1
|
Sakai S, Furukawa K, Namai F, Nishiyama K, Gyawali D, Goto T, Kikusato M. Equol-Producing Bacteria in the Chicken Intestine: PCR Analysis on the Bacteria Quantitatively Correlating With Equol Concentration in Daidzein-Fed Laying Hens. Anim Sci J 2025; 96:e70068. [PMID: 40448516 DOI: 10.1111/asj.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 05/16/2025] [Indexed: 06/02/2025]
Abstract
Equol is a microbial metabolite from daidzein, an isoflavone, in the animal intestine. This study aimed to identify equol-producing bacteria in the intestines of chickens. Sixteen 181-day-old Hy-Line Brown laying hens were given a basal diet formulated excluding soy products for 2 weeks and subsequently given the diets supplemented with 0-, 100-, 1000-, and 10,000-ppm daidzein for 10 days. Plasma and egg yolk equol concentration was significantly increased with dietary daidzein supplementation. Gene abundance of two major bacterial enzymes catalyzing the conversion of daidzein to equol, dihydrodaidzein reductase, and tetrahydro daidzein reductase was measured using polymerase chain reaction (PCR) analysis, with the abundance increasing with dietary daidzein supplementation (p < 0.05). After sequencing the PCR amplicons, six possible bacteria were identified, and they were further identified and quantified using a specific primer for each bacterial gene. As a result, Adlercreutzia equolifaciens and Slackia equolifaciens were identified, and their bacterial relative abundance increased with dietary daidzein concentration and plasma equol levels (p < 0.05). A. equolifaciens and S. equolifaciens are known as equol-producing bacteria, and the present study was the first to show that these bacteria could also contribute to equol production in chickens.
Collapse
Affiliation(s)
- Sota Sakai
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kyohei Furukawa
- Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Dipson Gyawali
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Motoi Kikusato
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Ruiz de la Bastida A, Langa S, Curiel JA, Peirotén Á, Landete JM. Effect of Fermented Soy Beverage on Equol Production by Fecal Microbiota. Foods 2024; 13:2758. [PMID: 39272523 PMCID: PMC11394804 DOI: 10.3390/foods13172758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Soy consumption is associated with health benefits, mainly linked to the ability of the intestinal microbiota to metabolize the glycosylated isoflavones into more bioactive compounds, such as equol. Because Bifidobacterium pseudocatenulatum INIA P815 is able to efficiently deglycosylate daidzin into daidzein, the aim of this work was to confirm the influence of soy beverages fermented by B. pseudocatenulatum INIA P815 for enhancing equol production by fecal microbiota. Firstly, fecal samples from 17 participants were characterized in vitro, and we observed that 35.3% of them were able to produce equol from daidzein. In addition, the kinetics of equol production and degradation by fecal microbiota were evaluated, determining that 30-85% of equol is degraded after 24 h of incubation. Finally, the influence of fermented soy beverage on improving the production of equol by selected equol-producing fecal samples and by the equol-producing strain Slackia isoflavoniconvertens was analyzed through a colonic model. Fermented soy beverage enhanced the equol production from S. isoflavoniconvertens as well as the fecal samples whose microbiota showed high rates of equol degradation. The results obtained confirm that the fermentation of soy beverages with selected bacterial strains improves the functional properties of these beverages in terms of isoflavone metabolism and equol production.
Collapse
Affiliation(s)
- Ana Ruiz de la Bastida
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
3
|
Hu YF, Luo S, Wang SQ, Chen KX, Zhong WX, Li BY, Cao LY, Chen HH, Yin YS. Exploring functional genes' correlation with ( S)-equol concentration and new daidzein racemase identification. Appl Environ Microbiol 2024; 90:e0000724. [PMID: 38501861 PMCID: PMC11022573 DOI: 10.1128/aem.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.
Collapse
Affiliation(s)
- Yun-Fei Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Shu Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sheng-Qi Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke-Xin Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei-Xuan Zhong
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Yuan Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin-Yan Cao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hua-Hai Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Ye-Shi Yin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| |
Collapse
|
4
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
5
|
Vázquez L, Cabrera-Rubio R, Tamames J, Mayo B, Flórez AB. Assessment of short-read shotgun sequencing and microbiome analysis of faecal samples to discriminate between equol producers and non-producers. Benef Microbes 2023; 14:255-268. [PMID: 37078124 DOI: 10.3920/bm2022.0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/17/2023] [Indexed: 04/21/2023]
Abstract
Among the isoflavones and isoflavone-derived metabolites, equol, which in the human gut is synthesised from daidzein by minority bacterial populations, shows the strongest estrogenic and antioxidant activity. The beneficial effects on human health of isoflavone consumption might be partially or indeed totally attributable to this equol. Although some of the bacterial strains involved in its formation have been identified, the interplay between the composition and functionality of the gut microbiota and equol producer phenotype has hardly been studied. In this study, after shotgun metagenomic sequencing, different pipelines for the taxonomic and functional annotation of sequencing data were used in the search for similarities and differences in the faecal metagenome of equol-producing (n=3) and non-producing (n=2) women, with special focus on equol-producing taxa and their equol-associated genes. The taxonomic profiles of the samples differed significantly depending on the analytical method followed, although the microbial diversity detected by each tool was very similar at the phylum, genus and species levels. Equol-producing taxa were detected in both equol producers and non-producers, but no correlation between the abundance of equol-producing taxa and the equol producing/non-producing phenotype was found. Indeed, functional metagenomic analysis was unable to identify the genes involved in equol production, even in samples from equol producers. By aligning equol operons with the collected metagenomics data, a small number of reads mapping to equol-associated sequences were recognised in samples from both equol producers and equol non-producers, but only two reads mapping onto equol reductase-encoding genes in a sample from an equol producer. In conclusion, the taxonomic analysis of metagenomic data might not be suitable for detecting and quantifying equol-producing microbes in human faeces. Functional analysis of the data might provide an alternative. However, to detect the genetic makeup of the minority gut populations, more extensive sequencing than that achieved in the present study might be required.
Collapse
Affiliation(s)
- L Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - R Cabrera-Rubio
- Alimentary Pharmabiotic Centre (APC), Microbiome Institute, University College Cork, Cork, Ireland
- Moorepark Teagasc Food Research Centre, Fermoy, Ireland
| | - J Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - A B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| |
Collapse
|
6
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
7
|
Vázquez L, Flórez AB, Rodríguez J, Mayo B. Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens. FEMS Microbiol Lett 2021; 368:6309895. [PMID: 34173644 PMCID: PMC8266531 DOI: 10.1093/femsle/fnab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Equol is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. It is produced from daidzein by fastidious and oxygen-susceptible intestinal bacteria, which hinders their use at an industrial scale. Therefore, expressing the equol production machinery into easily-cultivable hosts would expedite the heterologous production of this compound. In this work, four genes (racemase, tdr, ddr and dzr) coding for key enzymes involved in equol production in Adlercreutzia equolifaciens DSM19450T were synthesized and cloned in a pUC-derived vector (pUC57-equol) that was introduced in Escherichia coli. Recombinant clones of E. coli produced equol in cultures supplemented with daidzein (equol precursor) and dihydrodaidzein (intermediate compound). To check whether equol genes were expressed in Gram-positive bacteria, the pUC57-equol construct was cloned into the low-copy-number vector pIL252, and the new construct (pIL252-pUC57-equol) introduced into model strains of Lacticaseibacillus casei and Lactococcus lactis. L. casei clones carrying pIL252-pUC57-equol produced a small amount of equol from dihydrodaidzein but not from daidzein, while L. lactis recombinant clones produced no equol from either of the substrates. This is the first time that A. equolifaciens equol genes have been cloned and expressed in heterologous hosts. E. coli clones harboring pUC57-equol could be used for biotechnological production of equol.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| |
Collapse
|
8
|
Production of Bovine Equol-Enriched Milk: A Review. Animals (Basel) 2021; 11:ani11030735. [PMID: 33800327 PMCID: PMC7999515 DOI: 10.3390/ani11030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Milk and dairy products contain many substances beneficial to human health; moreover, the contents of some of these substances can be enhanced. This is also the case of isoflavones which are compounds of plant origin that can be ingested and metabolized by cattle and, subsequently, secreted into bovine milk. An especially healthful substance called equol is ranked among isoflavone metabolites, commonly produced in the digestive tract of cattle. Equol content in milk can be modified by using feedstuffs with different contents of isoflavones or by milk processing and storage. Abstract Milk and dairy products are important sources of nutrients in the human diet because they contain a number of essential substances and other biologically active components. Many of these substances can be modified, and thus offer opportunities to use milk and dairy products as functional food. Isoflavones are particularly important in human nutrition due to their diverse pharmacological and antioxidant properties. The clinical effectiveness of isoflavone-rich products is believed to be dependent on their ability to metabolize daidzein to equol, which may directly exert cancer preventive effects. However, only approximately 30–40% of humans are able to produce equol, while animals, in general, produce equol. Equol is the predominant product of bacterial metabolism of isoflavones and can be found in various amounts in some food of animal origin, especially in milk. Therefore, milk and dairy products can be considered to be sources of equol for humans who are not able to produce this metabolite. When the content of isoflavones in milk is to be modified, two groups of factors should be considered, i.e., dietary factors that include the source of isoflavones and the processing effects on feedstuffs and animal factors that include the intake of isoflavones, ruminal and postruminal changes, and the health and physiological status of animals. The approximate content of isoflavones in milk can be predicted using carry-over rates for different dietary sources or using a formula that describes the relationship between equol concentration in milk and formononetin intake. Processing and storage can affect the content and profile of isoflavones in milk and dairy products.
Collapse
|
9
|
Hsiao YH, Ho CT, Pan MH. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104164] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
11
|
Amedei A, Morbidelli L. Circulating Metabolites Originating from Gut Microbiota Control Endothelial Cell Function. Molecules 2019; 24:3992. [PMID: 31694161 PMCID: PMC6864778 DOI: 10.3390/molecules24213992] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular functionality strictly depends on endothelial cell trophism and proper biochemical function. Any condition (environmental, pharmacological/toxicological, physical, or neuro-humoral) that changes the vascular endothelium has great consequences for the organism's wellness and on the outcome and evolution of severe cardiovascular pathologies. Thus, knowledge of the mechanisms, both endogenous and external, that affect endothelial dysfunction is pivotal to preventing and treating these disorders. In recent decades, significant attention has been focused on gut microbiota and how these symbiotic microorganisms can influence host health and disease development. Indeed, dysbiosis has been reported to be at the base of a range of different pathologies, including pathologies of the cardiovascular system. The study of the mechanism underlying this relationship has led to the identification of a series of metabolites (released by gut bacteria) that exert different effects on all the components of the vascular system, and in particular on endothelial cells. The imbalance of factors promoting or blunting endothelial cell viability and function and angiogenesis seems to be a potential target for the development of new therapeutic interventions. This review highlights the circulating factors identified to date, either directly produced by gut microbes or resulting from the metabolism of diet derivatives as polyphenols.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy;
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
12
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
13
|
Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules 2019; 24:E1076. [PMID: 30893792 PMCID: PMC6470817 DOI: 10.3390/molecules24061076] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Phytoestrogens are naturally occurring nonsteroidal phenolic plant compounds that, due to their molecular structure and size, resemble vertebrate steroids estrogens. This review is focused on plant flavonoids isoflavones, which are ranked among the most estrogenic compounds. The main dietary sources of isoflavones for humans are soybean and soybean products, which contain mainly daidzein and genistein. When they are consumed, they exert estrogenic and/or antiestrogenic effects. Isoflavones are considered chemoprotective and can be used as an alternative therapy for a wide range of hormonal disorders, including several cancer types, namely breast cancer and prostate cancer, cardiovascular diseases, osteoporosis, or menopausal symptoms. On the other hand, isoflavones may also be considered endocrine disruptors with possible negative influences on the state of health in a certain part of the population or on the environment. This review deals with isoflavone classification, structure, and occurrence, with their metabolism, biological, and health effects in humans and animals, and with their utilization and potential risks.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
14
|
Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018; 9:416-431. [PMID: 29725935 PMCID: PMC5960473 DOI: 10.1007/s13238-018-0549-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.
Collapse
Affiliation(s)
- Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Yongzhong Zhao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
15
|
Yalamanchili C, Chittiboyina AG, Chandra Kumar Rotte S, Katzenellenbogen JA, Helferich WG, Khan IA. A chiral pool approach for asymmetric syntheses of both antipodes of equol and sativan. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|