1
|
Zhang Z, Li J, Yang Y, Gong Q, Li H, Rao S, Zheng X, Yang Z. Degradation of patulin by a yeast strain Kluyveromyces marxianus XZ1 and its mechanism. Food Microbiol 2025; 129:104758. [PMID: 40086987 DOI: 10.1016/j.fm.2025.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Patulin (PAT) produced by genus of Penicillium spp attracted more and more concern in view of its widespread contamination in food and toxic effects, which has also promoted the research on the reduction of PAT contamination in food. The use of yeast to remove PAT in food is innovative and promising. In this study, we used the yeast Kluyveromyces marxianus XZ1 to degrade PAT, which can remove 90% of PAT (10 μg/mL) within 48 h. XZ1 exhibits high degradation effect on PAT under the conditions of pH range of 3-6, temperatures of 28-37 °C, and initial PAT concentrations below 50 μg/mL. PAT removing by XZ1 was carried out by intracellular enzymes. XZ1 or intracellular enzyme was able to remove 100% of 10 μg/mL PAT in raw apple juice or commercial apple juice within 60 h. Patulin oxidoreductase (KmPAO) was identified as a potential PTA-degrading enzymes, which degrade PAT to form ascladiol. The degradation products of PAT by XZ1 were identified as ascladiol and desoxypatulinic acid, which was then complete degraded to form unknown final degradation products. Toxic analyses on Caco-2 cells showed that the ascladiol, desoxypatulinic acid and the final degradation products were significantly less toxic compared to PAT, which was mainly manifested in less influence on cell vitality, cell integrity and reactive oxygen species accumulation compared to PAT. Finally, the results revealed the PAT degradation enzyme, as well as the safety of the degradation products, which provide basis for the future application of this yeast to decontamination of PAT in food.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiran Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinghua Gong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
2
|
Bashir HH, Hasnain MA, Abbas A, Lee JH, Moon GS. The Impact of Fermented Dairy Products and Probiotics on Bone Health Improvement. Food Sci Anim Resour 2025; 45:449-467. [PMID: 40093630 PMCID: PMC11907416 DOI: 10.5851/kosfa.2025.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The bone is an important body organ due to its role in locomotion, protection and mineral homeostasis. Bone health is affected by various intrinsic and extrinsic factors like genetics, diet, environment and immune status of an individual. Being a dynamic organ, bones are continuously being remodeled and the remodeling is mediated by an intricate balance of bone formation and resorption which, in turn, are regulated by environmental, genetic, hormonal and neural factors. Lack of balance in any of these factors leads to bone disorders such as osteoporosis. Fermented dairy products along with their probiotics content play a significant role in bone remodeling process ensuring the maintenance of intricate balance in bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). Proteins and various minerals are important constituents of bone. Dairy products, especially fermented ones, are significant because of being a good source of proteins and minerals required to make and maintain a healthy bone. In addition, these provide the body with probiotics which are involved in bone health improvement by enhancing the bioavailability of dietary constituents, production of short chain fatty acids and reducing the inflammatory components. Hence, fermented dairy products should be a regular part of our diet to keep our bone healthy.
Collapse
Affiliation(s)
- Hafiza Hira Bashir
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
| | - Aoun Abbas
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Jae-Hyuk Lee
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| |
Collapse
|
3
|
Abd El-Salam MH, El-Shibiny S, Assem FM, El-Sayyad GS, Hasanien YA, Elfadil D, Soliman TN. Impact of Fermented Milk On Gut Microbiota And Human Health: A Comprehensive Review. Curr Microbiol 2025; 82:107. [PMID: 39888432 DOI: 10.1007/s00284-025-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits. Yoghurt, kefir, Koumiss, and fermented kinds of milk made using different probiotic strains were tested for their capability to modulate gut microbiota. It is apparent that the microflora present in fermented milk, specifically probiotics, are capable of enduring the gastrointestinal tract's adverse conditions primarily through transit microorganisms. Meanwhile, they can alter the gut microbiota in several ways that benefit human health. The present article gives a comprehensive overview of the modulation of gut microbiota by consumption of fermented milk, particularly those containing probiotics, and their impact on human health.
Collapse
Affiliation(s)
| | | | | | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Yasmeen A Hasanien
- Microbiology Laboratory, Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | | |
Collapse
|
4
|
Brasiel PGDA, Dutra Medeiros J, Costa de Almeida T, Teodoro de Souza C, de Cássia Ávila Alpino G, Barbosa Ferreira Machado A, Dutra Luquetti SCP. Preventive effects of kefir on colon tumor development in Wistar rats: gut microbiota critical role. J Dev Orig Health Dis 2025; 16:e5. [PMID: 39868980 DOI: 10.1017/s2040174424000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (108 CFU/mL) during lactation. After weaning (postnatal day 21), KP pups received kefir treatment until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1, 2-dimethylhydrazine. The gut microbiota composition were analyzed by 16S rRNA gene sequencing and DESeq2 (differential abundance method), revealing significant differences in bacterial abundances between the kefir consumption periods. Maternal kefir intake strong anticancer power, suppressed tumors in adult offspring and reduced the relative risk of offspring tumor development. The gut microbiota in cecal samples of the KL group was enriched with Lactobacillus, Romboutsia, and Blautia. In contrast, control animals were enriched with Acinetobacter. The administration of kefir during critical periods of development, with emphasis on lactation, affected the gut microbial community structure to promote host benefits. Pearson analysis indicated positive correlation between tumor number with IL-1 levels. Therefore, the probiotic fermented food intake in early life may be effective as chemopreventive potential against colon tumor development, especially in lactation period.
Collapse
Affiliation(s)
| | - Julliane Dutra Medeiros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thaís Costa de Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
5
|
Silva MH, Batista LL, Malta SM, Santos ACC, Mendes-Silva AP, Bonetti AM, Ueira-Vieira C, Dos Santos AR. Unveiling the Brazilian kefir microbiome: discovery of a novel Lactobacillus kefiranofaciens (LkefirU) genome and in silico prospection of bioactive peptides with potential anti-Alzheimer properties. BMC Genomics 2024; 25:884. [PMID: 39304820 DOI: 10.1186/s12864-024-10695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting β-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.
Collapse
Affiliation(s)
- Matheus H Silva
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil.
| | | | - Serena M Malta
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ana C C Santos
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ana P Mendes-Silva
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ana M Bonetti
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Carlos Ueira-Vieira
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil.
| | | |
Collapse
|
6
|
McGovern CJ, González-Orozco BD, Jiménez-Flores R. Evaluation of kefir grain microbiota, grain viability, and bioactivity from fermenting dairy processing by-products. J Dairy Sci 2024; 107:4259-4276. [PMID: 38369119 DOI: 10.3168/jds.2023-24364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
Four dairy foods processing by-products (acid whey permeate [AWP], buttermilk [BM], sweet whey permeate [SWP], and sweet whey permeate with added milk fat globule ingredient [SWP+MFGM]) were fermented for 4 wk and compared with traditional kefir milks for production of novel kefir-like dairy products. Sweet whey permeates and SWP supplemented with 1.5% milk fat globule membrane (MFGM) proved to be the most viable by-products for kefir grain fermentation, exhibiting diverse abundance of traditional kefir microorganisms and positive indicators of bioactive properties. Grain viability was assessed with shotgun metagenomics, texture profile analysis, live cell counts, and scanning electron microscopy. Assessed bioactivities of the kefir-like products included antibacterial, antioxidant, potential anticancerogenic properties, and membrane barrier effects on human colorectal adenocarcinoma Caco-2 cells. All kefir grains were most abundant in Lactobacillus kefiranofaciens when analyzed with shotgun metagenomics. When analyzed with live cell counts on selective media, AWP kefir-like product had no countable Lactococcus spp., indicating suboptimal conditions for kefir grain microbiota survival and application for fermented dairy starter culture bacterium. Live cell counts were affirmed with kefir grain surface scanning electron microscopy images. The SWP treatment had the most adhesive kefir grain surface, and SWP+MFGM had the largest exopolysaccharide yield from grain extraction. All kefir and kefir-like products were able to achieve a 6-log reduction against Listeria innocua and Escherichia coli. Traditional milk kefirs had the highest antioxidant capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS) assay. The AWP formulation had a significantly higher DPPH antioxidant activity compared with the other kefir and kefir-like products, and SWP had the lowest Trolox equivalence concentration in the ABTS assay. Sweet whey and supplemented milk fat sweet whey had upregulation of Cldn-1 and Ocln-1 gene expression, which correspond with a significant increase in transepithelial electrical resistance.
Collapse
Affiliation(s)
- Chloe J McGovern
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
7
|
Rios DL, da Silva PCL, Moura CSS, Villanoeva CNBC, da Rocha Fernandes G, Bengoa AA, Garrote GL, Abraham AG, Nicoli JR, Neumann E, Nunes ÁC. Comparative metatranscriptome analysis of Brazilian milk and water kefir beverages. Int Microbiol 2024; 27:807-818. [PMID: 37759067 DOI: 10.1007/s10123-023-00431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The present study compared bacterial and fungal diversity of kefir beverages produced using milk (MK) or sugared water (WK) as propagation matrices and grains from the cities of Curitiba (CU) or Salvador (SA), Brazil, by sequencing the complete set of RNA transcripts produced in four products. In Brazil, milk and sugared water are used as matrices to propagate kefir grains. In all beverages, the bacterial community was composed of Lactobacillaceae and Acetobacteraceae. Saccharomycetaceae was the yeast family more abundant in WK, and Dipodascaceae and Pichiaceae in MK. Regarding KEGG mapping of functional orthologs, the four kefir samples shared 70% of KO entries of yeast genes but only 36% of bacterial genes. Concerning main metabolic processes, the relative abundance of transcripts associated with metabolism (energy metabolism) and environmental information processing (membrane transport) had the highest water/milk kefir ratio observed in Firmicutes. In contrast, transcripts associated with genetic information processing (protein translation, folding, sorting, and degradation) oppositely had the lowest water/milk ratios. Concluding, milk and water kefir have quite different communities of microorganisms. Still, the main mapped functional processes are similar, with only quantitative variation in membrane transport and energy acquisition in the water kefir and protein synthesis and turnover in the milk kefir.
Collapse
Affiliation(s)
- Diego Lisboa Rios
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil
- EBTT - Informática, Instituto Federal do Amazonas (IFAM), São Gabriel da Cachoeira, Brazil
| | - Patrícia Costa Lima da Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - César Silva Santana Moura
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | - Ana Agustina Bengoa
- Centro de Investigación y Desarrollo em Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Graciela Liliana Garrote
- Centro de Investigación y Desarrollo em Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo em Criotecnologia de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jacques Robert Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Álvaro Cantini Nunes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
8
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
9
|
Kahraman-Ilıkkan Ö. Comparative genomics of four lactic acid bacteria identified with Vitek MS (MALDI-TOF) and whole-genome sequencing. Mol Genet Genomics 2024; 299:31. [PMID: 38472540 DOI: 10.1007/s00438-024-02129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.
Collapse
|
10
|
Jang HJ, Lee NK, Paik HD. Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink. Food Sci Anim Resour 2024; 44:255-268. [PMID: 38764505 PMCID: PMC11097033 DOI: 10.5851/kosfa.2023.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 05/21/2024] Open
Abstract
Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
11
|
Matos RS, Pinto EP, Pires MA, Ramos GQ, Ţălu Ş, Lima LS, da Fonseca Filho HD. Evaluating the roughness dynamics of kefir biofilms grown on Amazon cupuaçu juice: a monofractal and multifractal approach. Microscopy (Oxf) 2024; 73:55-65. [PMID: 37540558 DOI: 10.1093/jmicro/dfad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
We conducted a comprehensive analysis of the surface microtexture of kefir biofilms grown on Theobroma grandiflorum Shum (cupuaçu) juice using atomic force microscopy. Our goal was to investigate the unique monofractal and multifractal spatial patterns of these biofilms to complement the existing limited literature. The biofilms were prepared dispersing four different concentrations of kefir grains in cupuaçu juice. Our morphological analysis showed that the surface of the obtained biofilms is essentially formed by the presence of cupuaçu fibers and microorganisms like lactobacilli and yeast. The topographic height-based parameter analysis reveals that there is a dependence between surface roughness and the concentration of kefir grains used. The strongly anisotropic well-centralized topographical height distribution of the biofilms also exhibited a quasi-symmetrical and platykurtic pattern. The biofilms exhibit comparable levels of spatial complexity, surface percolation and surface homogeneity, which can be attributed to their similar topographic uniformity. This aspect was further supported by the presence of similar multifractality in the biofilms, suggesting that despite their varying topographic roughness, their vertical growth dynamics follow a similar pattern. Our findings demonstrate that the surface roughness of kefir biofilms cultivated on cupuaçu juice is influenced by the concentration of kefir grains in the precursor solution. However, this dependence follows a consistent pattern across different concentrations. Graphical Abstract.
Collapse
Affiliation(s)
- Robert S Matos
- Amazonian Materials Group, Department of Physics, Federal University of Amapá-UNIFAP, Rod. Juscelino Kubitscheck, km 02 - Jardim Marco Zero, Macapá, Amapá 68.903-419, Brazil
| | - Erveton P Pinto
- Amazonian Materials Group, Department of Physics, Federal University of Amapá-UNIFAP, Rod. Juscelino Kubitscheck, km 02 - Jardim Marco Zero, Macapá, Amapá 68.903-419, Brazil
| | - Marcelo A Pires
- Department of Physiscs, Federal University of Alagoas-UFAL, Rodovia AL 145, Km 3, 3849 - Cidade Universitária, Delmiro Gouveia, Alagoas 57.480-000, Brazil
| | - Glenda Q Ramos
- Centro Multiusuário para Análise de Fenômenos Biomédicos da Universidade do Estado do Amazonas, Universidade do Estado do Amazonas-UEA, Av. Carvalho Leal, 1777 - Cachoeirinha, Amazonas 69.065-001, Brazil
| | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu St., no. 15, Cluj-Napoca, Cluj County 400020, Romania
| | - Lucas S Lima
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos" Av. Marechal Rondom, S/N - Jardim Rosa Elze, São Cristovão, Sergipe 49.100-000, Brazil
| | - Henrique D da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Department of Physics, Federal University of Amazonas-UFAM, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado I, Manaus, Amazonas 69.067-005, Brazil
| |
Collapse
|
12
|
Yusuf D, Kholifaturrohmah R, Nurcholis M, Setiarto RHB, Anggadhania L, Sulistiani. Potential of White Jack Bean ( Canavalia ensiformis L. DC) Kefir as a Microencapsulated Antioxidant. Prev Nutr Food Sci 2023; 28:453-462. [PMID: 38188079 PMCID: PMC10764231 DOI: 10.3746/pnf.2023.28.4.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Oxidative stress plays a major role in the pathogenesis and progression of noncommunicable diseases. Kefir is a fermented food that has been reported to repress oxidative stress. This study aimed to assess the antioxidant activity, bioactive composition, and encapsulation efficiency of white jack bean (WJB) kefir. The following procedures were conducted: WJB was prepared and converted into juice using water solvent. The sterilized WJB juice was then fermented with kefir grain (10%) for 24∼72 h. Every 24 h, the kefir was evaluated for antioxidant activity, and the dominant bioactive component suspected to be the source of the antioxidant activity was identified. The final stage was the encapsulation process. WJB kefir showed high antioxidant activity, inhibiting DPPH radicals by 90.51±4.73% and ABTS radicals by 86.63±2.34% after 72 h of fermentation. WJB kefir contained 0.35±0.01 mg GAE/g total phenolics and 0.08 mg/g total flavonoids. The LC/MS identification suggested that the bioactive antioxidant components of the WJB kefir were from the alkaloid, saponin, phenolic, and flavonoid groups. The encapsulation with maltodextrin using freeze drying resulted in microencapsulation of WJB kefir with a particle size of 6.42±0.13 μm. The encapsulation efficiency was 79.61%, and the IC50 value was 32.62 ppm. The encapsulation method was able to maintain the antioxidant stability of the kefir and extend its shelf life. WJB kefir, a nondairy, lactose-free kefir, can be used as an antioxidant functional food.
Collapse
Affiliation(s)
- Dandy Yusuf
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| | - Risa Kholifaturrohmah
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mochamad Nurcholis
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia
| | - R. Haryo Bimo Setiarto
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| | - Lutfi Anggadhania
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
| | - Sulistiani
- Research Center for Applied Microbiology, National Research and Innovation Agency the Republic of Indonesia, Cibinong 16911, Indonesia
- Research Collaboration Center for Traditional Fermentation, Surakarta 57126, Indonesia
| |
Collapse
|
13
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
14
|
Valletta M, Campolattano N, De Chiara I, Marasco R, Singh VP, Muscariello L, Pedone PV, Chambery A, Russo R. A robust nanoLC high-resolution mass spectrometry methodology for the comprehensive profiling of lactic acid bacteria in milk kefir. Food Res Int 2023; 173:113298. [PMID: 37803610 DOI: 10.1016/j.foodres.2023.113298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicoletta Campolattano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ida De Chiara
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosangela Marasco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Vikram Pratap Singh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Lidia Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
15
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
16
|
González-Orozco BD, Santiago-Rodriguez TM, García-Cano I, Jiménez-Flores R, Alvarez VB. Draft genome sequence of Lactobacillus helveticus OSU-BDGOAK2 and Lactobacillus kefiranofaciens OSU-BDGOA1, kefir grain isolates with potential antibacterial activity. Microbiol Resour Announc 2023; 12:e0030423. [PMID: 37526462 PMCID: PMC10508122 DOI: 10.1128/mra.00304-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/17/2023] [Indexed: 08/02/2023] Open
Abstract
We present the draft genome sequence and assembly of Lactobacillus helveticus OSU-BDGOAK2 and Lactobacillus kefiranofaciens OSU-BDGOA1 isolated from kefir grains that exhibited in vitro antibacterial activity against Escherichia coli ATCC 25922, Listeria innocua ATCC 51742, and Staphylococcus epidermidis ATCC 1222. Genome analysis of both strains revealed gene clusters encoding bacteriocins.
Collapse
Affiliation(s)
| | | | - Israel García-Cano
- Department of Food Sciences and Technology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Valente B. Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Oliveira Filho JGD, Silva CDO, Egea MB, Azeredo HMCD, Mattoso LHC. Employing alternative culture media in kefiran exopolysaccharide production: Impact on microbial diversity, physicochemical properties, and bioactivities. Int J Biol Macromol 2023; 246:125648. [PMID: 37406922 DOI: 10.1016/j.ijbiomac.2023.125648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Kefiran is a biomaterial with potential application in developing novel materials for food technology. In this study, sugarcane sugar (REF), raw sugar (RAS), brown sugar (BRS), soy molasses (SOM), and sugarcane molasses (SCM) were evaluated for the production of kefiran from kefir biomass rather than cow's milk (CMK), the usual medium. The produced kefiran was purified and characterized by colorimetry, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis, and morphology. It was also assayed for antioxidant and antimicrobial activity. SCM had the highest average daily rate of kefir biomass production (29.17 %/day). The composition of the culture medium affected the microbial diversity of kefir grains, and the Lactobacillus genus was the most abundant (39.8 %, 40.0 %, and 83.9 % to SCM, SOM, and CMK, respectively) in the samples that presented the highest biomass production and kefiran extraction yields. FTIR spectra showed that the bands of kefiran produced in REF and RAS were narrower than those of the other samples. Kefiran grew in an alternative culture medium also exhibited higher thermal stability (Tonset and TMax was higher than 250 and 280 °C, respectively). Those grown in SOM and SCM displayed antimicrobial and antioxidant activities similar to those of kefiran produced in CMK. The results indicate that agro-industrial by-products (SCM and SOM) are potential alternatives for kefiran production from kefir biomass.
Collapse
Affiliation(s)
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | | | | |
Collapse
|
18
|
Albuquerque Pereira MDF, Morais de Ávila LG, Ávila Alpino GDC, Dos Santos Cruz BC, Almeida LF, Macedo Simões J, Ladeira Bernardes A, Xisto Campos I, de Oliveira Barros Ribon A, de Oliveira Mendes TA, Gouveia Peluzio MDC. Milk kefir alters fecal microbiota impacting gut and brain health in mice. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12630-0. [PMID: 37389589 DOI: 10.1007/s00253-023-12630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.
Collapse
Affiliation(s)
| | - Larissa Gabriela Morais de Ávila
- Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Gabriela de Cássia Ávila Alpino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Biological Sciences and Health Institute, Universidade Federal de Viçosa Campus Rio Paranaíba, Rodovia BR230 KM 7, Rio Paranaíba, Minas Gerais, Brazil
| | - Lucas Filipe Almeida
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jordana Macedo Simões
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Andressa Ladeira Bernardes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iasmim Xisto Campos
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Andréa de Oliveira Barros Ribon
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
19
|
Chuang KC, Lai YW, Ko CH, Yen CC, Chen HL, Lan YW, Chen CF, Chen W, Chen CM. Therapeutic effects of kefir peptides on adjuvant-induced arthritis in rats through anti-inflammation and downregulation of matrix metalloproteinases. Life Sci 2023; 317:121411. [PMID: 36682523 DOI: 10.1016/j.lfs.2023.121411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
AIMS Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features are synovial inflammation, bone erosion, and joint structural damages. Our previous studies have shown that kefir peptides (KPs) can reduce cardiovascular disease, osteoporosis and renal inflammation. In this study, we further evaluate the efficacy of KPs on adjuvant-induced arthritis (AIA) in a rat model. MAIN METHODS After the 14th day of adjuvant induction, rats were subsequently orally administered KPs (83 or 166 mg/day/kg) or tofacitinib (6.2 mg/day/kg) for 14 days. On the 28th day, the rats were anesthetized with isoflurane for ultrasonic, in vivo imaging system (IVIS), and radiographic imaging and then sacrificed for ankle tissues collection and analysis. In vitro, IL-1β-treated human synovial cells (SW982) were subjected to anti-arthritis mechanism study in the presence of KPs. KEY FINDINGS The results of ultrasonography, radiograph, histology, the expression of matrix metalloproteinases (MMPs), inflammatory cytokines and RANKL/OPG ratio demonstrated decreasing severity of synovitis and bone erosion in the ankle joints after KPs treatment. Activation of the NF-κB and MAPK pathways was significantly reduced in KPs treated AIA group. Furthermore, KPs attenuated IL-1β-induced inflammatory cytokine production and the expression of MMPs in a human synovial cell line SW982. These results demonstrated that KPs alleviated adjuvant-induced arthritis in rats by inhibiting IL-1β-related inflammation and MMPs production. SIGNIFICANCE We concluded that KPs can exhibit anti-inflammatory effects by reducing the levels of macrophage-related inflammatory cytokines and MMPs, thus alleviating bone erosion in the ankle joint and constituting a potential therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun-Wen Lai
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Hua Ko
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, Department of Bioresources, Da-Yeh University, Changhwa 515, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Chien-Fu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
20
|
Abi Khalil R, Yvon S, Couderc C, Belahcen L, Jard G, Sicard D, Bigey F, El Rammouz R, Abi Nakhoul P, Eutamène H, Tormo H, Ayoub MJ. Microbial communities and main features of labneh Ambaris, a traditional Lebanese fermented goat milk product. J Dairy Sci 2023; 106:868-883. [PMID: 36543637 DOI: 10.3168/jds.2022-22275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Labneh Ambaris is a traditional Lebanese dairy product typically made using goat milk in special earthenware jars. Its production is characterized by the regular additions of milk and coarse salt, all while draining the whey throughout a process that lasts for a minimum of 2 mo. In this study, 20 samples of labneh Ambaris, all produced by spontaneous fermentation, were studied. They were collected at the end of fermentation from different regions in Lebanon. Physicochemical and sensory properties were studied and microbial diversity was analyzed using culture-dependent and independent techniques. The V3-V4 region of the 16S rRNA gene and the ITS2 region were sequenced by DNA metabarcoding analyses for the identification of bacteria and yeast communities, respectively. Out of 160 bacterial and 36 fungal taxa, 117 different bacterial species and 24 fungal species were identified among all labneh Ambaris samples studied. The remaining ones were multi-affiliated and could not be identified at the species level. Lactobacillus was the dominant bacterial genus, followed by Lentilactobacillus, Lactiplantibacillus, Lacticaseibacillus, and Lactococcus genera, whereas Geotrichum and Pichia were the dominant fungal genera. The 20 samples tested had varying levels of salt, protein, and fat contents, but they were all highly acidic (mostly having a pH < 4). According to the sensory scores generated by classical descriptive analysis, all samples were described as having basic similar characteristics such as goat smell and flavor, but they could be differentiated based on various intensities within the same descriptors like salty and acidic. This work could be considered as a base toward obtaining a quality label for labneh Ambaris.
Collapse
Affiliation(s)
- Reine Abi Khalil
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France
| | - Sophie Yvon
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France; Toxalim UMR 1331, INRA, INP-ENVT, INP-PURPAN, Université de Toulouse, Toulouse, 31027 Toulouse, France
| | - Christel Couderc
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France
| | - Loubnah Belahcen
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France
| | - Gwenaelle Jard
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France
| | - Delphine Sicard
- SPO, Univ. Montpellier, INRAE, Institut Agro Montpellier, 34060 Montpellier, France
| | - Frédéric Bigey
- SPO, Univ. Montpellier, INRAE, Institut Agro Montpellier, 34060 Montpellier, France
| | - Rabih El Rammouz
- Department of Animal Production, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon
| | - Pierre Abi Nakhoul
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon
| | - Hélène Eutamène
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France; Toxalim UMR 1331, INRA, INP-ENVT, INP-PURPAN, Université de Toulouse, Toulouse, 31027 Toulouse, France
| | - Hélène Tormo
- Departement Sciences de l'Agroalimentaire et de la Nutrition INP-EI Purpan, Université de Toulouse; 75, voie du TOEC, BP 57611, F-31076 Toulouse, Cedex 3, France.
| | - Marie-José Ayoub
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon.
| |
Collapse
|
21
|
Yeast cell wall polysaccharides in Tibetan kefir grains are key substances promoting the formation of bacterial biofilm. Carbohydr Polym 2023; 300:120247. [DOI: 10.1016/j.carbpol.2022.120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
22
|
Bengoa AA, Dueñas MT, Prieto A, Garrote GL, Abraham AG. Exopolysaccharide-producing Lacticaseibacillus paracasei strains isolated from kefir as starter for functional dairy products. Front Microbiol 2023; 14:1110177. [PMID: 36910219 PMCID: PMC9998950 DOI: 10.3389/fmicb.2023.1110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exopolysaccharides (EPS) produced by lactic acid bacteria are molecules of great interest for the dairy food industry. Lacticaseibacillus paracasei CIDCA 8339, CIDCA 83123, and CIDCA 83124 are potentially probiotic strains isolated from kefir grains whose EPS-production on MRS broth is dependent on incubation temperature. The aim of the present work is to evaluate the effect of fermentation temperature on the characteristics of EPS produced in milk by L. paracasei strains and the consequent impact on the rheological properties of the fermented products. Additionally, the protective effect of these EPS against Salmonella infection was evaluated in vitro. Acid gels with each strain were obtained by milk fermentation at 20°C, 30°C, and 37°C evidencing for all the strains a reduction in growth and acidification rate at lower temperature. Lacticaseibacillus paracasei CIDCA 83123 showed low fermentation rate at all temperatures requiring between 3 and 8 days to obtain acids gels, whereas CIDCA 8339 and 83124 needed between 24 and 48 h even when the temperature was 20°C. Fermentation temperature led to changes in crude EPS characteristics of the three strains, observing an increase in the relative amount of the high molecular weight fraction when the fermentation temperature diminished. Additionally, EPS83124 and EPS83123 presented modifications in monosaccharide composition, with a reduction of rhamnose and an increase of amino-sugars as temperature rise. These changes in the structure of EPS83124 resulted in an increase of the apparent viscosity of milks fermented at 20°C (223 mPa.s) and 30°C (217 mPa.s) with respect to acid gels obtained at 37°C (167 mPa.s). In order to deepen the knowledge on EPS characteristics, monosaccharide composition of low and high molecular weight EPS fractions were evaluated. Finally, it was evidenced that the preincubation of intestinal epithelial cells Caco-2/TC-7 with EPS8339 and EPS83124 partially inhibit the association and invasion of Salmonella. In light of these results, it can be concluded that the selection of the EPS-producing strain along with the appropriate fermentation conditions could be an interesting strategy to improve the technological properties of these L. paracasei fermented milks with potential protective effects against intestinal pathogens.
Collapse
Affiliation(s)
- Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina
| | - María Teresa Dueñas
- Dpto. de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Alicia Prieto
- Grupo de Sistemas Microbianos e Ingeniería de Proteínas, Dpto. de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CONICET-UNLP-CIC), Buenos Aires, Argentina.,Area Bioquímica y Control de Alimentos (Dto de Ciencias Biológicas - Facultad de Ciencias Exactas, UNLP), Buenos Aires, Argentina
| |
Collapse
|
23
|
Metagenomic features of Tibetan kefir grains and its metabolomics analysis during fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
25
|
Khosroshahi ED, Razavi SH. Wheat germ valorization by fermentation: A novel insight into the stabilization, nutritional/functional values and therapeutic potentials with emphasis on anti-cancer effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Liu S, Lu SY, Qureshi N, Enshasy HAE, Skory CD. Antibacterial Property and Metagenomic Analysis of Milk Kefir. Probiotics Antimicrob Proteins 2022; 14:1170-1183. [PMID: 35995909 DOI: 10.1007/s12602-022-09976-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/25/2022]
Abstract
Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Siqing Liu
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA.
| | - Shao-Yeh Lu
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| | - Nasib Qureshi
- Bioenergy Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burge Al Arab, Alexandria, 21934, Egypt
| | - Chris D Skory
- Agricultural Research Service, Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, USDA, 1815 N University St, Peoria, IL, 61604, USA
| |
Collapse
|
27
|
Du G, Chang S, Guo Q, Yan X, Chen H, Yuan Y, Yue T. Adsorption removal of ochratoxin A from milk by Tibetan kefir grains and its mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
29
|
Alves E, Gregório J, Rijo P, Rosado C, Monteiro Rodrigues L. Kefir and the Gut-Skin Axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113791. [PMID: 36360671 PMCID: PMC9653948 DOI: 10.3390/ijerph192113791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/31/2023]
Abstract
The human gastrointestinal (GI) tract is a dynamic system influenced by various environmental factors, including diet and exposure to ingested probiotics, and prone to various functional impairments. These impairments are mostly related to any combination of motility alterations, visceral hypersensitivity, and changes in the mucosa, immune function, and intestinal microbiota. Intestinal microbial imbalance and immunological dysfunction have been linked to several chronic inflammatory disease states, including atopic dermatitis (AD). Disruption of the intestinal microbial balance, known as gut dysbiosis, has been demonstrated to negatively impact skin function by increasing the intestinal permeability. Consequently, the gut-skin axis may be receptive to modulation via dietary modification, namely, via ingestion of probiotics, thus representing interesting potential as an AD therapy. Kefir is an ancient probiotic food that has been demonstrated to positively impact the general condition of the digestive system, including the intestinal microbiota. However, the literature is still scarce on the impact on the gut-skin relationship of a diet containing kefir. This study, continuing research in our group, aimed to evaluate the impact of kefir intake on GI symptoms in healthy and AD skin subjects. Results showed a significant improvement in GI status, namely, in functional constipation, abdominal pain intensity, and abdominal distension, thus supporting the hypothesis that kefir intake is positively associated with improvement in GI status. The existence of a relationship between the improvement in skin parameters and the improvement in GI status after kefir consumption was established, thus reinforcing the role of homemade kefir as a potential modulator of the gut-skin axis in both healthy and atopic individuals.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Health Sciences Ph.D. Program, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Spain
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luis Monteiro Rodrigues
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
30
|
Konuspayeva G, Baubekova A, Akhmetsadykova S, Faye B. Traditional dairy fermented products in Central Asia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous fruits are produced in Ecuador, of which about 40% are never eaten. In addition, fresh goat cheeses are in high demand. However, goat cheese generates goat milk whey with high contamination loads, and, therefore, it must be adequately treated before being discharged into ecosystems. This research aims to use a mixture of tree tomato, common strawberry juices, and goat’s milk whey, to be statically fermented by milk and water kefir grains (WKG) for 48 h. For this, a dual mixture design of L-optimal response surface methodology was carried out to find the conditions that maximized all the responses evaluated (lactic-acid bacteria and yeasts concentrations and the overall acceptability assessed on a 7-point scale). Experiments were carried out in San Gabriel, Ecuador. Temperatures during the day and night were 20.2 ± 0.3 °C and 18.7 ± 0.3 °C, respectively. Three conditions were selected, where the highest response values were reached. Complementary experiments demonstrated the validity of the models. When comparing the results of the present study with similar ones carried out previously, higher values were observed in the concentration of yeasts, which seems related to the presence of the WKG. It is concluded that they could be suitable functional beverage candidates.
Collapse
|
32
|
Brasiel PGDA, Costa de Almeida T, Mateus K, Fernandes de Carvalho A, Potente Dutra Luquetti SC, Gouveia Peluzio MDC. Maintenance of Probiotic Characteristics of Dry Kefir: Is It Possible? JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2020.1862010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Kácia Mateus
- Departamento De Nutrição, Universidade Federal de Juiz de Fora, Juiz De Fora, Brazil
| | | | | | | |
Collapse
|
33
|
Chen W, Wang J, Du L, Chen J, Zheng Q, Li P, Du B, Fang X, Liao Z. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit Rev Food Sci Nutr 2022; 64:1371-1384. [PMID: 36039934 DOI: 10.1080/10408398.2022.2115975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kefir consists of a large number of probiotics, which can regulate or shape the balance of intestinal microbiota, and enhance the host's immune response. Kefir microbiota can shape the mucosal immunity of the body through SCFAs, EPS, polypeptides, lactic acid, and other metabolites and microbial antigens themselves, and this shaping may have time windows and specific pathways. Kefir can regulate antibody SIgA and IL-10 levels to maintain intestinal homeostasis, and its secreted SIgA can shape the stable microbiota system by wrapping and binding different classes of microorganisms. The incidence of intestinal inflammation is closely linked to the development and maturation of intestinal mucosal immunity. Based on summarizing the existing research results on Kefir, its metabolites, and immune system development, this paper proposes to use Kefir, traditional fermented food with natural immune-enhancing components and stable functional microbiota, as an intervention method. Early intervention in the immune system may seize the critical window period of mucosal immunity and stimulate the development and maturation of intestinal mucosal immunity in time.
Collapse
Affiliation(s)
- Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
35
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Rahmani B, Alimadadi N, Attaran B, Nasr S. Yeasts from Iranian traditional milk kefir samples: isolation, molecular identification and their potential probiotic properties. Lett Appl Microbiol 2022; 75:1264-1274. [PMID: 35879830 DOI: 10.1111/lam.13794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Milk kefir is a fermented dairy product with numerous attributed health benefits due to the presence of a complex eukaryotic and prokaryotic microbiota. In this study, a total number of 26 yeast isolates were obtained from eight kefir samples from three different cities of Iran. The isolates belonged to Kluyveromyces marxianus, Saccharomyces cerevisiae, Pichia fermentans and P. kudriavzevii. The potential probiotic characteristics of the isolates were evaluated based on their ability to tolerate the stimulated condition of the gastrointestinal tract. In addition, hemolytic activity, adherence to different solvents, auto-aggregation, adhesion to the epithelial intestine-derived cells and antimicrobial activity of the selected isolates were evaluated. Overall, four yeast strains (three strains of S. cerevisiae and one strain of P. fermentans) showed resistance and survival ability against the gastrointestinal physiological conditions including acidic pH, presence of bile salt and digestive enzymes. They were able to grow at 37 °C and had the capacity to adhere to epithelial intestine-derived cells. These results suggest that the selected strains can be proper candidates as probiotic yeast strains for the development of novel functional foods.
Collapse
Affiliation(s)
- B Rahmani
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - N Alimadadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - B Attaran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - S Nasr
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
37
|
The Impact of Kefir on Epidermal Water Homeostasis in Healthy Human Skin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071075. [PMID: 35888163 PMCID: PMC9321187 DOI: 10.3390/life12071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Kefir, a symbiotic consortium of diverse bacteria and yeasts, is one of the most popular probiotic foods on the market. Its consumption has been referred to as beneficial in human skin health, namely in the reinforcement of skin's barrier function. This benefit likely results from the productive activity of lactic acid bacteria during kefir fermentation. Lactic acid is naturally present in the skin, and actively contributes to epidermal water dynamics and "barrier." Few studies have been conducted regarding the impact of probiotic consumption in human epidermal water homeostasis. Therefore, this study was designed to explore the impact of the regular consumption of kefir on the skin water dynamics in a group of participants with healthy skin. Participants (n = 27) were healthy female volunteers from whom twelve consumed 100 mL of kefir every day for eight weeks as part of their diet. The remaining (untreated) participants served as the control group. Epidermal water balance was assessed by measuring transepidermal water loss (TEWL) and stratum corneum (SC) hydration on three different occasions-at baseline (T0), after four weeks (T4) and after eight weeks (T8) of interventive kefir consumption. Our study revealed a significant reduction in TEWL (p = 0.043) in the kefir group after eight weeks of regular consumption. In the same period, no differences were found for TEWL in the control group (p = 0.997). Regarding hydration, skin dryness was progressive in the control group, with a significant reduction in SC hydration (p = 0.002) at T8 in comparison to T0. In the kefir group, SC hydration was preserved between T0 and T8 (p = 0.997), which we believe to be related to epidermal "barrier" reinforcement. Our study seems to confirm that the regular consumption of kefir does improve cutaneous water balance even in healthy skin.
Collapse
|
38
|
Lima Parente Fernandes M, Cristina de Souza A, Sérgio Pedroso Costa Júnior P, Ayra Alcântara Veríssimo L, Satler Pylro V, Ribeiro Dias D, Freitas Schwan R. Sugary kefir grains as the inoculum for developing a low sodium isotonic beverage. Food Res Int 2022; 157:111257. [DOI: 10.1016/j.foodres.2022.111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
|
39
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
40
|
Isolation and Identification of Lactose-Degrading Yeasts and Characterisation of Their Fermentation-Related Ability to Produce Ethanol. FERMENTATION 2022. [DOI: 10.3390/fermentation8040183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kefir is traditionally produced by fermenting cow’s milk using kefir grains as a starter culture. As the viability of microbes within kefir grains is limited and preparing the grains for kefir fermentation is laborious, here, a single starter that ferments lactose and produces ethanol is developed. For this purpose, it is important to isolate yeasts that can ferment lactose and subsequently produce alcohol. This study aimed to isolate and identify yeasts from kefir and characterise their ability as single starters to produce kefir. Based on morphological and physiological evaluations, 15 presumptive yeast isolates were obtained, 10 of which grew well on lactose-containing media. Those that were able to grow on lactose using only carbon sources were subjected to molecular identification based on the internal transcribed spacer (ITS) of the 5.8 rDNA using PCR technology. Molecular identification confirmed four isolates—namely, KFA 3, KFA 7, KFA 9 and KFB 1—as belonging to Kluyveromyces marxianus. The batch fermentation data of these strains were fitted on a logistic model to obtain the carrying capacity coefficients and strain performances were compared. The kinetic modelling revealed that KFA 9 had the highest values for the carrying capacity coefficient, biomass yield and product yield, indicating that, among the four K. marxianus strains, this was superior due to its relatively fast growth and good ethanol productivity.
Collapse
|
41
|
Hammami I, Ben Ali R, Nahdi A, Boussada M, Mahjoub R, Bibi A, El May MV. Kefir milk consumption decreases sperm alterations due to the high-fat diet in adult male rats. Andrologia 2022; 54:1631-1642. [PMID: 35396733 DOI: 10.1111/and.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Over the past decades, an increase of male infertility through the decrease of sperm count has been noted. It has been suggested that environmental factors and lifestyle could a negative impact over sperm quality. Among these factors, the consumption of foods high in fat, which leads to overweight and obesity, can negatively influence fertility. The present study was designed to highlight the protective effect of Kefir, natural probiotic, against the decline in sperm quality related to fat high diet. Thirty adult rats were divided into four groups: Control (1 ml/100 g of body weight (bw) of semi-shimmed cow milk), KM (1 ml/100 g bw of Kefir milk), HFD (1 ml/100 g bw of semi-shimmed cow milk + high-fat diet) and KM/HFD (1 ml/100 g bw Kefir milk + high-fat diet). After 60 days of treatment, sperm quality, biochemical assays of lipids profil, blood cell count and histological examination in testis were assessed. The results described an improved of sperm density (64.28 106 ml vs 54.14 106 ml), viability (70.50% vs 55.33%), mobility (65.40% vs 63.60%) and morphological abnormalities (52% vs 25%) in the KM/HFD group compared to HFD group. In the same group, the lipid profil (Triglycerides (128.39 mg/dl vs 102.85 mg/dl), C-LDL (13.65 mg/dl vs 15.32 mg/dl) and C-HDL (23.21 mg/dl vs 19.15 mg/dl)) was corrected compared to HFD group. The histological observation of testis revealed a normal spermatogenesis compared to seminiferous tubules of HFD group, which showed a serious disruption and damage of testicular epithelium exerted by the high-fat diet. These findings corroborated the previous beneficial effect of Kefir and brought new insights into its beneficial effect against deteriorated spermatogenesis in obese adult rats.
Collapse
Affiliation(s)
- Imen Hammami
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Ridha Ben Ali
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Afef Nahdi
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Marwa Boussada
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Rahma Mahjoub
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amina Bibi
- Laboratory of Clinic Biology, National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Michèle Véronique El May
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| |
Collapse
|
42
|
Study of the physico-chemical, structural, microbiological properties and volatile flavour compounds profile of kefir supplemented with electro-activated whey. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Comprehensive utilisation of electro-activated whey-based media in cell growth, metabolite production and aroma compounds synthesis using a starter culture originated from kefir grains. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
González-Orozco BD, García-Cano I, Jiménez-Flores R, Alvárez VB. Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. J Dairy Sci 2022; 105:3703-3715. [DOI: 10.3168/jds.2021-21382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
45
|
Guiomar de Almeida Brasiel P, Cristina Potente Dutra Luquetti S, Dutra Medeiros J, Otavio do Amaral Corrêa J, Barbosa Ferreira Machado A, Paula Boroni Moreira A, Novaes Rocha V, Teodoro de Souza C, do Carmo Gouveia Peluzio M. Kefir modulates gut microbiota and reduces DMH-associated colorectal cancer via regulation of intestinal inflammation in adulthood offsprings programmed by neonatal overfeeding. Food Res Int 2022; 152:110708. [PMID: 35181109 DOI: 10.1016/j.foodres.2021.110708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Obesity is associated with chronic inflammation, intestinal dysbiosis, and colorectal cancer risk. The anti-cancer effects of kefir are highlighted. Here, lactating Wistar rats were divided into: Normal litter (NL); Kefir normal litter (KNL); Small litter (SL); Kefir small litter (KSL). The NL and SL groups received 1 mL of water/day; KNL and KSL received kefir milk daily (108 CFU/mL) during lactation. After weaning, the pups continued to receive the same treatments until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1,2-dimethylhydrazine. At 240 days, visceral adipose tissue was higher in SL compared to NL, KNL, and KSL. Kefir intake was found to suppress the number of tumors in both KNL and KSL groups (-100% and -71.43%; p < 0.01, respectively). IL-1β, IL-6, TNF-α, and NO levels in the colon were higher in the NL and SL compared to the KNL and KSL. The gut microbiota in cecal samples of SL was enriched with Alloprevotella, Acinetobacter, and Bacteroides. In contrast, the cecal contents of KSL and KNL were higher Romboutsia. Thus, neonatal overfeeding leads to greater adiposity, inflammation and number of colon tumors in adulthood. Early-life nutrition based on kefir reverted these alterations.
Collapse
Affiliation(s)
| | | | - Julliane Dutra Medeiros
- Faculty of Biological and Agricultural Sciences, Mato Grosso State University, Alta Floresta, Brazil
| | | | | | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | |
Collapse
|
46
|
Duran FE, Özdemir N, Güneşer O, Kök-Taş T. Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03936-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Diao X, Yamada K, Shibata Y, Imada C. Metabolites Produced by a New Lactiplantibacillus plantarum Strain BF1-13 Isolated from Deep Seawater of Izu-Akazawa Protect the Intestinal Epithelial Barrier from the Dysfunction Induced by Hydrogen Peroxide. Mar Drugs 2022; 20:md20020087. [PMID: 35200617 PMCID: PMC8878880 DOI: 10.3390/md20020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the protective effect of the metabolites produced by a new Lactiplantibacillus plantarum strain BF1-13, isolated from deep seawater (DSW), on the intestinal epithelial barrier against the dysfunction induced by hydrogen peroxide (H2O2) and to elucidate the mechanism underlying the effect. Protective effect of the metabolites by strain BF1-13 on the barrier function of the intestinal epithelial model treated with H2O2 was investigated by the transepithelial electrical resistance (TEER). The metabolites enhanced the Claudin-4 (CLDN-4) expression, including at the transcription level, indicated by immunofluorescence staining and quantitative RT-PCR. The metabolites also showed a suppression of aquaporin3 (AQP3) expression. Lactic acid (LA) produced by this strain of homofermentative lactic acid bacteria (LAB) had a similar enhancement on CLDN-4 expression. The metabolites of L. plantarum strain BF1-13 alleviated the dysfunction of intestinal epithelial barrier owing to its enhancement on the tight junctions (TJs) by LA, along with its suppression on AQP3-facilitating H2O2 intracellular invasion into Caco-2 cells. This is the first report on the enhancement of TJs by LA produced by LAB.
Collapse
Affiliation(s)
- Xiaozhen Diao
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
- Correspondence:
| | - Katsuhisa Yamada
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
- DSW Laboratory of DHC Co., Ltd., Tokyo 106-0047, Japan;
| | - Yuji Shibata
- DSW Laboratory of DHC Co., Ltd., Tokyo 106-0047, Japan;
| | - Chiaki Imada
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
| |
Collapse
|
48
|
Coutinho Favilla AL, Rosa dos Santos Junior E, Novo Leal Rodrigues MC, Baião DDS, Flosi Paschoalin VM, Lemos Miguel MA, da Silva Carneiro C, Trindade Rocha Pierucci AP. Microbial and physicochemical properties of spray dried kefir microcapsules during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Du G, Guo Q, Yan X, Chen H, Yuan Y, Yue T. Potential protective mechanism of Tibetan kefir underlying gut-derived liver injury induced by ochratoxin A. Food Funct 2022; 13:11690-11704. [DOI: 10.1039/d2fo02360a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tibetan kefir against Ochratoxin A-induced liver injury by maintaining the intestinal barrier and modulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
50
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|