induces changes in gut microbiota composition of European sea bass. However, if on allochthonous microbiota the combined inclusion of GMOS and PHYTO showed an antagonistic effect on bactericidal activity against Vibrionales, at mucosa level, only GMOSPHYTO diet increased the relative abundance of Bacteroidales, Lactobacillales, and Clostridiales resident bacterial orders. The main beneficial effects of GMOS and PHYTO on gut microbiota are the reduction of coliforms and Vibrionales bacteria, which include several potentially pathogenic species for fish, and the enrichment of gut microbiota composition with butyrate producer taxa. Therefore, these functional ingredients have a great potential to be used as health-promoting agents in the farming of European sea bass and other marine fish.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alex Makol
- Delacon Biotechnik GmbH, Steyregg, Austria
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
11
|
Asakura H, Makino SI, Watanabe K, Tuchida Y, Kawabe M, Sakurai D. Kuma Bamboo Grass (Sasa veitchii) Extracts Exhibit Protective Effects Against Atypical Aeromonas salmonicida Infection in Goldfish (Carassius auratus). Biocontrol Sci 2020; 24:145-154. [PMID: 31527345 DOI: 10.4265/bio.24.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Atypical Aeromonas salmonicida ( i.e. subsp. achromogenes and subsp. masoucida) are one of the major opportunistic pathogens that cause ulcer diseases in a variety of fishes, in which this pathogen has become a worldwide economic threat in sectors that handle of particular high-priced ornamental fishes like varicolored carp and goldfish due to appearance damages. Here we reported that the kuma bamboo grass (Sasa veitchii) extracts (KBGE) that contained a variety of fatty acids, exhibited antibacterial activity against nine Aeromonas strains including 5 atypical A. salmonicida strains. Experimental challenges with four atypical A. salmonicida strains revealed that supplementation with 375 to 750 μg/ml of the KBGE restored the survival of goldfish in coincidence of inhibition of both bacterial replication and superoxide dismutase (SOD) activity upon infection, compared with those of untreated control. Together, our data demonstrating the antibacterial effects of the plant extracts proposes its possible implication for prevention of Aeromonas infection in the ornamental fish.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences
| | | | | | | | | | | |
Collapse
|
12
|
da Rosa VM, Ariotti K, Bressan CA, da Silva EG, Dallaporta M, Júnior GB, da Costa ST, de Vargas AC, Baldisserotto B, Finamor IA, Pavanato MA. Dietary addition of rutin impairs inflammatory response and protects muscle of silver catfish (Rhamdia quelen) from apoptosis and oxidative stress in Aeromonas hydrophila-induced infection. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108611. [PMID: 31454703 DOI: 10.1016/j.cbpc.2019.108611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
This research aimed to assess the influence of dietary addition of rutin on inflammation, apoptosis and antioxidative responses in muscle of silver catfish (Rhamdia quelen) challenged with Aeromonas hydrophila (A. hydrophila). Fish were split into four groups as follows: control, 0.15% rutin, A. hydrophila, 0.15% rutin + A. hydrophila. After 2 weeks of feeding with standard or rutin diets, fish were challenged or not with A. hydrophila for 1 week. Rutin-added diet abrogates A. hydrophila induced-hemorrhage and inflammatory infiltration. It decreases A. hydrophila induced-apoptosis through decreasing the ratio of Bax to Bcl-2 and increasing phospho-Akt to Akt ratio. It diminishes the A. hydrophila induced-rise in nitric oxide and superoxide anion levels and reestablishes superoxide dismutase activity as well. Although such diet is unable to recover the levels of reduced glutathione (GSH), cysteine and glutamate cysteine ligase, which are depleted as a result of A. hydrophila infection, it diminishes the oxidized glutathione (GSSG) content, thus decreasing GSSG to GSH ratio. It increases the levels of cysteine residues of proteins and diminishes those of thiol-protein mixed disulfides, which were changed after A. hydrophila challenge. Finally, it reduces A. hydrophila induced-lipid peroxidation, markedly elevates ascorbic acid and thus reestablishes total antioxidant capacity, whose levels were decreased after A. hydrophila challenge. In conclusion, the dietary addition of rutin at 0.15% impairs A. hydrophila-induced inflammatory response, inhibits A. hydrophila-induced apoptosis and promotes cell survival. It also reduces the A. hydrophila-induced oxidative stress and stimulates the antioxidative responses in muscle of A. hydrophila-infected silver catfish.
Collapse
Affiliation(s)
- Vanessa M da Rosa
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Karine Ariotti
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Caroline A Bressan
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Elisia G da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Magale Dallaporta
- Department of Morphology, Universidade Federal de Santa Maria, RS, Brazil
| | - Guerino B Júnior
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Silvio T da Costa
- Department of Morphology, Universidade Federal de Santa Maria, RS, Brazil
| | - Agueda C de Vargas
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Isabela A Finamor
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil.
| | - Maria A Pavanato
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019; 11:2786. [PMID: 31731683 PMCID: PMC6893664 DOI: 10.3390/nu11112786] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained from plants. In recent years, several studies have shown that some of their benefits can be attributed to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties. Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the results come from in vitro and in vivo studies; however, very little is known about their use in clinical studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and Scopus from December 2014 to April 2019 using different combinations of the following keywords: essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models, which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit immunomodulatory activities that have been mainly attributed to their ability to modify the secretion of cytokines.
Collapse
Affiliation(s)
- Magdalena Valdivieso-Ugarte
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
| | - Carolina Gomez-Llorente
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julio Plaza-Díaz
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ángel Gil
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; (M.V.-U.); (J.P.-D.); (Á.G.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- ibs.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Souza CDF, Baldissera MD, Baldisserotto B, Heinzmann BM, Martos-Sitcha JA, Mancera JM. Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Front Physiol 2019; 10:785. [PMID: 31281264 PMCID: PMC6596282 DOI: 10.3389/fphys.2019.00785] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
In fish, stressful events initiate a hormone cascade along the hypothalamus-pituitary-interrenal and hypothalamus-sympathetic-chromaffin (HSC) axis to evoke several physiological reactions in order to orchestrate and maintain homeostasis. Several biotic and abiotic factors, as well as aquaculture procedures (handling, transport, or stocking density), activated stress system inducing negative effects on different physiological processes in fish (growth, reproduction, and immunity). In order to reduce these consequences, the use of essential oils (EOs) derived from plants has been the focus of aquaculture studies due to their diverse properties (e.g., anesthetic, antioxidant, and antimicrobial), which have been shown to reduce biochemical and endocrine alterations and, consequently, to improve the welfare status. Recently, several studies have shown that biogenic compounds isolated from different EOs present excellent biological activities, as well as the nanoencapsulated form of these EOs may potentiate their effects. Overall, EOs presented less side effects than synthetic compounds, but their stress-reducing efficacy is related to their chemical composition, concentration or chemotype used. In addition, their species-specific actions must be clearly established since they can act as stressors by themselves if their concentrations and chemotypes used are not suitable. For this reason, it is necessary to assess the effect of these natural compound mixtures in different fish species, from marine to freshwater, in order to find the ideal concentration range and the way for their administration to obtain the desired biological activity, without any undesired side effects. In this review, the main findings regarding the use of different EOs as stress reducers will be presented to highlight the most important issues related to their use to improve fish welfare in aquaculture.
Collapse
Affiliation(s)
- Carine de Freitas Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Berta Maria Heinzmann
- Department of Industrial Pharmacy, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| |
Collapse
|
15
|
Suphoronski SA, Chideroli RT, Facimoto CT, Mainardi RM, Souza FP, Lopera-Barrero NM, Jesus GFA, Martins ML, Di Santis GW, de Oliveira A, Gonçalves GS, Dari R, Frouel S, Pereira UP. Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis. Sci Rep 2019; 9:6045. [PMID: 30988331 PMCID: PMC6465292 DOI: 10.1038/s41598-019-42480-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
This work evaluated the effects of dietary supplementation of A-Live (phytogenic) either individually or in combination with Aquaform (potassium diformate, acidifier) on juvenile Nile tilapia (Oreochromis niloticus) growth performance, innate immune parameters, gut microbiome, and resistance against Francisella noatunensis subsp. orientalis challenge. Each experimental group contained 140 fishes (34.3 ± 0.33) in two 150L tanks. The experimental design consisted of five groups: a negative control; treated groups (G1, G2, G3) supplemented with different concentrations of A-Live and Aquaform in the feed; and a positive control (PC) for pathogen infection. Groups G1, G2, G3, and PC were challenged with Francisella spp. after 15 days. After infection, the mortality was significantly lower in groups G1, G2, and G3 (p < 0.01). Furthermore, these groups showed significant increase (p < 0.05) in daily weight gain, feed conversion rate, and specific growth rate. The PC group presented increase (p < 0.05) in the leukocytes and neutrophils number. Innate immunity parameters showed no difference between treatments after infection. Microbiome analysis revealed an increased number of bacteria belonging to the Vibrionaceae family after pathogen infection suggesting a secondary pathogen function of these bacteria. These results validate the beneficial effects of these products in tilapia farming.
Collapse
Affiliation(s)
- S A Suphoronski
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - R T Chideroli
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - C T Facimoto
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - R M Mainardi
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - F P Souza
- Department of Animal Science, State University of Londrina, Londrina, PR, Brazil
| | - N M Lopera-Barrero
- Department of Animal Science, State University of Londrina, Londrina, PR, Brazil
| | - G F A Jesus
- Nucleus of studies in Aquaculture Pathology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - M L Martins
- Nucleus of studies in Aquaculture Pathology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - G W Di Santis
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - A de Oliveira
- Laboratory of Microbial Biotechnology (LABIM) and Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, PR, Brazil
| | - G S Gonçalves
- Fishing Institute (APTA-SP), São José do Rio Preto, SP, Brazil
| | - R Dari
- MiXscience, Bruz, Brittany, France
| | - S Frouel
- MiXscience, Bruz, Brittany, France
| | - U P Pereira
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
16
|
Rosa IA, Rodrigues P, Bianchini AE, Silveira BP, Ferrari FT, Bandeira Junior G, Vargas APC, Baldisserotto B, Heinzmann BM. Extracts of Hesperozygis ringens (Benth.) Epling: in vitro and in vivo antibacterial activity against fish pathogenic bacteria. J Appl Microbiol 2019; 126:1353-1361. [PMID: 30735293 DOI: 10.1111/jam.14219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
AIMS This study investigated the in vitro antibacterial activity of Hesperozygis ringens (Benth.) Epling leaf extracts against fish pathogenic bacteria, as well as the in vivo activity of the most active extract in silver catfish (Rhamdia quelen) experimentally infected with Aeromonas hydrophila. Moreover, the chemical composition of the extract used in the survival assay was evaluated. METHODS AND RESULTS Only hexane extract (HEHR) showed in vitro antibacterial activity (MIC and MBC ranging from 1600 to 3200 μg ml-1 ) against clinical isolates of A. hydrophila, Raoultella ornithinolytica and Citrobacter freundii, obtained from naturally infected silver catfish, and A. hydrophilaATCC 7966. The major compound of the volatile fraction of HEHR was determined as pulegone. HEHR promoted a 93·33% relative survival rate of silver catfish experimentally infected with A. hydrophila 7 days after a single therapeutic bath at 30 mg l-1 , while florfenicol at 4 mg l-1 , which promoted a 60% relative survival rate. CONCLUSIONS The antibacterial activity of H. ringens (Benth.) Epling leaf extracts seems to be related to phytochemicals of apolar character, since HEHR promoted better survival rate of infected animals than florfenicol. SIGNIFICANCE AND IMPACT OF THE STUDY The HEHR has potential to be used in the control and treatment of bacterial infections in organic aquaculture.
Collapse
Affiliation(s)
- I A Rosa
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - P Rodrigues
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - A E Bianchini
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - B P Silveira
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - F T Ferrari
- Department of Industrial Pharmacy, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - G Bandeira Junior
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - A P C Vargas
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - B M Heinzmann
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.,Department of Industrial Pharmacy, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
17
|
da Cunha JA, Bandeira Junior G, da Silva EG, de Ávila Scheeren C, Fausto VP, Salbego J, de Almeida Vaucher R, de Vargas AC, Baldisserotto B. The survival and hepatic and muscle glucose and lactate levels of Rhamdia quelen inoculated with Aeromonas hydrophila and treated with terpinen-4-ol, carvacrol or thymol. Microb Pathog 2019; 127:220-224. [DOI: 10.1016/j.micpath.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022]
|
18
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
da Cunha JA, de Ávila Scheeren C, Fausto VP, de Melo LDW, Henneman B, Frizzo CP, de Almeida Vaucher R, Castagna de Vargas A, Baldisserotto B. The antibacterial and physiological effects of pure and nanoencapsulated Origanum majorana essential oil on fish infected with Aeromonas hydrophila. Microb Pathog 2018; 124:116-121. [DOI: 10.1016/j.micpath.2018.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/02/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
|
20
|
Cunha J, Heinzmann B, Baldisserotto B. The effects of essential oils and their major compounds on fish bacterial pathogens – a review. J Appl Microbiol 2018; 125:328-344. [DOI: 10.1111/jam.13911] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 01/31/2023]
Affiliation(s)
- J.A. Cunha
- Graduate Program in Pharmacology Universidade Federal de Santa Maria/UFSM Santa Maria RS Brazil
| | - B.M. Heinzmann
- Graduate Program in Pharmacology Universidade Federal de Santa Maria/UFSM Santa Maria RS Brazil
- Department of Industrial Pharmacy UFSM Santa Maria RS Brazil
| | - B. Baldisserotto
- Graduate Program in Pharmacology Universidade Federal de Santa Maria/UFSM Santa Maria RS Brazil
- Department of Physiology and Pharmacology UFSM Santa Maria RS Brazil
| |
Collapse
|
21
|
Baldissera MD, Souza CF, Doleski PH, de Vargas AC, Duarte MM, Duarte T, Boligon AA, Leal DB, Baldisserotto B. Melaleuca alternifolia essential oil prevents alterations to purinergic enzymes and ameliorates the innate immune response in silver catfish infected with Aeromonas hydrophila. Microb Pathog 2017; 109:61-66. [DOI: 10.1016/j.micpath.2017.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
22
|
Dos Santos AC, Sutili FJ, Heinzmann BM, Cunha MA, Brusque ICM, Baldisserotto B, Zeppenfeld CC. Aloysia triphylla essential oil as additive in silver catfish diet: Blood response and resistance against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 62:213-216. [PMID: 28122262 DOI: 10.1016/j.fsi.2017.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The essential oil of Aloysia triphylla (EOAT) is a promising product with potential use in aquaculture systems. This study evaluated hematological/biochemical responses and survival of silver catfish (Rhamdia quelen) fed a diet containing EOAT and infected by Aeromonas hydrophila. After 21 days of feeding trial, fish were infected with A. hydrophila following a 10-day period of observation. Blood collection was performed before and after the bacterial challenge. Dietary EOAT by itself seems to affect some blood parameters, decreasing total leukocyte, lymphocyte, and neutrophil counts and increasing total protein values. However, 2.0 mL EOAT/kg diet showed a possible potential protective effect after A. hydrophila infection, maintaining the evaluated parameters similar to basal values (from healthy fish before the feeding trial) and promoting survival of silver catfish.
Collapse
Affiliation(s)
- Alessandro C Dos Santos
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Fernando J Sutili
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Berta M Heinzmann
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Mauro A Cunha
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Isabel C M Brusque
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Bernardo Baldisserotto
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carla C Zeppenfeld
- Pharmacology Postgraduate Program, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
23
|
Sutili FJ, Velasquez A, Pinheiro CG, Heinzmann BM, Gatlin DM, Baldisserotto B. Evaluation of Ocimum americanum essential oil as an additive in red drum (Sciaenops ocellatus) diets. FISH & SHELLFISH IMMUNOLOGY 2016; 56:155-161. [PMID: 27417228 DOI: 10.1016/j.fsi.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated productive parameters, whole-body composition, non-specific immune responses and pH and microbiota of digestive tract contents of red drum (Sciaenops ocellatus) fed diets supplemented with Ocimum americanum essential oil (OAEO) (0 - control, 0.25, 0.5, 1.0 and 2.0 g/kg diet). After 7 weeks no significant differences in productive parameters and whole-body composition were observed. Plasma and intestinal lysozyme measurements and pH of the stomach and intestine (6 h after feeding) did not show significant differences among groups. Intestinal microbial community in fish fed the basal and OAEO diets (all concentrations) were identical. However, red drum fed the diet with OAEO at 1.0 g/kg had significantly increased intraperitoneal fat deposition and stomach pH (2 h after feeding) and decreased superoxide ion production (NBT-test) compared to the control group. Hemolytic activity of the complement system increased in fish fed diets containing OAEO. Red blood cells from fish fed the lowest OAEO concentration (0.25 g/kg) showed significant lower fragility in erythrocyte osmotic fragility assay, but fish fed 0.5 and 1.0 g/kg showed significant higher erythrocyte fragility. Lysozyme measurement in the supernatant of stomach content was significantly higher in fish fed the diet supplemented at 0.5 g/kg. Based on these various results, OAEO at different supplementation levels did not influence growth performance and intestinal microbial community; however, the EO added to the diet showed effects on immunological responses of red drum.
Collapse
Affiliation(s)
- Fernando J Sutili
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil; Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Alejandro Velasquez
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, USA
| | - Carlos G Pinheiro
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Berta M Heinzmann
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Delbert M Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, USA
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
24
|
Sutili F, Murari A, Silva L, Gressler L, Heinzmann B, de Vargas A, Schmidt D, Baldisserotto B. The use of Ocimum americanum
essential oil against the pathogens Aeromonas hydrophila
and Gyrodactylus
sp. in silver catfish (Rhamdia quelen
). Lett Appl Microbiol 2016; 63:82-8. [DOI: 10.1111/lam.12602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/24/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- F.J. Sutili
- Department of Physiology and Pharmacology; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
| | - A.L. Murari
- Department of Industrial Pharmacy; UFSM; Santa Maria RS Brazil
| | - L.L. Silva
- Regional Integrated University of High Uruguay and Missions (URI); Santiago RS Brazil
| | - L.T. Gressler
- Department of Preventive Veterinary Medicine; UFSM; Santa Maria RS Brazil
| | - B.M. Heinzmann
- Department of Industrial Pharmacy; UFSM; Santa Maria RS Brazil
| | - A.C. de Vargas
- Department of Preventive Veterinary Medicine; UFSM; Santa Maria RS Brazil
| | - D. Schmidt
- Department of Agronomy; UFSM/CESNORS; Frederico Westphalen RS Brazil
| | - B. Baldisserotto
- Department of Physiology and Pharmacology; Federal University of Santa Maria (UFSM); Santa Maria RS Brazil
| |
Collapse
|
25
|
F Souza C, Baldissera MD, A Vaucher R, Lopes LQS, Vizzotto BS, Raffin RP, Santos RCV, L da Veiga M, U M da Rocha MI, Stefani LM, Baldisserotto B. In vivo bactericidal effect of Melaleuca alternifolia essential oil against Aeromonas hydrophila: Silver catfish (Rhamdia quelen) as an experimental model. Microb Pathog 2016; 98:82-7. [PMID: 27392700 DOI: 10.1016/j.micpath.2016.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/26/2022]
Abstract
Aeromonas hydrophila is one of the main causative agent of high mortality and significative economic losses in aquaculture and has become increasingly resistant to conventional antibiotics. One feasible alternative to control and treat it is the use of essential oils. This study aimed to evaluate A. hydrophila susceptibility to tea tree oil (TTO-Melaleuca alternifolia) in vivo, and the effect of this treatment. In vivo tests were performed using silver catfish (Rhamdia quelen) as the experimental model. Silver catfish were treated with TTO at 25 and 50 μL/L for seven days before infection. After seven days, the fish were inoculated with A. hydrophila via intramuscularly. Treatment with TTO at 50 μL/L was able to extend longevity of infected fish, and showed 88% of therapeutic success, even though it did not show curative efficacy. TTO treatment was not toxic under these tested concentrations, since biomarkers of hepatic and renal functions were not affected, and the concentration of 50 μL/L was able to prevent increased levels of aspartate aminotransferase. There was no significative differences regarding hematological parameters (p < 0.05). Treatment with TTO 50 μL/L was able to reduce histopathological alterations usually caused by this type of bacteria in the gills, but it was unable to reduce hepatic histopathological alterations. Our results showed, for the first time, that TTO has high activity against A. hydrophila and proved to be a natural alternative to prevent and control this pathogen.
Collapse
Affiliation(s)
- Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rodrigo A Vaucher
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil; Laboratory of Microbiology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Leonardo Q S Lopes
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil; Laboratory of Microbiology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Bruno S Vizzotto
- Laboratory of Microbiology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Renata P Raffin
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Roberto C V Santos
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil; Laboratory of Microbiology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Marcelo L da Veiga
- Laboratory of Experimental Morphophysiology, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Izabel U M da Rocha
- Laboratory of Experimental Morphophysiology, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
26
|
Nguyen HV, Caruso D, Lebrun M, Nguyen NT, Trinh TT, Meile JC, Chu-Ky S, Sarter S. Antibacterial activity of Litsea cubeba (Lauraceae, May Chang) and its effects on the biological response of common carp Cyprinus carpio challenged with Aeromonas hydrophila. J Appl Microbiol 2016; 121:341-51. [PMID: 27124660 DOI: 10.1111/jam.13160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/17/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
AIMS The aims of this study were to characterize the antibacterial activity and the chemotype of Litsea cubeba leaf essential oil (EO) harvested in North Vietnam and to investigate the biological effects induced by the leaf powder on growth, nonspecific immunity and survival of common carp (Cyprinus carpio) challenged with Aeromonas hydrophila. METHODS AND RESULTS The EO showed the prevalence of linalool (95%, n = 5). It was bactericidal against the majority of tested strains, with minimum inhibitory concentrations ranging from 0·72 to 2·89 mg ml(-1) (Aer. hydrophila, Edwarsiella tarda, Vibrio furnissii, Vibrio parahaemolyticus, Streptococcus garvieae, Escherichia coli, Salmonella Typhimurium). The fish was fed with 0 (control), 2, 4 and 8% leaf powder supplementation diets for 21 days. Nonspecific immunity parameters (lysozyme, haemolytic and bactericidal activities of plasma) were assessed 21 days after feeding period and before the experimental infection. Weight gain, specific growth rate and feed conversion ratio were improved by supplementation of L. cubeba in a dose-related manner, and a significant difference appeared at the highest dose (8%) when compared to the control. The increase in plasma lysozyme was significant for all the treated groups. Haemolysis activity was higher for the groups fed with 4 and 8% plant powder. Antibacterial activity increased significantly for the 8% dose only. CONCLUSIONS Litsea cubeba leaf powder increased nonspecific immunity of carps in dose-related manner. After infection with Aer. hydrophila, survivals of fish fed with 4 and 8% L. cubeba doses were significantly higher than those fed with 2% dose and the control. SIGNIFICANCE AND IMPACT OF THE STUDY A range of 4-8% L. cubeba leaf powder supplementation diet (from specific linalool-rich chemotype) can be used in aquaculture to reduce antibiotic burden and impacts of diseases caused by Aer. hydrophila.
Collapse
Affiliation(s)
- H V Nguyen
- Hanoi University of Science and Technology, Hanoi, Vietnam.,UMR Qualisud, CIRAD, Montpellier, France.,UMR Qualisud, CIRAD, Hanoi, Vietnam
| | - D Caruso
- ISEM UMR 226, IRD, Montpellier, France
| | - M Lebrun
- UMR Qualisud, CIRAD, Montpellier, France
| | - N T Nguyen
- Vietnam National University of Agriculture, Hanoi, Vietnam
| | - T T Trinh
- Vietnam National University of Agriculture, Hanoi, Vietnam
| | - J-C Meile
- UMR Qualisud, CIRAD, Montpellier, France
| | - S Chu-Ky
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - S Sarter
- UMR Qualisud, CIRAD, Montpellier, France.,UMR Qualisud, CIRAD, Hanoi, Vietnam
| |
Collapse
|
27
|
Sutili FJ, Gatlin DM, Rossi W, Heinzmann BM, Baldisserotto B. In vitro effects of plant essential oils on non-specific immune parameters of red drum, Sciaenops ocellatus L. J Anim Physiol Anim Nutr (Berl) 2016; 100:1113-1120. [PMID: 26898359 DOI: 10.1111/jpn.12488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Abstract
Phytochemicals such as plant essential oils (EOs) have been reported to favour various activities in the innate immune system of fish. Thus, the aim of this study was to verify the in vitro effect of three different plant EOs (Ocimum americanum, Cymbopogon flexuosus and Melaleuca alternifolia) on non-specific immune parameters and erythrocyte osmotic fragility of red drum, Sciaenops ocellatus. Concentrations of each plant EO evaluated in preparations of head-kidney macrophages, blood leucocytes and blood plasma were as follows: 0.0 (control), 1.0, 2.0, 4.0, 8.0, and 16.0 μg/ml. Red drum head-kidney macrophages significantly increased extracellular superoxide anion production when exposed (20 h) to O. americanum EO (1.0-8.0 μg/ml) and C. flexuosus EO (2.0 and 4.0 μg/ml). The respiratory burst of blood leucocytes (NBT test) significantly increased in all concentrations when compared to the respective control group, for all EOs. At the highest concentration (16.0 μg/ml), C. flexuosus EO significantly inhibited the haemolytic activity of complement system in red drum blood after 1 h exposure. None of the tested concentrations significantly altered plasma lysozyme activity or erythrocyte osmotic fragility after exposing (1 h) red drum whole blood to each EO. This study demonstrated that these plant EOs are capable of triggering superoxide anion production in red drum leucocytes (head-kidney macrophages and/or blood leucocytes). In vivo studies are warranted to address their potential as immunostimulants in the diet of red drum and other aquacultured species.
Collapse
Affiliation(s)
- F J Sutili
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - D M Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System College Station, TX, USA
| | - W Rossi
- Department of Wildlife and Fisheries Sciences, Texas A&M University System College Station, TX, USA
| | - B M Heinzmann
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|