1
|
Braley C, Gaucher ML, Fravalo P, Shedleur-Bourguignon F, Longpré J, Thibodeau A. Slight Temperature Deviation during a 56-Day Storage Period Does Not Affect the Microbiota of Fresh Vacuum-Packed Pork Loins. Foods 2023; 12:foods12081695. [PMID: 37107490 PMCID: PMC10138144 DOI: 10.3390/foods12081695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
It is profitable to export fresh meat overseas, where it is often regarded as a premium commodity. Meeting this demand for fresh meat, however, necessitates long export times, during which uncontrolled temperature increases can affect the microbiological quality of the meat and thereby, reduce shelf life or compromise food safety. To study the impact of temperature deviations on microbial community composition and diversity, we used 16S rRNA gene sequencing for Listeria monocytogenes and Salmonella spp. detection to describe the surface microbiota of eight batches of vacuum-packed loins stored at -1.5 °C (control) for 56 days and subjected to a 2 °C or 10 °C temperature deviation for a few hours (mimicking problems regularly encountered in the industry) at day 15 or 29. The presence of pathogens was negligible. The applied temperature deviations were not associated with different microbiota. Sequencing analysis showed the presence of Yersinia, an unexpected pathogen, and relative abundance increased in the groups subjected to temperature deviations. Over time, Lactobacillales_unclassified genus became the main constituent of the microbiota of vacuum-packed pork loins. Although the microbiota of the eight batches appeared similar at the beginning of storage, differences were revealed after 56 days, suggesting unequal aging of the microbiota.
Collapse
Affiliation(s)
- Charlotte Braley
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Le Conservatoire National des Arts et Métiers (CNAM), 75003 Paris, France
| | - Fanie Shedleur-Bourguignon
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d'Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
2
|
Braley C, Fravalo P, Gaucher ML, Larivière-Gauthier G, Shedleur-Bourguignon F, Longpré J, Thibodeau A. Similar Carcass Surface Microbiota Observed Following Primary Processing of Different Pig Batches. Front Microbiol 2022; 13:849883. [PMID: 35694297 PMCID: PMC9184759 DOI: 10.3389/fmicb.2022.849883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial contamination during meat processing is a concern for both food safety and for the shelf life of pork meat products. The gut microbiota of meat-producing animals is one of the most important sources of surface contamination of processed carcasses. This microbiota is recognized to vary between pigs from different farms and could thus be reflected on the bacterial contamination of carcasses at time of processing. In this study, the microbiota of 26 carcasses of pigs originating from different farms (i.e., batches) were compared to determine if an association could be observed between carcass surface microbiota (top and bottom) and the origin of slaughtered animals. The microbiota of the top and bottom carcass surface areas was analyzed by culturing classical indicator microorganisms (mesophilic aerobic bacteria, Enterobacteria, Escherichia coli, Pseudomonas, and lactic bacteria), by the detection of Salmonella, and by 16S rRNA gene sequencing. Culture results showed higher Enterobacteria, E. coli, and lactic bacteria counts for the bottom areas of the carcasses (neck/chest/shoulder) when compared to the top areas. Salmonella was not detected in any samples. Globally, 16S rRNA gene sequencing showed a similar composition and diversity between the top and bottom carcass areas. Despite the presence of some genera associated with fecal contamination such as Terrisporobacter, Escherichia-Shigella, Turicibacter, Clostridium sensustricto1, and Streptococcus on the carcass surface, sequencing analysis suggested that there was no difference between the different batches of samples from the top and bottom areas of the carcasses. The primary processing therefore appears to cause a uniformization of the carcass global surface microbiota, with some specific bacteria being different depending on the carcass area sampled.
Collapse
Affiliation(s)
- Charlotte Braley
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- *Correspondence: Charlotte Braley,
| | - Philippe Fravalo
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Le Conservatoire National des Arts et Métiers (CNAM), Paris, France
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Center de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | - Fanie Shedleur-Bourguignon
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jessie Longpré
- Center de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Center de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Obregon-Gutierrez P, Aragon V, Correa-Fiz F. Sow Contact Is a Major Driver in the Development of the Nasal Microbiota of Piglets. Pathogens 2021; 10:pathogens10060697. [PMID: 34205187 PMCID: PMC8227386 DOI: 10.3390/pathogens10060697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The nasal microbiota composition is associated with the health status of piglets. Sow-contact in early life is one of the factors influencing the microbial composition in piglets; however, its impact has never been assessed in the nasal microbiota of piglets reared in controlled environmental conditions. Nasal microbiota of weaning piglets in high-biosecurity facilities with different time of contact with their sows (no contact after farrowing, contact limited to few hours or normal contact until weaning at three weeks) was unveiled by 16S rRNA gene sequencing. Contact with sows demonstrated to be a major factor affecting the nasal microbial composition of the piglets. The nasal microbiota of piglets that had contact with sows until weaning, but were reared in high biosecurity facilities, was richer and more similar to the previously described healthy nasal microbiota from conventional farm piglets. On the other hand, the nasal communities inhabiting piglets with no or limited contact with sows was different and dominated by bacteria not commonly abundant in this body site. Furthermore, the length of sow–piglet contact was also an important variable. In addition, the piglets raised in BSL3 conditions showed an increased richness of low-abundant species in the nasal microbiota. Artificially rearing in high biosecurity facilities without the contact of sows as a source of nasal colonizers had dramatic impacts on the nasal microbiota of weaning piglets and may introduce significant bias into animal research under these conditions.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Boubendir S, Arsenault J, Quessy S, Thibodeau A, Fravalo P, ThÉriault WP, Fournaise S, Gaucher ML. Salmonella Contamination of Broiler Chicken Carcasses at Critical Steps of the Slaughter Process and in the Environment of Two Slaughter Plants: Prevalence, Genetic Profiles, and Association with the Final Carcass Status. J Food Prot 2021; 84:321-332. [PMID: 33513257 DOI: 10.4315/jfp-20-250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Salmonella is a foodborne pathogen commonly associated with poultry products. The aims of this work were to (i) estimate the impact of critical steps of the slaughter process on Salmonella detection from broiler chicken carcasses in two commercial poultry slaughter plants in Quebec, Canada; (ii) investigate the presence of Salmonella in the slaughter plant environment; (iii) describe, using a high-resolution melting (HRM) approach, the HRM Salmonella profiles and serotypes present on carcasses and in the slaughter plant environment; and (iv) evaluate whether the HRM flock status after chilling could be predicted by the flock status at previous steps of the slaughter process, the status of previous flocks, or the status of the processing environment, for the same HRM profile. Eight visits were conducted in each slaughter plant over a 6-month period. In total, 379 carcass rinsates from 79 flocks were collected at five critical steps of the slaughter process. Environmental samples were also collected from seven critical sites in each slaughter plant. The bleeding step was the most contaminated, with >92% positive carcasses. A decrease of the contamination along the slaughtering process was noted, with carcasses sampled after dry-air chilling showing ≤2.5% Salmonella prevalence. The most frequently isolated serotypes were Salmonella Heidelberg, Kentucky, and Schwarzengrund. The detection of the Salmonella Heidelberg 1-1-1 HRM profile on carcasses after chilling was significantly associated with its detection at previous steps of the slaughter process and in previously slaughtered flocks from other farms during a same sampling day. Results highlight the importance of the chilling step in the control of Salmonella on broiler chicken carcasses and the need to further describe and compare the competitive advantage of Salmonella serotypes to survive processing. The current study also illustrates the usefulness of HRM typing in investigating Salmonella contamination along the slaughter process. HIGHLIGHTS
Collapse
Affiliation(s)
- Selmane Boubendir
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Julie Arsenault
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2.,ORCID: https://orcid.org/0000-0001-8382-7326 [J.A.]
| | - Sylvain Quessy
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2.,Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2
| | - Philippe Fravalo
- Pole Agroalimentaire du Cnam, Conservatoire National des Arts et Métiers, 22440 Ploufragan, France
| | - William P ThÉriault
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | - Sylvain Fournaise
- Olymel S.E.C./L.P., 2200 Avenue Léon-Pratte, St-Hyacinthe, Québec, Canada J2S 4B6
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2.,Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 2M2.,https://orcid.org/0000-0003-4848-0202 [M.L.G.]
| |
Collapse
|
5
|
Larivière-Gauthier G, Thibodeau A, Yergeau É, Fravalo P. Sows affect their piglets' faecal microbiota until fattening but not their Salmonella enterica shedding status. Lett Appl Microbiol 2020; 72:113-120. [PMID: 33030230 DOI: 10.1111/lam.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that Salmonella shedding status affects sows' microbiota during gestation and that these modifications are reflected in the faecal microbiota of their piglets at weaning. The aims of this study were: (a) to evaluate the persistence, up to the fattening period, of the previously measured link between the microbiota of piglets and their mothers' Salmonella shedding status; and (b) measure the impact of the measured microbiota variations on their Salmonella excretion at this stage. To achieve this, 76 piglets born from 19 sows for which the faecal microbiota was previously documented, were selected in a multisite production system. The faecal matter of these swine was sampled after 4 weeks, at the fattening stage. The Salmonella shedding status and faecal microbiota of these animals were described using bacteriological and 16S rRNA gene amplicon sequencing respectively. The piglet digestive microbiota association with the Salmonella shedding status of their sows did not persist after weaning and did not affect the risk of Salmonella excretion during fattening, while the birth mother still affected the microbiota of the swine at fattening. This supports the interest in sows as a target for potentially transferrable microbiota modifications.
Collapse
Affiliation(s)
- G Larivière-Gauthier
- Faculty of Veterinary Medicine, NSERC, Industrial Research Chair in Meat Safety (CRSV), University of Montreal, Saint-Hyacinthe, QC, Canada
| | - A Thibodeau
- Faculty of Veterinary Medicine, NSERC, Industrial Research Chair in Meat Safety (CRSV), University of Montreal, Saint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - É Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - P Fravalo
- Faculty of Veterinary Medicine, NSERC, Industrial Research Chair in Meat Safety (CRSV), University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
6
|
Evaluation of Oral Administration of Lactobacillus plantarum CAM6 Strain as an Alternative to Antibiotics in Weaned Pigs. Animals (Basel) 2020; 10:ani10071218. [PMID: 32708975 PMCID: PMC7401644 DOI: 10.3390/ani10071218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Currently, due to intensive production, pigs are weaned early, which generates stress due to separation from the sow, metabolic disorders, and decreased productive performance. Thus, sub-therapeutic antibiotics have been used to alleviate these detrimental effects; however, it has been shown that these practices create microbial resistance and cross-resistance to other microorganisms. Although the European Union banned antibiotic growth promoters (AGP), many countries in the world still use them widely. In the present study, oral administration of Lactobacillus plantarum CAM6 in weaned pigs improved productive performance from the second experimental week and increased total serum levels of IgA without causing adverse effects on health indicators and acid-base balance. These results suggest this probiotic bacterium can be used as an alternative to antibiotics in weaned pigs. Abstract The objective was to evaluate the effect of oral administration of Lactobacillusplantarum CAM6 strain as an alternative to antibiotics in weaned pigs on productive parameters, blood biochemical profile, and IgA serum levels. Thirty-six 21-day-old weaned piglets were randomly assigned to three groups with three replicates of four piglets each. Treatments consisted of a basal diet (BD; T0) without probiotics or antibiotics; BD + antibiotics and the same basal diet used in T0 plus oral administration of 5 mL × 109 CFU/mL of L. plantarum CAM-6 (T2). During the study (21 to 49 days of age) T2 obtained a similar live weight, weight gain, and feed conversion ratio when compared to the T1. Both treatments were better in these variables compared to T0 (p ≤ 0.05). Furthermore, T2 increased serum IgA levels (p ≤ 0.05). Additionally, hematological parameters and acid-base balance remained similar in all groups. However, significant reductions in the mean corpuscular hemoglobin concentration, platelets, and metabolic hydrogen ions were observed in T1 (p ≤ 0.05). The results of this study suggest that supplementation with L. plantarum CAM6 can be an alternative to antibiotics. Studies to evaluate its efficacy under commercial conditions and water administration require further evaluation.
Collapse
|
7
|
Sanglard LP, Schmitz-Esser S, Gray KA, Linhares DCL, Yeoman CJ, Dekkers JCM, Niederwerder MC, Serão NVL. Investigating the relationship between vaginal microbiota and host genetics and their impact on immune response and farrowing traits in commercial gilts. J Anim Breed Genet 2019; 137:84-102. [PMID: 31762123 DOI: 10.1111/jbg.12456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Our objectives were to evaluate the interaction between host genetics and vaginal microbiota and their relationships with antibody (Ab) response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination and farrowing performance in commercial gilts. The farrowing performance traits were number born alive, number weaning (NW), total number born, number born dead, stillborn, mummies and preweaning mortality (PWM). The vaginal microbiota was collected on days 4 (D4) and 52 (D52) after vaccination for PRRSV. Blood samples were collected on D52 for Ab measurement. Actinobacteria, Bacterioidetes, Firmicutes, Proteobacteria and Tenericutes were the most abundant Phyla identified in the vaginal microbiota. Heritability ranged from ~0 to 0.60 (Fusobacterium) on D4 and from ~0 to 0.63 (Terrisporobacter) on D52, with 43 operational taxonomic units (OTUs) presenting moderate to high heritability. One major QTL on chromosome 12 was identified for 5 OTUs (Clostridiales, Acinetobacter, Ruminococcaceae, Campylobacter and Anaerococcus), among other 19 QTL. The microbiability for Ab response to PRRSV vaccination was low for both days (<0.07). For farrowing performance, microbiability varied from <0.001 to 0.15 (NW on D4). For NW and PWM, the microbiability was greater than the heritability estimates. Actinobacillus, Streptococcus, Campylobacter, Anaerococcus, Mollicutes, Peptostreptococcus, Treponema and Fusobacterium showed different abundance between low and high Ab responders. Finally, canonical discriminant analyses revealed that vaginal microbiota was able to classify gilts in high and low Ab responders to PRRSV vaccination with a misclassification rate of <0.02. Although the microbiota explained limited variation in Ab response and farrowing performance traits, there is still potential to explore the use of vaginal microbiota to explain variation in traits such as NW and PWM. In addition, these results revealed that there is a partial control of host genetic over vaginal microbiota, suggesting a possibility for genetic selection on the vaginal microbiota.
Collapse
Affiliation(s)
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, Iowa.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa
| | - Kent A Gray
- Smithfield Premium Genetic, Rose Hill, North Carolina
| | - Daniel C L Linhares
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, Montana
| | | | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
8
|
Wang T, Teng K, Liu Y, Shi W, Zhang J, Dong E, Zhang X, Tao Y, Zhong J. Lactobacillus plantarum PFM 105 Promotes Intestinal Development Through Modulation of Gut Microbiota in Weaning Piglets. Front Microbiol 2019; 10:90. [PMID: 30804899 PMCID: PMC6371750 DOI: 10.3389/fmicb.2019.00090] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus plantarum is a widespread bacterial species and is commonly used as a probiotic. L. plantarum PFM105 was isolated from the rectum of a healthy sow. Here we found that L. plantarum PFM105 showed probiotic effect on weaning piglets in which intestinal inflammation and unbalanced gut microbiota happened frequently. L. plantarum PFM105 was identified to improve the growth of weaning piglet and promote the development of small intestinal villi. Antibiotics are often used in weaning piglet to prevent intestinal infection and promote the growth of animal. We found that weaning piglets feeding with L. plantarum PFM105 showed similar growth promotion but decreased diarrhea incidence compared with those feeding with antibiotics. High-throughput sequencing was used to analyze the gut microbiota in weaning piglets treated with L. plantarum PFM105 or antibiotics. The relative abundance of beneficial microbes Prevotellaceae and Bifidobacteriaceae were increased in colon of weaning piglet feeding L. plantarum PFM105, while antibiotics increased the relative abundance of bacteria associated with pathogenicity, such as Spirochaeta and Campylobacteraceae. L. plantarum PFM 105 increased indicators of intestinal health including serum levels of IgM, IL-10, and TGF-β, and colonic levels of SCFAs. We found strong correlations between the alterations in gut microbiota composition caused by feeding antibiotics and probiotics and the measured growth and health parameters in weaning piglets. The addition of L. plantarum PFM105 could significantly increase the relative abundance of metabolic genes which may important to intestinal microbiota maturation. Altogether, we demonstrated here that L. plantarum PFM 105 could promote intestinal development through modulation of gut microbiota in weaning piglets.
Collapse
Affiliation(s)
- Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiong Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Enqiu Dong
- LongDa Foodstuff Group Co., Ltd, Laiyang, China
| | - Xin Zhang
- LongDa Foodstuff Group Co., Ltd, Laiyang, China
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|