1
|
Tan Z, Chen Y, Wen C, Zhou Y. Dietary supplementation with a silicate clay mineral (palygorskite) alleviates inflammatory responses and intestinal barrier damage in broiler chickens challenged with Escherichia coli. Poult Sci 2024; 103:104017. [PMID: 39043023 PMCID: PMC11318557 DOI: 10.1016/j.psj.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
This experiment aimed to explore the protective effects of dietary palygorskite (Pal) supplementation on inflammatory responses and intestinal barrier function of broiler chickens challenged with Escherichia coli (E. coli). A 2 × 2 factorial arrangement was designed to assess the effects of Pal administration (0 or 5 g/kg of feed) and E. coli challenge (E. coli or bacterial culture medium) on broilers in a 21-d feeding trial. Birds were randomly assigned into one of the 4 groups, and each group had 8 replicates with ten birds each. The challenged chickens were orally gavaged with E. coli suspended in Luria-Bertani broth on 14 d of age, while unchallenged birds were administrated with an equivalent amount of culture medium. The sampling was performed at 21 d of age. Compared with the normal birds, an oral E. coli challenge reduced final body weight, and decreased feed intake, weight gain, and feed efficiency during the challenge period (P < 0.05). E. coli challenge promoted colonization of E. coli in cecal content and their translocation to internal organs (heart, liver, and spleen) (P < 0.05). E. coli infection also increased levels of pro-inflammatory cytokines in jejunum and ileum possibly through activating the toll-like receptor-4-mediated signaling pathway (P < 0.05). Moreover, E. coli administration increased intestinal mucosal permeability (higher serum D-lactate level and diamine oxidase activity, and lower intestinal mucosal disaccharidase activities), altered intestinal morphology, and downregulated the gene expression of intestinal tight junction proteins (P < 0.05). In contrast, Pal supplementation enhanced growth performance, inhibited colonization of E. coli, reduced intestinal inflammation, decreased intestinal permeability, restored intestinal morphology, and normalized the expression of genes responsible for inflammatory processes and maintenance of intestinal mucosal barrier (P < 0.05), and most of these beneficial effects resulting from Pal administration were independent of bacterial challenge. The results indicated dietary Pal incorporation was effective in improving growth performance and alleviating inflammation and intestinal mucosal barrier damage in broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
2
|
Li S, Liu Y, Zeng H, Wang C, Han Z. Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep. Antibiotics (Basel) 2023; 12:1144. [PMID: 37508240 PMCID: PMC10376601 DOI: 10.3390/antibiotics12071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This research aimed to investigate the effects of a palygorskite-based antibacterial agent (PAA) as an alternative to antibiotics on growth performance, blood parameters, and rumen microbiota in sheep. A total of 120 sheep were randomly divided into five groups of six replicates with four sheep each. Sheep were fed a basal diet, an antibiotic diet supplemented with 500 g/t chlortetracycline (CTC), and a basal diet supplemented with 500, 1000, and 2000 g/t PAA for 80 d, respectively. Supplementation with 2000 g/t PAA and 500 g/t CTC increased the average daily gain (ADG) of sheep compared with the control group (p < 0.05). Diets supplemented with 2000 g/t PAA and 500 g/t CTC reduced (p < 0.05) the feed:gain ratio (F/G ratio) in the overall periods. Dietary supplementation with 1000 g/t PAA significantly increased albumin and total protein (p < 0.05). A significant positive correlation was found between growth hormone concentration and PAA supplementation (p < 0.05). In addition, compared to the control group, the CTC group had higher growth hormone concentration and lower lipopolysaccharide concentration (p < 0.05). No difference was observed between the five groups in terms of rumen fermentation characteristics (p > 0.05). At the phylum level, the relative abundance of Proteobacteria was lower in the PAA 2000 and CTC 500 groups than in the control and PAA 500 groups (p < 0.05). At the genus level, a significant decrease (p < 0.05) in the relative abundance of RuminococcaceaeUCG-010 was observed in the PAA 1000, PAA 2000, and CTC 500 groups compared with that in the control group. In addition, the relative abundance of Prevotella1 (p < 0.05) was higher in the PAA 2000 group than in the control group. These findings indicate that dietary supplementation with PAA has ameliorative effects on growth performance, blood parameters, and rumen microbiota, with an optimal dosage of 2000 g/t for sheep.
Collapse
Affiliation(s)
- Shujie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanfang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chanjian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zha A, Tan B, Wang J, Qi M, Deng Y, Liao P, Yin Y. The nanocomposites of modified attapulgite with vitamin E and mannan oligosaccharide regulated the intestinal epithelial barrier and improved intestinal microbiota composition to prevent diarrhea in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37071083 DOI: 10.1002/jsfa.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Overuse of antibiotics contributes to bacterial resistance in animals. Therefore, it is necessary to find a new way to ensure animal health and promote animal growth. This experiment was conducted to investigate the effect of mannan oligosaccharide (MOS)/vitamin E (VE)/attapulgite (APT) nanocomposites (SLK1, SLK3, SLK5) on growth performance and intestinal health in weaned piglets. Each 1 kg of SLK1, SLK3 or SLK5 contains 50 g of vitamin E, and each had a different MOS concentration [SLK1 (50 g kg -1 MOS), SLK3 (100 g kg -1 MOS), SLK5 (150 g kg -1 MOS)]. In total, 135 piglets were randomly divided into five groups (normal control group, traditional antibiotic substitutes group, SLK1 group, SLK3 group and SLK5 group), and growth performance, diarrhea index, intestinal epithelial barrier function and intestinal microbial composition were measured. RESULTS SLK1 and SLK5 significantly decreased diarrhea frequency in weaned piglets (p < 0.05). Furthermore, SLK5 significantly increased survival rate of weaned piglets compared to the traditional antibiotic substitutes group (p < 0.05). SLK5 also increased villus height of ileum, and increased goblet number of the jejunum (p < 0.05). 16S rRNA sequencing showed that SLK5 significantly regulated intestinal colonic microbiota composition (p < 0.05). Specifically, SLK5 significantly increased the abundance of Phascolarctobacterium succinatutens in the cecum and increased the abundance of Lactobacillus and Bifidobacterium in the colon (p < 0.05). In addition, dietary supplementation with 1 kg T-1 SLK5 also significantly increased the propionate content in the colon, which is significantly correlated with Phascolarctobacterium (p < 0.05). CONCLUSION Dietary supplementation with 1 kg T-1 SLK5 improved intestinal epithelial barrier function, and regulated intestinal microbiota composition to prevent diarrhea in weaned piglets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Wang
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
4
|
Zha P, Chen Y, Zhou Y. Effects of dietary supplementation with different levels of palygorskite-based composite on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2023; 102:102651. [PMID: 37068353 PMCID: PMC10130497 DOI: 10.1016/j.psj.2023.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
This study was conducted to investigate the effects of different levels of palygorskite-based composite (PBC) on growth performance, antioxidant status, and meat quality of broilers. A total of 320 one-day-old mixed-sex Ross 308 broiler chicks were allocated to 1 of 5 groups with 8 replicates of 8 birds each, and given a basal diet supplemented with 0, 250, 500, 1,000, and 2,000 mg/kg PBC for a 42-day trial, respectively. PBC quadratically increased feed efficiency during the late and overall experimental periods (P < 0.05). Compared with the control group, 1,000 mg/kg PBC increased feed efficiency during the overall period (P < 0.05). PBC linearly increased serum total superoxide dismutase (T-SOD) activity at 21 d and glutathione peroxidase (GSH-Px) activity at both 21 d and 42 d (P < 0.05). Compared with the control group, PBC supplementation, regardless of its level, increased 21-day serum SOD activity (P < 0.05). The 21-day serum GSH-Px activity was increased by PBC when its level exceeded 250 mg/kg (P < 0.05). PBC linearly increased 42-day total antioxidant capacity (T-AOC) activity, but linearly decreased 42-day malondialdehyde level in liver (P < 0.05). An addition of PBC, irrespective of its level, increased 42-day hepatic T-AOC activity (P < 0.05). PBC quadratically increased 45-min yellowness value and linearly increased 24-h pH value, but quadratically decreased 24-h lightness value and linearly and quadratically reduced 24-h drip loss in breast muscle (P < 0.05). Compared with the control group, the 24-h drip loss of breast muscle was decreased by PBC, regardless of its dosage (P < 0.05). An addition of PBC linearly increased 42-day T-AOC and T-SOD activities of breast muscle (P < 0.05). Compared with the control group, muscle T-SOD activity was increased by PBC, regardless of its administration level (P < 0.05). These results suggested that PBC could improve growth performance, antioxidant capacity, and meat quality of broilers, and its recommended dosage is 1,000 mg/kg.
Collapse
|
5
|
Deng Y, Liu X, Yao Y, Xiao B, He C, Guo S, Tang S, Qu X. The potential role of palygorskite and probiotics complex on the laying performance and faecal microbial community in Xuefeng black-bone chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuying Deng
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xu Liu
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
| | - Yaling Yao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Songchang Guo
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shengguo Tang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Du M, Chen Y, Wang S, Zhao H, Wen C, Zhou Y. Effects of dietary palygorskite supplementation on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. Front Microbiol 2022; 13:985784. [PMID: 36090069 PMCID: PMC9453597 DOI: 10.3389/fmicb.2022.985784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate the effects of palygorskite (PAL) as an alternative to antibiotic on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. A total of 360 1-day-old male Ross-308 broilers were randomly allotted to three treatments with eight replicates. Broilers in the three groups were designated as follows: basal diet (CON group), basal diet+50 mg/kg chlorotetracycline (ANT group), and basal diet+ 10 g/kg PAL (PAL group). Supplementing PAL reduced feed to gain ratio in broilers during 22 to 42 days of age (P < 0.05), with its value being similar to that of the ANT group (P > 0.05). Broilers fed a PAL-supplemented diet exerted decreased contents of interferon-γ (IFN-γ) and interleukin-1β in serum, and the same reduction was found in jejunal IFN-γ level, when compared to the CON group (P < 0.05). Moreover, compared with the CON group, broilers after PAL treatment had a lower malondialdehyde content in jejunal mucosa (P < 0.05). Supplementing PAL elevated jejunal villus height (VH) and ratio of VH to crypt depth compared with the ANT group (P < 0.05). Cecal microbiota communities among the three groups were significant different, as demonstrated by distinct clusters from partial least squares discriminant analysis, although dietary treatments had no significant effects on the bacterial richness and diversity indices (P > 0.05). At genus level, the addition of PAL increased the relative abundance of norank_f__Barnesiellaceae and decreased that of unclassified_f__Oscillospiraceae in cecal digesta compared with those in the CON group (P < 0.05); the proportion of genus norank_f__Barnesiellaceae was increased by PAL treatment when compared with the ANT group (P < 0.05). Moreover, spearman's correlations showed that the modulation of cecal microflora composition by PAL supplementation was closely correlated with the promotion of growth performance (feed to gain ratio) and intestinal health-related (contents of malondialdehyde and IFN-γ, and VH value in jejunum) variables of broilers (P < 0.05). Taken together, dietary PAL could improve the growth performance, antioxidant capacity, and immune status, as well as intestinal barrier function in broilers, which might be partially associated with the alteration of cecal microbiota. Moreover, dietary PAL may be a promising alternative to antibiotic growth promoter for broilers.
Collapse
|
7
|
Damato A, Vianello F, Novelli E, Balzan S, Gianesella M, Giaretta E, Gabai G. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production. Front Vet Sci 2022; 9:889612. [PMID: 35619608 PMCID: PMC9127995 DOI: 10.3389/fvets.2022.889612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Clay minerals are naturally occurring rock and soil materials primarily composed of fine-grained aluminosilicate minerals, characterized by high hygroscopicity. In animal production, clays are often mixed with feed and, due to their high binding capacity towards organic molecules, used to limit animal absorption of feed contaminants, such as mycotoxins and other toxicants. Binding capacity of clays is not specific and these minerals can form complexes with different compounds, such as nutrients and pharmaceuticals, thus possibly affecting the intestinal absorption of important substances. Indeed, clays cannot be considered a completely inert feed additive, as they can interfere with gastro-intestinal (GI) metabolism, with possible consequences on animal physiology. Moreover, clays may contain impurities, constituted of inorganic micronutrients and/or toxic trace elements, and their ingestion can affect animal health. Furthermore, clays may also have effects on the GI mucosa, possibly modifying nutrient digestibility and animal microbiome. Finally, clays may directly interact with GI cells and, depending on their mineral grain size, shape, superficial charge and hydrophilicity, can elicit an inflammatory response. As in the near future due to climate change the presence of mycotoxins in feedstuffs will probably become a major problem, the use of clays in feedstuff, given their physico-chemical properties, low cost, apparent low toxicity and eco-compatibility, is expected to increase. The present review focuses on the characteristics and properties of clays as feed additives, evidencing pros and cons. Aims of future studies are suggested, evidencing that, in particular, possible interferences of these minerals with animal microbiome, nutrient absorption and drug delivery should be assessed. Finally, the fate of clay particles during their transit within the GI system and their long-term administration/accumulation should be clarified.
Collapse
Affiliation(s)
- Anna Damato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- *Correspondence: Elisa Giaretta
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Bentonite does not affect in vitro ruminal gross fermentations but could modify ruminal metabolome and mineral content. A proof of concept. Res Vet Sci 2022; 144:78-81. [DOI: 10.1016/j.rvsc.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023]
|
9
|
Zhang C, Yao D, Su Z, Chen H, Hao P, Liao Y, Guo Y, Yang D. Copper/Zinc-Modified Palygorskite Protects Against Salmonella Typhimurium Infection and Modulates the Intestinal Microbiota in Chickens. Front Microbiol 2021; 12:739348. [PMID: 34956111 PMCID: PMC8696032 DOI: 10.3389/fmicb.2021.739348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Palygorskite (Pal), a clay nanoparticle, has been demonstrated to be a vehicle for drug delivery. Copper has antibacterial properties, and zinc is an essential micronutrient for intestinal health in animals and humans. However, whether copper/zinc-modified Pal (Cu/Zn-Pal) can protect chickens from Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infection remains unclear. In this study, three complexes (Cu/Zn-Pal-1, Cu/Zn-Pal-2, and Cu/Zn-Pal-3) were prepared, and Cu/Zn-Pal-1 was shown to be the most effective at inhibiting the growth of S. Typhimurium in vitro, whereas natural Pal alone had no inhibitory effect. In vivo, Cu/Zn-Pal-1 reduced S. Typhimurium colonization in the intestine of infected chickens and relieved S. Typhimurium-induced organ and intestinal mucosal barrier damage. Moreover, this reduction in Salmonella load attenuated intestinal inflammation and the oxidative stress response in challenged chickens. Additionally, Cu/Zn-Pal-1 modulated the intestinal microbiota in infected chickens, which was characterized by the reduced abundance of Firmicutes and the increased abundance of Proteobacteria and Bacteroidetes. Our results indicated that the Cu/Zn-Pal-1 complex may be an effective feed supplement for reducing S. Typhimurium colonization of the gut.
Collapse
Affiliation(s)
- Chaozheng Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zenan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pan Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Liao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zha P, Chen Y, Wang S, Wang A, Zhou Y. Dietary palygorskite-based antibacterial agent supplementation as an alternative to antibiotic improves growth performance, intestinal mucosal barrier function, and immunity in broiler chickens. Poult Sci 2021; 101:101640. [PMID: 35378350 PMCID: PMC8980492 DOI: 10.1016/j.psj.2021.101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate effects of palygorskite-based antibacterial agent (PAA) as an alternative to antibiotic on growth performance, intestinal barrier function, and immunity in broilers. Three hundred and eighty-four mixed-sex 1-day-old Ross 308 broiler chicks were allocated into 6 groups of 8 replicates with 8 birds each. Birds were given a basal diet, an antibiotic diet (50 mg/kg chlortetracycline), and the basal diet supplemented with 250, 500, 1,000, and 2,000 mg/kg PAA for 42 d, respectively. Compared with control group, supplementing 1,000 mg/kg PAA reduced overall feed conversion ratio (P < 0.05), with its value being similar to that of antibiotic group (P > 0.05). However, a higher level of PAA (2,000 mg/kg) increased feed conversion ratio during the late period (P < 0.05). The 1,000 and 2,000 mg/kg PAA decreased plasma endotoxin and D-lactate levels at 42 d (P < 0.05) to comparable values (P > 0.05). The 1,000 mg/kg PAA decreased jejunal crypt depth, while 500 and 1,000 mg/kg PAA increased the ratio between jejunal villus height and crypt depth at 42 d (P < 0.05), with their values being similar to antibiotic group (P > 0.05). The highest level of PAA increased 42-d jejunal mucosal secretory immunoglobulin A and immunoglobulin M concentrations (P < 0.05). The 1,000 and 2,000 mg/kg PAA reduced 21-d interleukin-1β and tumor necrosis factor-α (TNF-α) levels in serum and ileal mucosa and 42-d interferon-γ level in serum and jejunal mucosa (P < 0.05), which did not differ from antibiotic group (P > 0.05). Moreover, PAA administration, regardless of its dosage, reduced 42-d serum TNF-α concentration, and 500 to 2,000 mg/kg PAA decreased 21-d and 42-d jejunal and 42-d ileal mucosal TNF-α levels (P < 0.05), with their values being comparable with antibiotic group (P > 0.05). The results suggested that PAA as an alternative to antibiotic could improve growth performance, intestinal barrier function, and immunity of broilers, and its optimal dosage was 1,000 mg/kg.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Deng Y, Xiong X, Liu X, He C, Guo S, Tang S, Qu X. Palygorskite combined probiotics improve the laying performance, hatching performance, egg quality, plasma antioxidative status, and immune response of broiler breeders. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1966845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaowei Xiong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
12
|
Wang Y, Wang H, Wang B, Zhang B, Li W. Effects of manganese and Bacillus subtilis on the reproductive performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. Poult Sci 2020; 99:6196-6204. [PMID: 33142537 PMCID: PMC7647850 DOI: 10.1016/j.psj.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
This experiment was conducted to investigate the effects of manganese (Mn) and Bacillus subtilis (BS) on the production performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. A total of 120 forty-six-week-old breeding geese (Wulong) were randomly assigned to 1 of 6 treatment diets formulated to supply 10, 20, and 30 mg/kg Mn with 5 × 109 CFU/kg or 2.5 × 109 CFU/kg BS for a 10-wk trial. Results showed that dietary supplementation with 20 and 30 mg/kg Mn could decrease the daily feed intake (DFI) of geese. Moreover, 30 mg/kg Mn significantly increased the laying rate. Besides, although Mn addition had no obvious effect on egg quality, 5 × 109 CFU/kg BS was found to elevate the hatching egg hatching rate and eggshell thickness. For the serum hormones, 30 mg/kg Mn promoted estradiol secretion, while 5 × 109 CFU/kg BS increased the level of follicle-stimulating hormone. Furthermore, 20 and 30 mg/kg Mn and 5 × 109 CFU/kg BS significantly enhanced the total antioxidant capacity by increasing the activity of total superoxide dismutases or decreasing the content of malondialdehyde. Dietary supplementation with 5 × 109 CFU/kg BS also increased the intestinal villus height and upregulated the abundance of Fusobacteria, Fusobacteriaceae, Fusobacterium, and Faecalibacterium in cecal content. In addition, 20 and 30 mg/kg Mn elevated the levels of Bacteroidetes, Bacteroidaceae, Bacteroides, and Ruminococcaceae but decreased Streptococcaceae. Importantly, an interaction effect was observed between Mn and BS on the DFI, egg mass, average egg size, and the abundance of Bacteroides as well as Faecalibacterium. In conclusion, dietary inclusion of Mn and BS could improve the production performance, egg quality, antioxidant capacity, intestinal structure, as well as gut microbiota. Supplementation of 30 mg/kg Mn and 5.0 × 109 CFU/kg BS provided the optimal effect.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hefei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. MINERALS 2020. [DOI: 10.3390/min10100861] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clay minerals are very common in nature and highly reactive minerals which are typical products of the weathering of the most abundant silicate minerals on the planet. Over recent decades there has been growing appreciation that the prime involvement of clay minerals in the geochemical cycling of elements and pedosphere genesis should take into account the biogeochemical activity of microorganisms. Microbial intimate interaction with clay minerals, that has taken place on Earth’s surface in a geological time-scale, represents a complex co-evolving system which is challenging to comprehend because of fragmented information and requires coordinated efforts from both clay scientists and microbiologists. This review covers some important aspects of the interactions of clay minerals with microorganisms at the different levels of complexity, starting from organic molecules, individual and aggregated microbial cells, fungal and bacterial symbioses with photosynthetic organisms, pedosphere, up to environmental and biotechnological implications. The review attempts to systematize our current general understanding of the processes of biogeochemical transformation of clay minerals by microorganisms. This paper also highlights some microbiological and biotechnological perspectives of the practical application of clay minerals–microbes interactions not only in microbial bioremediation and biodegradation of pollutants but also in areas related to agronomy and human and animal health.
Collapse
|
14
|
Effects of Dietary Zeolite Supplementation as an Antibiotic Alternative on Growth Performance, Intestinal Integrity, and Cecal Antibiotic Resistance Genes Abundances of Broilers. Animals (Basel) 2019; 9:ani9110909. [PMID: 31683981 PMCID: PMC6912609 DOI: 10.3390/ani9110909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
The study investigated the effects of dietary zeolite supplementation as an antibiotic alternative on growth performance, intestinal integrity, and cecal antibiotic resistance genes abundances of broilers. One-day-old chicks were assigned into three groups and fed a basal diet or a basal diet supplemented with antibiotics (50 mg/kg) or zeolite (10 g/kg). Antibiotic or zeolite increased (p < 0.05) average daily gain (ADG) from 1 to 42 days and duodenal villus height to crypt depth ratio (VH:CD) at 21 days. Zeolite increased (p < 0.05) ADG and average daily feed intake from 1 to 21 days, jejunal VH:CD at 21 and 42 days, ileal VH and VH:CD at 42 days, zonula occludens-1 mRNA abundance at 21 days, and duodenal occludin mRNA abundance at 42 days, whereas reduced (p < 0.05) jejunal CD and malondialdehyde levels in ileum at 21 days and duodenum at 42 days, serum D-lactic acid and diamine oxidase levels at 42 days, and plasma lipopolysaccharide content at 21 and 42 days. Antibiotics reduced (p < 0.05) duodenal claudin-2 mRNA abundance at 21 days, whereas increased (p < 0.05) cecal tetB abundance at 42 days. These findings suggested that the beneficial effects of zeolite in broilers were more pronounced than that of antibiotics.
Collapse
|
15
|
Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms 2019; 7:microorganisms7050123. [PMID: 31064055 PMCID: PMC6560406 DOI: 10.3390/microorganisms7050123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023] Open
Abstract
Diet has an essential influence in the establishment of the cecum microbial communities in poultry, so its supplementation with safe additives, such as probiotics, prebiotics, and synbiotics might improve animal health and performance. This study showed the ceca microbiome modulations of laying hens, after feeding with dry whey powder as prebiotics, Pediococcus acidilactici as probiotics, and the combination of both as synbiotics. A clear grouping of the samples induced per diet was observed (p < 0.05). Operational taxonomic units (OTUs) identified as Olsenella spp., and Lactobacilluscrispatus increased their abundance in prebiotic and synbiotic treatments. A core of the main functions was shared between all metagenomes (45.5%), although the genes encoding for the metabolism of butanoate, propanoate, inositol phosphate, and galactose were more abundant in the prebiotic diet. The results indicated that dietary induced-changes in microbial composition did not imply a disturbance in the principal biological roles, while the specific functions were affected.
Collapse
|
16
|
Chen M, Xi Y, Zhang L, Zeng H, Li Y, Han Z. Effects of zinc-bearing palygorskite on rumen fermentation in vitro. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:63-71. [PMID: 29747497 PMCID: PMC6325408 DOI: 10.5713/ajas.17.0920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the effect of zinc-bearing palygorskite (Zn-Pal) on rumen fermentation by in vitro gas-production system. METHODS In trial, 90 incubators were evenly divided into five groups: control (0% Zn-Pal), treatment I (0.2% Zn-Pal), treatment II (0.4% Zn-Pal), treatment III (0.6% Zn-Pal), and treatment IV (0.8% Zn-Pal). The contents of zinc for treatments were 0, 49, 98, 147, 196 mg/kg, respectively. The main chemical composition and microstructure of Zn-Pal was investigated by X-ray diffraction. The physicochemical features were evaluated by Zeta potential analysis, cation-exchange capacity, ethylene blue absorption and specific surface area (the Brunauer-Emmett-Teller method). In vitro gas production (GP) was recorded at 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 h incubation. Incubation was stopped at 0, 6, 12, 24, 48, and 72 h and the inoculants were tested for pH, microbial protein yield (MCP), NH3-N, volatile fatty acids (VFAs), lipopolysaccharide (LPS). RESULTS The results showed that the GP in the treatment groups was not significantly different from the control groups (p>0.05). Compared to the control group, pH was higher at 24 h, 48 h (p<0.05), and 72 h (p<0.01) (range 6 to 7). The concentration of NH3-N in the three treatment groups was higher than in the control group at 24 h (p<0.01), meanwhile, it was lower at 48 h and 72 h (p<0.01), except in the treatment IV. The concentration of MCP in treatment I group was higher than in the control at 48 h (p<0.01). Compared with control, the LPS concentration in treatment III became lower at 12 h (p<0.05). Total VFAs in treatments were higher than in the control at 24 h, 48 h (p<0.05). CONCLUSION These results suggest that the addition of Zn-Pal can improve the rumen fermentation, especially when adding 0.2% Zn-Pal.
Collapse
Affiliation(s)
- Mengjiao Chen
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,China
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,China
| | - Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,China
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,China
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,China
| |
Collapse
|
17
|
Su Y, Chen YP, Cheng YF, Wen C, Zhou YM. Effects of Modified Palygorskite Supplementation on Egg Quality and Mineral Element Content, and Intestinal Integrity and Barrier Function of Laying Hens. Biol Trace Elem Res 2018; 186:529-537. [PMID: 29658063 DOI: 10.1007/s12011-018-1335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
This study was conducted to investigate effects of modified palygorskite (MPal) supplementation on the laying performance, egg quality and mineral element content, immunity, oxidative status, and intestinal integrity and barrier function of laying hens. A total of 360 52-week-old Hyline Brown hens were randomly assigned into four dietary treatments for a 7-week feeding trial. The birds were fed a basal diet supplemented with 0 (control group), 0.25, 0.5, and 1 g/kg MPal, respectively. The supplementation of MPal did not alter laying performance and egg quality among groups. Compared with the control group, MPal inclusion decreased lead (Pb) content in yolks at 49 days, and either 0.5- or 1-g/kg MPal supplementation decreased Pb accumulation in yolks at 25 days and manganese (Mn) accumulation in yolks at 25 and 49 days. The contents of jejunal secretory immunoglobulin A (SIgA), ileal SIgA, and immunoglobulin G were decreased by the dietary 0.5-g/kg MPal supplementation. The supplementation of MPal also decreased malondialdehyde content in jejunum and ileum, and decreased serum diamine oxidase activity of the laying hens at 25 and 49 days. The inclusion of 0.5 and 1 g/kg MPal enhanced villus height in jejunum and ileum, and also increased the ratio of villus height to crypt depth in ileum. In conclusion, MPal supplementation decreased Pb and Mn contents in yolks, and exhibited beneficial effects on the intestinal immunity, oxidative status, and intestinal integrity and barrier function of laying hens and its optimal dosage was 0.5 g/kg.
Collapse
Affiliation(s)
- Y Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y F Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Su Y, Chen Y, Chen L, Xu Q, Kang Y, Wang W, Wang A, Wen C, Zhou Y. Effects of different levels of modified palygorskite supplementation on the growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers. J Anim Physiol Anim Nutr (Berl) 2018; 102:1574-1584. [PMID: 30113108 DOI: 10.1111/jpn.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
This experiment was designed to investigate effects of different levels of modified palygorskite (MPal) supplementation on growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers. A total of 320 1-day-old Arbor Acres broilers were randomly assigned into 5 dietary treatments and fed a basal diet supplemented with 0, 0.25, 0.5, 1 and 2 g/kg MPal, respectively, for a 42-day feeding trial. Treatments quadratically reduced feed/gain ratio (F:G) during 1-21 days and linearly decreased average daily feed intake and F:G during 22-42 days, and linearly and quadratically decreased average daily feed intake and F:G during overall period (p < 0.05, 0.50 g/kg treatment showed the lowest F:G). MPal supplementation increased the contents of 21-day jejunal secretory immunoglobulin A (SIgA) quadratically, and 21-day jejunal immunoglobulin G (IgG), immunoglobulin M (IgM) and 42-day jejunal total superoxide dismutase (T-SOD) activity linearly and quadratically (0.50 g/kg treatment showed the highest immunoglobulin concentration), whereas linearly reduced 21-day ileal SIgA level and 42-day jejunal malondialdehyde (MDA) accumulation and serum diamine oxidase activity, and quadratically decreased 21-day ileal MDA level (p < 0.05). The 42-day jejunal SIgA, IgG and IgM concentrations, and T-SOD activity in jejunum at 21 days and ileum at both 21 days and 42 days were quadratically increased with MPal administration (p < 0.05, 0.50 g/kg treatment showed the highest T-SOD activity). The mucin 2 mRNA abundances in 42-day jejunum and 21-day ileum were quadratically increased with MPal supplementation (p < 0.05). Treatments linearly increased 42-day ileal zonula occludens-1, claudin-3 and jejunal claudin-3 mRNA level, whereas linearly and quadratically increased ileal claudin-2 mRNA level (p < 0.05). In conclusion, MPal supplementation exhibited beneficial effects on growth performance, intestinal immunity, antioxidant capacity and intestinal integrity and barrier function of broiler with its optimum dosage being 0.5 g/kg.
Collapse
Affiliation(s)
- Yue Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lingjie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.046] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
20
|
Jahanbakhsh S, Letellier A, Fairbrother JM. Circulating of CMY-2 β-lactamase gene in weaned pigs and their environment in a commercial farm and the effect of feed supplementation with a clay mineral. J Appl Microbiol 2017; 121:136-48. [PMID: 27138244 DOI: 10.1111/jam.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/02/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the mechanisms leading to an increase in the prevalence of blaCMY -2 conferring resistance to ceftiofur in pigs receiving a feed medicated with chlortetracycline and penicillin, and to examine the effect of supplementation with a clay mineral on this phenomenon. METHODS AND RESULTS In 138 blaCMY -2 -positive Escherichia coli isolates from faeces of pigs receiving feed supplemented or not with 2% clinoptilolite, from day 2 to day 28 after weaning, isolates from the two groups differed significantly with respect to their phylogenetic group: phylotype A predominated in the supplemented group, whereas phylotypes B1 and D predominated in the control group, as determined by PCR. In 36 representative isolates, pulsed-field gel electrophoresis and antimicrobial susceptibility testing revealed that the blaCMY -2 -positive E. coli isolates were polyclonal with diverse antimicrobial resistance patterns and blaCMY -2 -carrying plasmids of incompatibility (Inc) groups, A/C, I1 and ColE were observed in transformants as detected by PCR. Enterobacter cloacae possessing blaCMY -2 -carrying IncA/C plasmids were found in the pens before introduction of this batch of pigs. The blaCMY -2 -positive E. coli isolates were more clonally diverse in the control group than the supplemented group. CONCLUSIONS The blaCMY -2 gene appears to have spread both horizontally and clonally in this batch of pigs and may have spread from previous batches of pigs via plasmids carried by Ent. cloacae and expanded in animals of the present batch in the presence of the selection pressure due to administration of chlortetracycline and penicillin in the feed. Feed supplementation may have an effect on clonal diversity of blaCMY -2 -positive isolates. SIGNIFICANCE AND IMPACT OF THE STUDY Implementation of improved hygiene measures, decreased administration of certain antimicrobials on farm and feed supplementation with certain ingredients may limit antimicrobial resistance spread between and within batches of animals.
Collapse
Affiliation(s)
- S Jahanbakhsh
- OIE Reference Laboratory for Escherichia coli (EcL), Faculté de médecine vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - A Letellier
- NSERC Industrial Research Chair in Meat Safety, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - J M Fairbrother
- OIE Reference Laboratory for Escherichia coli (EcL), Faculté de médecine vétérinaire, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
21
|
Effects of Oregano, Attapulgite, Benzoic Acid and their Blend on Chicken Performance, Intestinal Microbiology and Intestinal Morphology. J Poult Sci 2017; 54:218-227. [PMID: 32908429 PMCID: PMC7477216 DOI: 10.2141/jpsa.0160071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The aim of the present study was to investigate the effects of oregano, attapulgite, benzoic acid and their combination on broiler performance, microflora composition of jejunum and cecum, intestinal architecture and breast and thigh meat composition. A total of 400 one-day-old broiler chicks were used in a 42-day trial. They were randomly distributed into five treatments with four replicates of twenty chickens per pen: Control group; Attapulgite group; Oregano essential oil group; Benzoic acid group; Mixed group. At the end of the trial, total counts of bacteria, Enterobacteriaceae, Lactobacilli, and Clostridium perfringens were enumerated by real time PCR at both jejunum and cecum. Intestinal morphology was carried out in duodenum, jejunum and ileum, for villus height and crypt depth. Cell proliferation was also evaluated in the small intestine and the cecum. The results showed that oregano and benzoic acid improved some growth performance parameters. The combined use of the examined substances increased enterobacteria counts in the jejunum, and cell proliferation in the duodenum and the jejunum. Benzoic acid improved intestinal wall morphology in the ileum. In conclusion, the combined dietary supplementation with oregano, attapulgite and benzoic acid can be a novel tool to beneficially modulate broiler chickens performance.
Collapse
|
22
|
Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|