1
|
Zhou Z, Liu S, Saleem M, Liu F, Hu R, Su H, Dong D, Luo Z, Wu Y, Zhang Y, He Z, Wang C. Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process. BIORESOURCE TECHNOLOGY 2025; 419:132081. [PMID: 39826761 DOI: 10.1016/j.biortech.2025.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation. In phase I (initial-mesophilic), viruses targeted Gammaproteobacteria and Firmicutes, utilizing restriction-modification (RM) systems. In phase II (thermophilic-maturing), viruses infected Alphaproteobacteria, Chloroflexi, and Planctomycetes, employing CRISPR-Cas systems. Lysogenic and lytic viruses exerting differential effects on bacterial pathogens across phases. Additionally, six types of auxiliary metabolic genes (AMGs) related to galactose and cysteine metabolisms were identified. The homologous lineages of AMGs with bacterial genes, along with the significant temporal correlation observed between virus-host-metabolite interactions, underscore the critical yet often overlooked role of viral communities in modulating microbial metabolisms and pathogenesis within composting ecosystems.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Da Dong
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Zhiwen Luo
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Spilsberg B, Sekse C, Urdahl AM, Nesse LL, Johannessen GS. Persistence of a Stx-Encoding Bacteriophage in Minced Meat Investigated by Application of an Improved DNA Extraction Method and Digital Droplet PCR. Front Microbiol 2021; 11:581575. [PMID: 33552009 PMCID: PMC7855172 DOI: 10.3389/fmicb.2020.581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens with Shiga toxins as the main virulence factor. Shiga toxins are encoded on Shiga toxin-encoding bacteriophages (Stx phages). Stx phages may exist as free bacteriophages in the environment or in foods or as prophages integrated into the host genome. From a food safety perspective, it is important to have knowledge on the survival and persistence of Stx phages in food products since these may integrate into the bacterial hosts through transduction if conditions are right. Here, we present the results from a study investigating the survival of a Stx phage in minced meat from beef stored at a suboptimal temperature (8°C) for food storage along with modifications and optimizations of the methods applied. Minced meat from beef was inoculated with known levels of a labeled Stx phage prior to storage. Phage filtrates were used for plaque assays and DNA extraction, followed by real-time PCR and digital droplet PCR (ddPCR). The results from the pilot study suggested that the initial DNA extraction protocol was not optimal, and several modifications were tested before a final protocol was defined. The final DNA extraction protocol comprised ultra-centrifugation of the entire phage filtrate for concentrating phages and two times phenol–chloroform extraction. The protocol was used for two spiking experiments. The DNA extraction protocol resulted in flexibility in the amount of DNA available for use in PCR analyses, ultimately increasing the sensitivity of the method used for quantification of phages in a sample. All three quantification methods employed (i.e., plaque assays, real-time PCR, and ddPCR) showed similar trends in the development of the phages during storage, where ddPCR has the benefit of giving absolute quantification of DNA copies in a simple experimental setup. The results indicate that the Stx phages persist and remain infective for at least 20 days under the storage conditions used in the present study. Stx phages in foods might represent a potential risk for humans. Although it can be speculated that transduction may take place at 8°C with subsequent forming of STEC, it can be expected to be a rare event. However, such an event may possibly take place under more optimal conditions, such as an increase in storage temperature of foods or in the gastrointestinal tract of humans.
Collapse
Affiliation(s)
- B Spilsberg
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - C Sekse
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne M Urdahl
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Live L Nesse
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Gro S Johannessen
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
3
|
Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int J Hyg Environ Health 2020; 227:113524. [DOI: 10.1016/j.ijheh.2020.113524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
|
4
|
Nyambe S, Burgess C, Whyte P, Bolton D. An investigation of vtx 2 bacteriophage transduction to different Escherichia coli patho-groups in food matrices and nutrient broth. Food Microbiol 2017; 68:1-6. [PMID: 28800816 DOI: 10.1016/j.fm.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 12/14/2022]
Abstract
This study investigated bacteriophage (phage) mediated transfer of the vtx2 gene from a donor Escherichia coli (C600φ3538(Δvtx2::cat)) to enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli strains in LB broth, milk, ground beef and lettuce. Two bacterial concentrations for both the E. coli donor and recipient strains, 3 and 5 log10 CFU/ml (LB broth and milk)/g (beef) or/cm2 (lettuce), were used. When transductants were obtained, the location of insertion of the phage (insertion sites wrbA, yehA, sbcB, yecE and/or Z2577) in the E. coli chromosome was investigated by PCR. The vtx2 gene was readily transferred to EAEC O104:H4 (E99518) in all matrices and inserted into the chromosome at the sbcB locus. At higher cell concentrations, transductants were also obtained with ETEC E4683, ETEC E8057 (insertion site unknown) and DAEC O75:H- E66438 (insertion site unknown) in LB broth and milk. It was concluded that the vtx2 gene may be transferred by bacteriophage to different E. coli pathotypes in laboratory and food matrices, resulting in the spread of the vtx2 gene and the emergence of novel foodborne pathogens.
Collapse
Affiliation(s)
- Sepo Nyambe
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
5
|
Shigatoxin encoding Bacteriophage ϕ24 B modulates bacterial metabolism to raise antimicrobial tolerance. Sci Rep 2017; 7:40424. [PMID: 28106081 PMCID: PMC5247750 DOI: 10.1038/srep40424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/07/2016] [Indexed: 01/15/2023] Open
Abstract
How temperate bacteriophages play a role in microbial infection and disease progression is not fully understood. They do this in part by carrying genes that promote positive evolutionary selection for the lysogen. Using Biolog phenotype microarrays and comparative metabolite profiling we demonstrate the impact of the well-characterised Shiga toxin-prophage ϕ24B on its Escherichia coli host MC1061. As a lysogen, the prophage alters the bacterial physiology by increasing the rates of respiration and cell proliferation. This is the first reported study detailing phage-mediated control of the E. coli biotin and fatty acid synthesis that is rate limiting to cell growth. Through ϕ24B conversion the lysogen also gains increased antimicrobial tolerance to chloroxylenol and 8-hydroxyquinoline. Distinct metabolite profiles discriminate between MC1061 and the ϕ24B lysogen in standard culture, and when treated with 2 antimicrobials. This is also the first reported use of metabolite profiling to characterise the physiological impact of lysogeny under antimicrobial pressure. We propose that temperate phages do not need to carry antimicrobial resistance genes to play a significant role in tolerance to antimicrobials.
Collapse
|