1
|
Terzić J, Stanković M, Stefanović O. Extracts of Achillea millefolium L. inhibited biofilms and biofilm-related virulence factors of pathogenic bacteria isolated from wounds. Microb Pathog 2025; 199:107219. [PMID: 39667637 DOI: 10.1016/j.micpath.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Biofilm is a surface-attached community of bacterial cells implicated in the pathogenesis of chronic infections and is highly resistant to antibiotics. New alternatives for controlling bacterial infections have been proposed focusing on the therapeutic properties of medicinal plants. Achillea millefollium (Yarrow) is a widespread plant species that is widely used in traditional medicine, especially for wound healing. Therefore, the purpose of this study was to examine the antibiofilm activity of A. millefolium ethanol, acetone, and ethyl acetate extracts on biofilms of Staphylococcus aureus, Proteus spp. and Pseudomonas aeruginosa strains originating from human wounds. Additionally, the effects of the tested extracts on auto-aggregation, cell surface hydrophobicity, and bacterial motility were evaluated. Phytochemical analysis included FT-IR spectroscopy and spectrophotometric quantification of phenolic compound contents was performed. In a test with crystal violet, the extracts strongly inhibited initial cell attachment and biofilm formation, but the effects on mature biofilms were weaker. The effects were dose- and strain-dependent, which was confirmed by fluorescence microscopy. The acetone extract showed the strongest antibiofilm activity. Biofilms of S. aureus S3 and S2 clinical strains were the most susceptible (inhibition of ≥76 % and ≥72 % at all tested concentrations, respectively). The highest concentration of total flavonoids was measured in the acetone extract (100.01 ± 3.13 mg RUE/g). Additionally, the extracts reduced bacterial auto-aggregation, swimming and swarming motility of some strains but did not disturb bacterial cell hydrophobicity. These results suggest that A. millefolium extracts have potential roles as new antibiofilm agents against human pathogenic bacteria.
Collapse
Affiliation(s)
- Jelena Terzić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Marina Stanković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Olgica Stefanović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| |
Collapse
|
2
|
Fu S, Song W, Han X, Chen L, Shen L. Veratryl Alcohol Attenuates the Virulence and Pathogenicity of Pseudomonas aeruginosa Mainly via Targeting las Quorum-Sensing System. Microorganisms 2024; 12:985. [PMID: 38792814 PMCID: PMC11123940 DOI: 10.3390/microorganisms12050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it is essential to explore non-antibiotic methods. A new strategy involves screening for drugs that target the quorum-sensing (QS) system. The QS system regulates the infection and drug resistance in P. aeruginosa. In this study, veratryl alcohol (VA) was found as an effective QS inhibitor (QSI). It effectively suppressed the expression of QS-related genes and the subsequent production of virulence factors under the control of QS including elastase, protease, pyocyanin and rhamnolipid at sub-inhibitory concentrations. In addition, motility activity and biofilm formation, which were correlated with the infection of P. aeruginosa, were also suppressed by VA. In vivo experiments demonstrated that VA could weaken the pathogenicity of P. aeruginosa in Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection models. Molecular docking, combined with QS quintuple mutant infection analysis, identified that the mechanism of VA could target the LasR protein of the las system mainly. Moreover, VA increased the susceptibility of P. aeruginosa to conventional antibiotics of tobramycin, kanamycin and gentamicin. The results firstly demonstrate that VA is a promising QSI to treat infections caused by P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (S.F.); (W.S.); (X.H.); (L.C.)
| |
Collapse
|
3
|
Zhang Z, Sun Y, Yi Y, Bai X, Zhu L, Zhu J, Gu M, Zhu Y, Jiang L. Screening and Identification of a Streptomyces Strain with Quorum-Sensing Inhibitory Activity and Effect of the Crude Extracts on Virulence Factors of Pseudomonas aeruginosa. Microorganisms 2023; 11:2079. [PMID: 37630639 PMCID: PMC10458028 DOI: 10.3390/microorganisms11082079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum-sensing (QS) is involved in numerous physiological processes in bacteria, such as biofilm formation, sporulation, and virulence formation. Therefore, the search for new quorum-sensing inhibitors (QSI) is a promising strategy that opens up a new perspective for controlling QS-mediated bacterial pathogens. To explore new QSIs, a strain named Streptomyces sp. D67 with QS inhibitory activity was isolated from the soil of the arid zone around the Kumutag Desert in Xinjiang. Phylogenetic analyses demonstrated that strain D67 shared the highest similarity with Streptomyces ardesiacus NBRC 15402T (98.39%), which indicated it represented a potential novel species in the Streptomyces genus. The fermentation crude extracts of strain D67 can effectively reduce the violacein production produced by Chromobacterium violaceum CV026 and the swarming and swimming abilities of Pseudomonas aeruginosa. It also has significant inhibitory activity on the production of virulence factors such as biofilm, pyocyanin, and rhamnolipids of P. aeruginosa in a significant concentration-dependent manner, but not on protease activity. A total of 618 compounds were identified from the fermentation crude extracts of strain D67 by LC-MS, and 19 compounds with significant QS inhibitory activity were observed. Overall, the strain with QS inhibitory activity was screened from Kumutag Desert in Xinjiang for the first time, which provided a basis for further research and development of new QSI.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuanyang Yi
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Xiaoyu Bai
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Meiying Gu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
4
|
Li J, Chen X, Xie Z, Liang L, Li A, Zhao C, Wen Y, Lou Z. Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa. Foods 2023; 12:2799. [PMID: 37509891 PMCID: PMC10379379 DOI: 10.3390/foods12142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas aeruginosa is a conditional Gram-negative pathogen that produces extracellular virulence factors that can lead to bloodstream invasion, severely harm tissues, and disseminate bacteria, ultimately leading to various diseases. In this study, lactic acid bacteria (LAB) with strong antagonistic ability against P. aeruginosa were screened, and the regulatory mechanism of LAB against P. aeruginosa was evaluated. The results showed that the three selected LAB strains had strong inhibition ability on the growth, biofilm formation, and pyocyanin expression of P. aeruginosa and a promoting effect on the expression of autoinducer-2. Among them, Lactipantibacillus plantarum (Lp. plantarum) LPyang is capable of affecting the metabolic processes of P. aeruginosa by influencing metabolic substances, such as LysoPC, oxidized glutathione, betaine, etc. These results indicate that LPyang reduces the infectivity of P. aeruginosa through inhibition of its growth, biofilm formation, pyocyanin expression, and regulation of its metabolome. This study provides new insights into the antagonistic activity of Lp. plantarum LPyang against P. aeruginosa.
Collapse
Affiliation(s)
- Jianzhou Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
| | - Xiaohua Chen
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
- Department of Life Sciences, Nanyue College of Hengyang Normal University, Hengyang 421008, China
| | - Ziyan Xie
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
| | - Lin Liang
- Department of Life Sciences, Nanyue College of Hengyang Normal University, Hengyang 421008, China
| | - Anping Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Zaixiang Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Skowrońska W, Granica S, Dziedzic M, Kurkowiak J, Ziaja M, Bazylko A. Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as well as the Chemical Composition of Extracts from Aerial Parts and from Roots. PLANTS 2021; 10:plants10010078. [PMID: 33401685 PMCID: PMC7824023 DOI: 10.3390/plants10010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
Arctium lappa is a weed used in traditional medicine in the treatment of skin inflammation and digestive tract diseases. Arctium tomentosum is used in folk medicine interchangeably with Arctium lappa and, according to European Medicines Agency (EMA) monography, provides an equal source of Arctii radix (Bardanae radix), despite the small amount of research confirming its activity and chemical composition. The aim of the study was the comparison of the anti-lipoxygenase and the antioxidant activity, scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion (O2•−), and hydrogen peroxide (H2O2), of 70 % (v/v) ethanolic extracts from the aerial parts and the roots of Arctium lappa and Arctium tomentosum. In the tested extracts, the total polyphenols content and the chemical composition, analyzed with the HPLC–DAD–MSn method, were also compared. The extracts were characterized by strong antioxidant properties, but their ability to inhibit lipoxygenase activity was rather weak. A correlation between the content of polyphenolic compounds and antioxidant activity was observed. The extracts from A. lappa plant materials scavenged reactive oxygen species more strongly than the extracts from A. tomentosum plant materials. Moreover, the extracts from A. lappa plant materials were characterized by the statistically significantly higher content of polyphenolic compounds.
Collapse
Affiliation(s)
- Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (W.S.); (S.G.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (W.S.); (S.G.)
| | - Magdalena Dziedzic
- Student’s Scientific Association at the Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Justyna Kurkowiak
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Rzeszów University, Cicha 2a, 35-326 Rzeszów, Poland;
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (W.S.); (S.G.)
- Correspondence:
| |
Collapse
|
6
|
Su T, Qiu Y, Hua X, Ye B, Luo H, Liu D, Qu P, Qiu Z. Novel Opportunity to Reverse Antibiotic Resistance: To Explore Traditional Chinese Medicine With Potential Activity Against Antibiotics-Resistance Bacteria. Front Microbiol 2020; 11:610070. [PMID: 33414777 PMCID: PMC7782309 DOI: 10.3389/fmicb.2020.610070] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is becoming significantly prominent and urgent in clinical practice with the increasing and wide application of antibacterial drugs. However, developing and synthesizing new antimicrobial drugs is costly and time-consuming. Recently, researchers shifted their sights to traditional Chinese medicine (TCM). Here, we summarized the inhibitory mechanism of TCM herbs and their active ingredients on bacteria, discussed the regulatory mechanism of TCM on antibiotic-resistant bacteria, and revealed preclinical results of TCM herbs and their active components against antibiotic-resistant bacteria in mouse models. Those data suggest that TCM herbs and their effective constituents exhibit potential blockage ability on antibiotic-resistant bacteria, providing novel therapeutic ideas for reversing antibiotic resistance.
Collapse
Affiliation(s)
- Ting Su
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Xuesi Hua
- College of Literature, Science and Arts University of Michigan, Ann Arbor, MI, United States
| | - Bi Ye
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- National Cancer Institute, Frederick, MD, United States
| | - Zhidong Qiu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Nagar N, Aswathanarayan JB, Vittal RR. Anti-quorum sensing and biofilm inhibitory activity of Apium graveolens L. oleoresin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2414-2422. [PMID: 32549591 PMCID: PMC7271345 DOI: 10.1007/s13197-020-04275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
Apium graveolens L. (Apiaceae) is a dietary herb used as a spice, condiment and medicine. A. graveolens (Celery) has been studied for its antimicrobial property and for its application as flavours in food industry. The present study investigated the Apium graveolens oleoresin as an anti-quorum sensing and antibiofilm agent. The quorum sensing and biofilm inhibition study was carried out using biosensor strains Chromobacterium violaceum CV12472 and Pseudomonas aeruginosa PAO1. The MIC of celery oleoresin against C. violaceum CV12472 and P. aeruginosa PAO1 was 10 and 25% v/v, respectively. Inhibition of violacein and biofilm formation was tested at concentrations of oleoresins ranging from 1.56 and 50% v/v. The oleoresins showed a concentration dependent QS inhibitory activity and at sub-MIC of 6.25 and 12.5% v/v, the oleoresins significantly inhibited violacein production and biofilm formation (p < 0.05). Similarly, the celery oleoresin had significant QS modulatory effect on swimming, swarming and twitching motility in P. aeruginosa PAO1 at 12.5% v/v (p < 0.05). The major phytoconstituents present in celery oleoresin as analysed by GC-MS were eicosadiene, benzenemethanol and methyl ester which have not been previously reported. The findings suggest that celery has QS and biofilm inhibitory potential against gram negative pathogens and can find application as food intervention techniques.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Studies in Microbiology, University of Mysore, Mysore, 570 006 India
| | | | | |
Collapse
|
8
|
Nathan S, Nanassy AD, Burkey BA, Davis WJ, Glat PM. The management of paediatric burns with Burns and Wounds ointment and burdock leaves: a case series. J Wound Care 2020; 29:S30-S35. [PMID: 32412894 DOI: 10.12968/jowc.2020.29.sup5a.s30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In the Amish community, natural therapies, such as Burns and Wounds (B&W) ointment and burdock leaves, are preferred over modern medicine when treating burn wounds. The primary aim of this case series is to highlight the use and clinical outcomes of this treatment for paediatric Amish patients. METHOD At the a paediatric burn centre, two patients were treated with B&W ointment and burdock leaves. The first patient was 11 months old with 17% total body surface area (TBSA) partial and full-thickness scald burns to her lower extremities. The second patient was 24 months old with 20% TBSA partial-thickness scald burns to the torso, bilateral upper extremities, neck and chin. RESULTS Soon after presentation to the hospital, both patients developed positive wound cultures and required cessation of ointment and burdock leaf therapy. Both patients ultimately underwent surgical interventions. CONCLUSION Managing burn wounds with B&W ointment and burdock leaves should be considered as an additional option for wound care in select cases. However, the efficacy of this therapy is limited and standard-of-care modern medical burn treatments should remain an option for these patients. It is critically important to build a mutually respectful relationship with Amish patients' community leaders, as this allows open communication and collaboration in patient care and increases the likelihood that Amish guardians will bring their children to a hospital when necessary.
Collapse
Affiliation(s)
- Shelby Nathan
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, US
| | - Autumn D Nanassy
- St Christopher's Hospital for Children, 160 E. Erie Avenue, Philadelphia, PA 19134, US
| | - Brooke A Burkey
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, US.,St Christopher's Hospital for Children, 160 E. Erie Avenue, Philadelphia, PA 19134, US
| | - Wellington J Davis
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, US.,St Christopher's Hospital for Children, 160 E. Erie Avenue, Philadelphia, PA 19134, US
| | - Paul M Glat
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, US.,St Christopher's Hospital for Children, 160 E. Erie Avenue, Philadelphia, PA 19134, US
| |
Collapse
|
9
|
Methyl anthranilate: A novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria. Food Microbiol 2020; 86:103356. [DOI: 10.1016/j.fm.2019.103356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
|
10
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
11
|
Wang E, Li Y, Maguy BL, Lou Z, Wang H, Zhao W, Chen X. Separation and enrichment of phenolics improved the antibiofilm and antibacterial activity of the fractions from Citrus medica L. var. sarcodactylis in vitro and in tofu. Food Chem 2019; 294:533-538. [DOI: 10.1016/j.foodchem.2019.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
12
|
Zhang QQ, Zhang YH, Cai FY, Liu XL, Chen XH, Jiang M. Comparative antibacterial and antibiofilm activities of garlic extracts, nisin, ε‐polylysine, and citric acid on
Bacillus subtilis. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiu Qin Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Yu Hui Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Fang Yuan Cai
- College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Xiao Li Liu
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing P.R. China
| | - Xiao Hong Chen
- College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| | - Mei Jiang
- College of Food Science and Technology Nanjing Agricultural University Nanjing P.R. China
| |
Collapse
|
13
|
Lou Z, Letsididi KS, Yu F, Pei Z, Wang H, Letsididi R. Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. J Food Prot 2019; 82:379-389. [PMID: 30785306 DOI: 10.4315/0362-028x.jfp-18-196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the quorum sensing (QS) inhibition potential of eugenol and eugenol nanoemulsion against QS-dependent virulence factor production and gene expression, as well as biofilm formation in Pseudomonas aeruginosa. In the current study, eugenol nanoemulsion at a sub-MIC of 0.2 mg/mL specifically inhibited about 50% of the QS-mediated violacein production in Chromobacterium violaceum, as well as the production of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, and swarming motility in P. aeruginosa. The inhibitive effect of eugenol and its nanoemulsion on the expression of the QS synthase genes was concentration dependent, displaying 65 and 52% expression level for lasI, respectively, and 61 and 45% expression level for rhlI, respectively, at a concentration of 0.2 mg/mL. In addition, the inhibitive effect of eugenol and its nanoemulsion on the expression of the rhlA gene responsible for the production of rhamnolipid was also concentration dependent, displaying 65 and 51% expression level for the rhlA gene, respectively, at a concentration of 0.2 mg/mL. Eugenol and its nanoemulsion also displayed 36 and 63% respective inhibition of biofilm formation by P. aeruginosa at the 0.2 mg/mL concentration. Therefore, the nanoemulsion could be used as a novel QS-based antibacterial and antibiofilm agent for the control of harmful bacteria.
Collapse
Affiliation(s)
- Zaixiang Lou
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Kekgabile S Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Zejun Pei
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Hongxin Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Rebaone Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|