1
|
Roy V, Pal MS, Pal A. Analysis of heavy metal tolerance and genomics in an indigenous Kurthia strain from Kulik River reveals multi-metal resistance and dominance of selection pressure on codon usage patterns. Arch Microbiol 2025; 207:57. [PMID: 39945867 DOI: 10.1007/s00203-025-04255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Heavy metal(loid) contamination poses significant risks to biological entities and the ecosystem. Many metal(loid)-resistant bacteria have been isolated from different environmental sites, but still no work has described multi-metal resistant Kurthia sp. In this study, an indigenous Kurthia strain isolated from the surface water of River Kulik was studied to determine its level of tolerance to various metal(loid)s. This study aimed to isolate, characterize and determine the growth kinetics and efficiency of Kurthia gibsonii strain M6 to remove and bioaccumulate As(V), Ni and Pb in vitro. This study also aimed to sequence the whole genome of the bacterium, identify metal resistance genes and analyze the codon usage patterns and factors that affect the codon usage bias of these genes. The bacterium showed elevated resistance to As(V), Pb, Ni and Zn. Under metal(loid) stressed conditions, live cells of Kurthia strain M6 bioaccumulated 212.74, 91.51 and 40.38 mg g-1 of As(V), Pb and Ni, respectively. The removal efficiency was 97%, 69.15% and 25.88% for Pb, Ni and As(V), respectively. Genome analysis revealed the existence of different genes conferring heavy metal resistance. A comprehensive analysis of codon usage patterns for metal resistance genes depicted the predominance of selection pressure as a prime force influencing codon usage patterns. This is the first time a multi-metal resistant K. gibsonii strain has been systematically studied regarding its heavy metal resistance biology. These findings will provide insights into the metal resistance mechanisms of the genus Kurthia and assist in devising new strategies for the bioremediation of metal-polluted environments.
Collapse
Affiliation(s)
- Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
2
|
Majerová H, Konyariková Z, Strašiftáková D, Puhr C, Kautmanová I, Faragó T, Šottník P, Lalinská-Voleková B. Antimony resistant bacteria isolated from Budúcnosť adit (Pezinok-Kolársky vrch deposit) in western Slovakia. Heliyon 2024; 10:e39853. [PMID: 39605838 PMCID: PMC11599972 DOI: 10.1016/j.heliyon.2024.e39853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Potentially toxic elements (PTE), such as antimony (Sb), are dangerous putative contaminants for ground and surface waters around abandoned mines and ore deposits in Slovakia. Nearby mines antimony is commonly coprecipitated in ochre sediments precipitated from Fe-rich drainage waters and, therefore, these sites function as natural scavengers of this metalloid. Bacteria are well known to contribute to the process of redox state maintenance, biosorption and bioaccumulation of antimony and, consequently, to antimony precipitation or release from iron oxides complexes. Here we isolated 48 bacterial strains from circumneutral hydrous ferric oxides (HFO) rich iron ochres accumulated in the waters running from tailing pounds nearby Budúcnosť mine, Pezinok, Slovakia and polluted with high, but fluctuating, concentrations of antimony (130 μg/l Sb in water and 2317 mg/kg Sb in iron ochre in average). The isolated strains were V1-V9 16S rRNA sequenced and the resulting taxonomic affiliations of isolated strains were compared with taxonomy assignments obtained by V4 16S rRNA next generation sequencing approach, including two independent NGS analysis pipelines and different taxonomy classifiers ((IDTAXA (RDP, GTDB, SILVA, CONTAX), MEGAN (NCBI), RDP a SILVAngs). A Sb resistant subgroup of isolated strains (Pseudomonas A60B, Pseudomonas A59, Pseudomonas A28, Aeromonas A21, Aeromonas A13, Aeromonas A60A, Acinetobacter A14, Buttiauxella A58, Shewanella A20A a Yersinia A68), well growing at high Sb concentration (300 mg/l Sb), was tested for an ability of the strains to retain Sb from cultivation media. Based on ICP-MS measurements of the dried biomasses we concluded that all the strains can retain antimony from growth media to some extent, with strains Shewanella A20A, Buttiauxella A58, Yersinia A68 and Aeromonas A60A being the most effective.
Collapse
Affiliation(s)
- Hana Majerová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovak Republic
| | - Zuzana Konyariková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Dana Strašiftáková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Christian Puhr
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, Boku University, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Ivona Kautmanová
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Peter Šottník
- State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic
| | - Bronislava Lalinská-Voleková
- Slovak National Museum - Natural History Museum, Vajanského nábrežie. 2, P.O. Box 13, 81006, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Priyadarshanee M, Das S. Multifaceted response surface methodology unravels competitive heavy metal adsorption affinity of immobilized biosorbent formulated from bacterial extracellular polymer of Pseudomonas aeruginosa OMCS-1. CHEMOSPHERE 2024; 368:143681. [PMID: 39510264 DOI: 10.1016/j.chemosphere.2024.143681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
A multifaceted experimental design, including factorial design, Face-centered composite design (FCCD), and mixture design, was implemented to explore competitive interaction and adsorption behavior of chromium [Cr(VI)], lead [Pb(II)], and cadmium [Cd(II)] by the immobilized extracellular polymer (EPS) based biosorbent of Pseudomonas aeruginosa OMCS-1, in single and ternary metal solution. The prepared biosorbent preferentially adsorbed Cr (47.6 mg/g), Pb (46.38 mg/g), and Cd (42.02 mg/g) in single metal system, and Pb (43.32 mg/g), Cr (40.03 mg/g) and Cd (35.9 mg/g) in multiple metal system. Adsorption behavior of all metals was successfully interpreted by the Freundlich isotherm model (R2 > 0.988), confirming multilayer sequestration. The Cr, Pb, and Cd biosorption rate followed second-order kinetics (R2 > 0.997), validating chemisorption as predominant mechanism in adsorption. The alternation in the structural morphology of EPS Ca-alginate beads and Cr, Pb, and Cd accumulation, suggesting heavy metal adsorption onto immobilized biosorbent. X-ray diffraction (XRD) pattern of multi-metal loaded biosorbent showed additional crystalline phases, indicating adsorption of metal ions. The significant (p < 0.0001; one-way ANOVA) increase in the zeta potential of Cr, Pb, and Cd loaded EPS Ca-alginate beads revealed the electrostatic interaction between biosorbent and metal ions. The hydroxyl, amine, carboxyl, and phosphate groups of formulated biosorbent contributed for metal sequestration. The adsorption-desorption efficiency retained by the biosorbent after fourth cycle was 35.41 ± 0.2% and 51.44 ± 0.98% for Cr, 51.58 ± 0.15% and 63.98 ± 0.24% for Pb, and 30.68 ± 0.13% and 60.39 ± 0.46% for Cd, respectively. The EPS Ca-alginate beads can potentially eliminate heavy metals from multi-metal contaminated water.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India.
| |
Collapse
|
4
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
5
|
Farrell MV, Airkin MY, Ali TN, Altoblani ZS, Bowman CR, Diaz AAB, Faurot PF, Frausto JE, Haji SF, Hamad BA, Lively JB, Luistro DCC, Macias Y, Mathew S, McKinley KM, Nasirimoseloo S, Tran BP, Trinh AN, Shikuma NJ. Draft genome sequence of Exiguobacterium sp. strain MMG028 isolated from a salt marsh. Microbiol Resour Announc 2024; 13:e0011623. [PMID: 38358284 PMCID: PMC10927650 DOI: 10.1128/mra.00116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Here, we report the draft genome sequence of Exiguobacterium sp. strain MMG028, isolated from Rose Creek, San Diego, CA, USA, assembled and analyzed by undergraduate students participating in a marine microbial genomics course. A genomic comparison suggests that MMG028 is a novel species, providing a resource for future microbiology and biotechnology investigations.
Collapse
Affiliation(s)
- Morgan V. Farrell
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Mina Y. Airkin
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Tatyana N. Ali
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Zainalabdin S. Altoblani
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Chynna R. Bowman
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Abigail Anne B. Diaz
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Paul F. Faurot
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Joshua E. Frausto
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Sazan F. Haji
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Basma A. Hamad
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - James B. Lively
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Daniella Corene C. Luistro
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Yvette Macias
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Steffy Mathew
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Kayla M. McKinley
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Somayeh Nasirimoseloo
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Bradley P. Tran
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Amanda N. Trinh
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
6
|
Roy V, Saha BK, Adhikary S, Chaki MG, Sarkar M, Pal A. Isolation, characterization, identification, genomics and analyses of bioaccumulation and biosorption potential of two arsenic-resistant bacteria obtained from natural environments. Sci Rep 2024; 14:5716. [PMID: 38459150 PMCID: PMC10924095 DOI: 10.1038/s41598-024-56082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.
Collapse
Affiliation(s)
- Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Barnan Kumar Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Samarpita Adhikary
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Madhumita G Chaki
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
7
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|
8
|
Maity S, Sarkar D, Poddar K, Patil P, Sarkar A. Biofilm-Mediated Heavy Metal Removal from Aqueous System by Multi-Metal-Resistant Bacterial Strain Bacillus sp. GH-s29. Appl Biochem Biotechnol 2023; 195:4832-4850. [PMID: 36576655 DOI: 10.1007/s12010-022-04288-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Worldwide ever-augmenting urbanization, modernization, and industrialization have contributed to the release of pernicious compounds and a variety of pollutants into the environment. The pollutants discharged due to industrialization are of global concern. Industrial waste and effluent are comprised of hazardous organic and inorganic chemicals including heavy metals which pose a significant threat to the environment and may bring about numerous diseases or abnormalities in human beings. This brings on greater urgency for remediation of these polluted soil and water using sustainable approaches and mechanisms. In the present research, a multi-metal-resistant, gram-positive, non-virulent bacterial strain Bacillus sp. GH-s29 was isolated from contaminated groundwater of Bhojpur district, Bihar, India. The strain had the potential to develop a biofilm that was able to remediate different heavy metals [arsenic, cadmium, and chromium] from individual and multi-heavy metal solutions. Maximum removal for As (V), Cd (II), and Cr (VI) from individual-metal and the multi-metal solution was observed to be 73.65%, 57.37%, 61.62%, and 48.92%, 28.7%, and 35.46%, respectively. SEM-EDX analysis revealed the sequestration of multi-heavy metals by bacterial biofilm. Further characterization by FTIR analysis ensured that the presence of negatively charged functional groups on the biofilm-EPS such as hydroxyl, phosphate, sulfate, and carboxyl helps in binding to the positively charged metal ions. Thus, Bacillus sp. GH-s29 proved to be an effective and economical alternative for different heavy metal remediation from contaminated sites.
Collapse
Affiliation(s)
- Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Pritam Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
9
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
10
|
He X, Xiao W, Zeng J, Tang J, Wang L. Detoxification and removal of arsenite by Pseudomonas sp. SMS11: Oxidation, biosorption and bioaccumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117641. [PMID: 36868151 DOI: 10.1016/j.jenvman.2023.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arsenite [As(III)] oxidizing bacteria have been widely studied for their detoxification ability through transforming As(III) into arsenate [As(V)]. However, few was focused on removal capacity of arsenic (As). In the current study, As(III) oxidation accompanied with removal of total As was observed in Pseudomonas sp. SMS11. The biosorption (unbinding and surface binding) and bioaccumulation (intracellular uptake) of As by the cells were investigated. Biosorption isotherm was defined adequately by Langmuir and Freundlich models. Biosorption kinetics was recommended by pseudo second-order model. For comparison, the bacteria were inoculated in pure water or culture media amended with different concentrations of As(III) to evaluate the remediation capacity without or with bacterial growth. After removing unbound As, surface bound and intracellular As were sequentially separated using EDTA elution and acidic extraction from bacterial cells. Without bacterial growth, oxidation of As(III) was retarded and the maximum values of surface bound and intracellular As were 4.8 and 10.5 mg/g, respectively. Efficient oxidation and high adsorption capacity were observed after bacterial growth. The surface bound and intracellular As achieved up to 555.0 and 2421.5 mg/g, respectively. Strain SMS11 exhibited great accumulation capacity of As in aqueous solutions, indicating potential application in detoxification and removal of As(III) contamination. The results also suggested that bioremediation via bacteria should be based on living cells and bacterial growth rate.
Collapse
Affiliation(s)
- Xiaoman He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weiwei Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
11
|
Irshad S, Xie Z, Qing M, Nawaz A, Mehmood S, Alomar SY, Faheem M, Walayat N. Application of BCXZM Composite for Arsenic Removal: EPS Production, Biotransformation and Immobilization of Bacillus XZM on Corn Cobs Biochar. BIOLOGY 2023; 12:biology12040611. [PMID: 37106811 PMCID: PMC10136123 DOI: 10.3390/biology12040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
This study determined the effect of Bacillus XZM extracellular polymeric substances (EPS) production on the arsenic adsorption capacity of the Biochar-Bacillus XZM (BCXZM) composite. The Bacillus XZM was immobilized on corn cobs multifunction biochar to generate the BCXZM composite. The arsenic adsorption capacity of BCXZM composite was optimized at different pHs and As(V) concentrations using a central composite design (CCD)22 and maximum adsorption capacity (42.3 mg/g) was attained at pH 6.9 and 48.9 mg/L As(V) dose. The BCXZM composite showed a higher arsenic adsorption than biochar alone, which was further confirmed through scanning electron microscopy (SEM) micrographs, EXD graph and elemental overlay as well. The bacterial EPS production was sensitive to the pH, which caused a major shift in the -NH, -OH, -CH, -C=O, -C-N, -SH, -COO and aromatic/-NO2 peaks of FTIR spectra. Regarding the techno economic analysis, it was revealed that USD 6.24 are required to prepare the BCXZM composite to treat 1000 gallons of drinking water (with 50 µg/L of arsenic). Our findings provide insights (such as adsorbent dose, optimum operating temperature and reaction time, and pollution load) for the potential application of the BCXZM composite as bedding material in fixed-bed bioreactors for the bioremediation of arsenic-contaminated water in future.
Collapse
Affiliation(s)
- Sana Irshad
- School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518000, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518000, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Mao Qing
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Asad Nawaz
- School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518000, China
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518000, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Faheem
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Noman Walayat
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrán das Viñas, Rúa Galicia N 4, 32900 Ourense, Spain
| |
Collapse
|
12
|
Alowaifeer AM, Clingenpeel S, Kan J, Bigelow PE, Yoshinaga M, Bothner B, McDermott TR. Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:225-241. [PMID: 36349954 PMCID: PMC10753857 DOI: 10.1002/etc.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.
Collapse
Affiliation(s)
- Abdullah M. Alowaifeer
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Clingenpeel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Washington River Protection Solutions, Richland, Washington, USA
| | - Jinjun Kan
- Microbiology Department, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Patricia E. Bigelow
- US National Park Service, Center for Resources, Fisheries and Aquatic Sciences Program, Yellowstone National Park, Wyoming, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
13
|
Rodríguez-Castrejón UE, Serafin-Muñoz AH, Alvarez-Vargas A, Cruz-Jímenez G, Noriega-Luna B. Isolation and molecular identification of native As-resistant bacteria: As(III) and As(V) removal capacity and possible mechanism of detoxification. Arch Microbiol 2022; 204:191. [PMID: 35194697 DOI: 10.1007/s00203-022-02794-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The study of arsenic (As)-resistant microorganisms with high As removal capacity is fundamental for the development of economically sustainable technologies used for the treatment of water contaminated with metalloid. In the current study, four bacterial strains were isolated from As-contaminated water samples of the Xichu region, Mexico. Based on 16S rRNA gene sequencing and phylogenetic analysis of the isolated strains, Rhodococcus gordoniae, Microbacterium hydrocarbonoxydans, Exiguobacterium indicum, and Pseudomonas kribbensis were identified as potential As removal strains. R. gordoniae shows the highest growth capacity in both As(III) and As(V). R. gordoniae, M. hydrocarbonoxydans, and E. indicum removed approximately 81.6, 79.9, and 61.7% of As(III), as well as 77.2, 68.9, and 74.8% of As(V), respectively. P. kribbensis removed only about 80.2% of As(V). This study contributes to the possible detoxification mechanisms employed by these bacteria. Such insight could be crucial in the successful implementation of in situ bioremediation programs using these little-known bacteria.
Collapse
Affiliation(s)
- U E Rodríguez-Castrejón
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - A H Serafin-Muñoz
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico.
| | - A Alvarez-Vargas
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - G Cruz-Jímenez
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - B Noriega-Luna
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
14
|
Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
16
|
Dabrowska M, Debiec-Andrzejewska K, Andrunik M, Bajda T, Drewniak L. The biotransformation of arsenic by spent mushroom compost - An effective bioremediation agent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112054. [PMID: 33601170 DOI: 10.1016/j.ecoenv.2021.112054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Spent mushroom compost (SMC) is a lignocellulose-rich waste material commonly used in the passive treatment of heavy metal-contaminated environments. In this study, we investigated the bioremediation potential of SMC against an inorganic form of arsenic, examining the individual abiotic and biotic transformations carried out by SMC. We demonstrated, that key SMC physiological groups of bacteria (denitrifying, cellulolytic, sulfate-reducing, and heterotrophic) are resistant to arsenites and arsenates, while the microbial community in SMC is also able to oxidize As(III) and reduce As(V) in respiratory metabolisms, although the SMC did not contain any As. We showed, that cooperation between arsenate and sulfate-reducing bacteria led to the precipitation of AsxSy. We also found evidence of the significant role organic acids may play in arsenic complexation, and we demonstrated the occurrence of As-binding proteins in the SMC. Furthermore, we confirmed, that biofilm produced by the microbial community in SMC was able to trap As(V) ions. We postulated, that the above-mentioned transformations are responsible for the sorption efficiency of As(V) (up to 25%) and As(III) (up to 16%), as well as the excellent buffering properties of SMC observed in the sorption experiments.
Collapse
Affiliation(s)
- M Dabrowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - M Andrunik
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - T Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - L Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
17
|
Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q. Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18870-18892. [PMID: 33586109 DOI: 10.1007/s11356-021-12487-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/11/2021] [Indexed: 05/22/2023]
Abstract
Arsenic (As) bioremediation has been an economical and sustainable approach, being practiced widely under several As-contaminated environments. Bioremediation of As involves the use of bacteria, fungi, yeast, plants, and genetically modified organisms for detoxification/removal of As from the contaminated site. The understanding of multi-factorial biological components involved in these approaches is complex and more and more efforts are on their way to make As bioremediation economical and efficient. In this regard, we systematically reviewed the recent literature (n=200) from the last two decades regarding As bioremediation potential of conventional and recent technologies including genetically modified plants for phytoremediation and integrated approaches. Also, the responsible mechanisms behind different approaches have been identified. From the literature, it was found that As bioremediation through biosorption, bioaccumulation, phytoextraction, and volatilization involving As-resistant microbes has proved a very successful technology. However, there are various pathways of As tolerance of which the mechanisms have not been fully understood. Recently, phytosuction separation technology has been introduced and needs further exploration. Also, integrated approaches like phytobial, constructed wetlands using As-resistant bacteria with plant growth-promoting activities have not been extensively studied. It is speculated that the integrated bioremediation approaches with practical applicability and reliability would prove most promising for As remediation. Further technological advancements would help explore the identified research gaps in different approaches and lead us toward sustainability and perfection in As bioremediation.
Collapse
Affiliation(s)
- Sana Irshad
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir, Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- School of Biotechnology and Food Engineering, Huanghuai University, Zhumadian, 463000, China.
| |
Collapse
|
18
|
Massoud R, Khosravi‐Darani K, Sharifan A, Asadi G, Zoghi A. Lead and cadmium biosorption from milk by Lactobacillus acidophilus ATCC 4356. Food Sci Nutr 2020; 8:5284-5291. [PMID: 33133531 PMCID: PMC7590288 DOI: 10.1002/fsn3.1825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
The food and water contamination with heavy metals is increasing due to the environmental pollutions. Lead and cadmium are the toxic heavy metals for humans that can be found in air, soil, water, and even food. Lactic acid bacteria have the ability to remove and diminish the level of heavy metals. In this study, Lactobacillus acidophilus was used to remove lead and cadmium in milk and the capability of this valuable bacterium in biosorption of these metals low concentrations (µg/L or ppb) in milk was evaluated. First, the variables on lead and cadmium removal by this bacterium have been studied by Plackett-Burman design. Then, the bioremoval process was optimized and the three main factors, the bacterium concentration, contact time, and the initial heavy metal concentration were chosen by using a central composite design. The optimum lead and cadmium bioremoval yield of 80% and 75% were observed, respectively, at 1 × 1012 CFU of L. acidophilus in milk at the 4th day and the initial ion concentration of 100 µg/L. The 3D plots analysis showed the interaction effects on metal biosorption. This study showed that L. acidophilus is a natural effective biosorbent for lead and cadmium removal from milk.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food ScienceStandard OrganizationTehranIran
| | - Kianoush Khosravi‐Darani
- Research Department of Food TechnologyFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Anoosheh Sharifan
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - GholamHassan Asadi
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Allaleh Zoghi
- Research Department of Food TechnologyFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Orizola J, Ríos-Silva M, Muñoz-Villagrán C, Vargas E, Vásquez C, Arenas F. In vitro biosynthesis of Ag, Au and Te-containing nanostructures by Exiguobacterium cell-free extracts. BMC Biotechnol 2020; 20:29. [PMID: 32471409 PMCID: PMC7260758 DOI: 10.1186/s12896-020-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.
Collapse
Affiliation(s)
- Javier Orizola
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mirtha Ríos-Silva
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Nucleares, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Wadood HZ, Rajasekar A, Farooq A, Ting Y, Sabri AN. Biocorrosion inhibition of Cu70:Ni30 by
Bacillus subtilis
strain S1X and
Pseudomonas aeruginosa
strain ZK biofilms. J Basic Microbiol 2019; 60:243-252. [DOI: 10.1002/jobm.201900489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/19/2019] [Accepted: 12/01/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Hafiz Zeshan Wadood
- Department of Biology Lahore Garrison University Lahore Pakistan
- Department of Microbiology and Molecular Genetics University of the Punjab Lahore Pakistan
| | - Aruliah Rajasekar
- Department of Biotechnology Thiruvalluvar University Vellore India
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore
| | - Ameeq Farooq
- Department of Metallurgy and Materials Engineering, Corrosion Control Research Cell University of the Punjab Lahore Pakistan
| | - Yen‐Peng Ting
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore
| | - Anjum Nasim Sabri
- Department of Microbiology and Molecular Genetics University of the Punjab Lahore Pakistan
| |
Collapse
|
21
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Saleem H, Ul Ain Kokab Q, Rehman Y. Arsenic respiration and detoxification by purple non-sulphur bacteria under anaerobic conditions. C R Biol 2019; 342:101-107. [PMID: 30905576 DOI: 10.1016/j.crvi.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Two arsenic-resistant purple non-sulphur bacteria (PNSB), Q3B and Q3C, were isolated (from industrial contaminated site and paddy fields) and identified by SSU rRNA gene sequencing as Rhodospirillum and Rhodospirillaceae species, respectively. Maximum arsenic reduction by these PNSB was observed in anaerobic conditions. Rhodospirillum sp. Q3B showed 74.92% (v/v) arsenic reduction while Rhodospirillaceae sp. Q3C reduced arsenic up to 76.67% (v/v) in anaerobic conditions. Rhodospirillaceae sp. Q3C was found to contain highest carotenoid content up to 5.6mg·g-1. Under anaerobic conditions, the isolates were able to respire arsenic in the presence of lactate, citrate, and oxalate. Rhodospirillum sp. Q3B and Rhodospirillaceae sp. Q3C were also found to produce hydrogen gas. Such diverse bacteria can be useful tools for bioremediation purposes. These bacteria can be further exploited and optimized to treat wastewater containing arsenic along with bio-hydrogen production.
Collapse
Affiliation(s)
- Hira Saleem
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Qurat Ul Ain Kokab
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Yasir Rehman
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan; Department of Allied Health Sciences, The Superior College (University Campus), Main Raiwind Road, Lahore, Pakistan.
| |
Collapse
|